Method and system for name encryption agreement in a content centric network

Information

  • Patent Grant
  • 10043016
  • Patent Number
    10,043,016
  • Date Filed
    Monday, February 29, 2016
    8 years ago
  • Date Issued
    Tuesday, August 7, 2018
    5 years ago
Abstract
One embodiment provides a system that facilitates efficient name encryption in a CCN. During operation, the system determines, by a client computing device, an index for a name of an interest, wherein the name is a hierarchically structured variable length identifier that includes contiguous name components ordered from a most general level to a most specific level, wherein the index indicates a minimum number of the contiguous name components beginning from the most general level that represent a minimum routable prefix needed to route the interest to a content producing device that can satisfy the interest. The system encrypts one or more name components of the interest name beginning with the name component immediately following the minimum routable prefix. The system transmits the interest based on the encrypted name, thereby facilitating efficient name encryption in a CCN.
Description
RELATED APPLICATIONS

The subject matter of this application is related to the subject matter in the following applications:

    • U.S. patent application Ser. No. 13/847,814, entitled “ORDERED-ELEMENT NAMING FOR NAME-BASED PACKET FORWARDING,” by inventor Ignacio Solis, filed 20 Mar. 2013 (hereinafter “U.S. patent application Ser. No. 13/847,814”);
    • U.S. patent application Ser. No. 12/338,175, entitled “CONTROLLING THE SPREAD OF INTERESTS AND CONTENT IN A CONTENT CENTRIC NETWORK,” by inventors Van L. Jacobson and Diana K. Smetters, filed 18 Dec. 2008 (hereinafter “U.S. patent application Ser. No. 12/338,175”); and
    • U.S. patent application Ser. No. 14/947,810, entitled “TRANSPARENT ENCRYPTION IN A CONTENT CENTRIC NETWORK,” by inventor Christopher A. Wood, filed 20 Nov. 2015 (hereinafter “U.S. patent application Ser. No. 14/947,810”);


      the disclosures of which are herein incorporated by reference in their entirety.


BACKGROUND

Field


This disclosure is generally related to distribution of digital content. More specifically, this disclosure is related to a method and system for name encryption agreement which allows a consumer to determine an index in a CCN name at which to begin encryption, based on a minimum routable prefix necessary for the interest to reach a producer in a content centric network.


Related Art


The proliferation of the Internet and e-commerce continues to create a vast amount of digital content. Content centric network (CCN) architectures have been designed to facilitate accessing and processing such digital content. A CCN includes entities, or nodes, such as network clients, forwarders (e.g., routers), and content producers, which communicate with each other by sending interest packets for various content items and receiving content object packets in return. CCN interests and content objects are identified by their unique names, which are typically hierarchically structured variable length identifiers (HSVLI). An HSVLI can include contiguous name components ordered from a most general level to a most specific level.


A CCN data packet (such as an interest or content object) is routed based on its name. Some name components may be used by an intermediate node to route a CCN interest, while other name components may be used by a content producer to satisfy a request based on private user information or application-specific data. In the latter case, the meaningfulness of the name components may reveal information regarding the requested content and may result in a breach of user privacy or security. A consumer may encrypt the interest name, but a sufficient number of name components must remain unencrypted for routing purposes. This “minimum routable prefix” is the maximal name length (e.g., maximum number of name components) needed to route an interest to a content producer who can satisfy the content request.


While a CCN brings many desired features to a network, some issues remain unsolved for a consumer in determining the minimum routable prefix for an interest name.


SUMMARY

One embodiment provides a system that facilitates efficient name encryption in a CCN. During operation, the system determines, by a client computing device, an index for a name of an interest, wherein the name is a hierarchically structured variable length identifier that includes contiguous name components ordered from a most general level to a most specific level, wherein the index indicates a minimum number of the contiguous name components beginning from the most general level that represent a minimum routable prefix needed to route the interest to a content producing device that can satisfy the interest. The system encrypts one or more name components of the interest name beginning with the name component immediately following the minimum routable prefix. The system transmits the interest based on the encrypted name, thereby facilitating efficient name encryption in a CCN.


In some embodiments, the system generates a first probing interest with a name that comprises one or more contiguous name components of the interest name beginning from the most general level. In response to receiving a first content object which indicates a positive response of the first probing interest, the system sets the index to a number of name components in the first probing interest name. In response to receiving a second content object which indicates a negative acknowledgment of the first probing interest, the system generates a second probing interest with a name that comprises the first probing interest name followed by a next contiguous name component of the interest name.


In some embodiments, the system determines that the first content object indicates a positive response of the first probing interest. The system determines that the first content object indicates that a receiving content producing device can return a content object based on the name components of the interest name as included in the first probing interest name. The system also determines that a key identifier of the first content object matches a public key of the content producing device.


In some embodiments, the system appends a first random nonce to the first probing interest name. The system also appends a second random nonce to the second probing interest name.


In some embodiments, the system determines a midpoint index of a number of name components in the interest name, wherein a lower portion of the interest name includes the name components from the most general level name component to the name component preceding the name component corresponding to the midpoint index, and wherein an upper portion of the interest name includes the name components from the name component following the name component corresponding to the midpoint index to the most specific level name component. The system generates a first probing interest with a name that comprises one or more contiguous name components of the interest name beginning from the most general level name component to the name component corresponding to the midpoint index. In response to receiving a first content object which indicates a positive response of the first probing interest, the system sets the index to a number of name components in the first probing interest name.


In some embodiments, in response to receiving a second content object which indicates that a receiving content producing device can return a content object based on the name components of the interest name as included in the first probing interest, and in response to determining that a key identifier of the second content object is associated with a public key of the content producing device, the system determines a lower midpoint index of the lower portion. The system generates a second probing interest with a name that comprises one or more contiguous name components of the interest name beginning from the most general level name component to a name component corresponding to the lower midpoint index. In response to receiving a third content object which indicates a negative acknowledgment of the first probing interest, the system determines an upper midpoint index of the upper portion, and generates a third probing interest with a name that comprises one or more contiguous name components of the interest name beginning from the most general level name component to a name component corresponding to the upper midpoint index.


In some embodiments, the system appends a first random nonce to the first probing interest name, appends a second random nonce to the second probing interest name, and appends a third random nonce to the third probing interest name.


In some embodiments, the system generates one or more probing interests based on a number of number components for the interest name and further based on one or more of: a linear search; a binary search; and a number of collapsed name prefixes in a forwarding information base, wherein a collapsed name prefix indicates a plurality of name components with a same forwarding information in the forwarding information base.


In some embodiments, the system generates an initial interest for the index, wherein the initial interest is transmitted to a third party service and has a payload that includes the interest name and a public key of the third party service, wherein the payload of the initial interest is encrypted based on a public key of the client computing device, wherein the initial interest indicates the public key of the client computing device. In response to the initial interest, the system receives an initial content object that has a payload that indicates the index, wherein the payload of the initial content object is encrypted based on the public key of the third party service.


In some embodiments, the interest name includes one or more nested and encrypted names suffixes, and a name suffix comprises one or more contiguous name components of the interest name. The system determines a second index for a nested and encrypted name suffix, wherein the second index indicates a minimum number of contiguous name components beginning from the most general level that represent a minimum routable prefix needed to route the interest to a content producing device that can satisfy a nested interest with a name which includes the nested and encrypted name suffix. The system encrypts the name components following the name components corresponding to the second index.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 illustrates an exemplary environment which facilitates efficient name encryption in a content centric network, in accordance with an embodiment of the present invention.



FIG. 2A illustrates an exemplary communication which facilitates efficient name encryption in a content centric network, based on a linear probing method, in accordance with an embodiment of the present invention.



FIG. 2B illustrates an exemplary communication which facilitates efficient name encryption in a content centric network, based on a linear probing method, in accordance with an embodiment of the present invention.



FIG. 2C illustrates an exemplary communication which facilitates efficient name encryption in a content centric network, based on a binary probing method, in accordance with an embodiment of the present invention.



FIG. 3 illustrates an exemplary communication which facilitates efficient name encryption in a content centric network, including communication with a third party service, in accordance with an embodiment of the present invention.



FIG. 4A presents a flow chart illustrating a method by a client computing device for facilitating efficient name encryption in a content centric network, in accordance with an embodiment of the present invention.



FIG. 4B presents a flow chart illustrating a method by a client computing device for facilitating efficient name encryption in a content centric network, based on a linear probing method, in accordance with an embodiment of the present invention.



FIG. 4C presents a flow chart illustrating a method by a client computing device for facilitating efficient name encryption in a content centric network, based on a binary probing method, in accordance with an embodiment of the present invention.



FIG. 4D presents a flow chart illustrating a method by a client computing device for facilitating efficient name encryption in a content centric network, based on a binary probing method, in accordance with an embodiment of the present invention.



FIG. 5 presents a flow chart illustrating a method by a client computing device for facilitating efficient name encryption in a content centric network, including communication with a third party service, in accordance with an embodiment of the present invention.



FIG. 6 presents a flow chart illustrating a method by a content-hosting device for facilitating efficient name encryption in a content centric network, in accordance with an embodiment of the present invention.



FIG. 7 illustrates an exemplary computer system that facilitates efficient name encryption in a content centric network, in accordance with an embodiment of the present invention.





In the figures, like reference numerals refer to the same figure elements.


DETAILED DESCRIPTION

The following description is presented to enable any person skilled in the art to make and use the embodiments, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the present invention is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.


Overview


Embodiments of the present invention solve the problem of efficiently encrypting a CCN name by providing a system which allows a consumer to determine the minimum routable prefix of a CCN name, which indicates the index in the name at which to begin encryption. A CCN data packet (e.g., an interest or a content object) is routed based on its name, which can include multiple name components. Some of the name components may be used for routing purposes, while other name components may contain sensitive user information or application-specific data. A consumer may encrypt the interest name, but a sufficient number of name components must remain unencrypted in order for the interest to be routed to a producer that can satisfy the interest or serve the requested content. Embodiments of the present system allow a consumer to determine this sufficient number of unencrypted name components, which is also known as the minimum routable prefix. The minimum routable prefix can correspond to an index in the CCN name, where the index indicates the position of a particular name component in the hierarchically structured variable length identifier that includes contiguous name components ordered from a most general level to a most specific level.


The consumer can discover the index based on three different methods: 1) a name-based negotiation protocol; 2) a route-based negotiation protocol; and 3) an explicit negotiation protocol. Name-based negotiation (the first method) can be based on a linear probing method or a binary probing method. The consumer can send probing interests with an increasing number of name components until a positive response is returned. For example, based on the linear probing method, given a name N of “/a/b/c/d/x/y/z,” and a random nonce rx, the consumer can transmit a probing interest with the name “/a/r1” and if a negative response is received, the consumer can transmit another probing interest with the name “/a/b/r2.” The consumer can continue sending probing interests, each with an additional name component, until it receives a positive response. The positive response can indicate the minimum routable prefix needed to properly route the interest, and thus can indicate the index within the name N at which the consumer may begin encryption. The name-based negotiation protocol using linear probing is described below in relation to FIGS. 2A and 2B. The consumer can also perform the name-based negotiation protocol based on binary probing, which is described below in relation to FIG. 2C.


Route-based negotiation (the second method) is an extension of name-based negotiation. The routing algorithm can account for the number of prefixes truncated or collapsed during publication. Each CCN node has a forwarding information base (“FIB”), which is a table with entries of name prefixes and corresponding outgoing interfaces. The FIB is used to route interests based on longest-prefix matches of their names. A FIB entry usually contains one name prefix and its corresponding outgoing interfaces. If two or more name prefixes correspond to the same outgoing interface, the CCN node may collapse or truncate the entries into one entry.


In the explicit negotiation protocol (the third method), a CCN producer delegates the negotiation to a third party service which is known to a consumer. The consumer can send an explicit request to the third party service for the index. A detailed description of the protocol based on explicit negotiation with the third party service is described below in relation to FIG. 3.


Thus, the system facilitates efficient name encryption in a CCN by allowing a consumer to discover the minimum routable prefix for an interest, which indicates a maximum number of name components needed to route the interest to a producer. The minimum routable prefix also indicates the index at which the consumer may begin encrypting the name.


In CCN, each piece of content is individually named, and each piece of data is bound to a unique name that distinguishes the data from any other piece of data, such as other versions of the same data or data from other sources. This unique name allows a network device to request the data by disseminating a request or an interest that indicates the unique name, and can obtain the data independent from the data's storage location, network location, application, and means of transportation. The following terms are used to describe the CCN architecture:


Content Object (or “content object”): A single piece of named data, which is bound to a unique name. Content Objects are “persistent,” which means that a Content Object can move around within a computing device, or across different computing devices, but does not change. If any component of the Content Object changes, the entity that made the change creates a new Content Object that includes the updated content, and binds the new Content Object to a new unique name.


Unique Names: A name in a CCN is typically location independent and uniquely identifies a Content Object. A data-forwarding device can use the name or name prefix to forward a packet toward a network node that generates or stores the Content Object, regardless of a network address or physical location for the Content Object. In some embodiments, the name may be a hierarchically structured variable-length identifier (HSVLI). The HSVLI can be divided into several hierarchical components, which can be structured in various ways. For example, the individual name components parc, home, ccn, and test.txt can be structured in a left-oriented prefix-major fashion to form the name “/parc/home/ccn/test.txt.” Thus, the name “/parc/home/ccn” can be a “parent” or “prefix” of “/parc/home/ccn/test.txt.” Additional components can be used to distinguish between different versions of the content item, such as a collaborative document. The HSVLI can also include contiguous name components ordered from a most general level to a most specific level.


In some embodiments, the name can include an identifier, such as a hash value that is derived from the Content Object's data (e.g., a checksum value) and/or from elements of the Content Object's name. A description of a hash-based name is described in U.S. patent application Ser. No. 13/847,814, which is herein incorporated by reference. A name can also be a flat label. Hereinafter, “name” is used to refer to any name for a piece of data in a name-data network, such as a hierarchical name or name prefix, a flat name, a fixed-length name, an arbitrary-length name, or a label (e.g., a Multiprotocol Label Switching (MPLS) label).


Interest (or “interest”): A packet that indicates a request for a piece of data, and includes a name (or a name prefix) for the piece of data. A data consumer can disseminate a request or Interest across an information-centric network, which CCN/NDN routers can propagate toward a storage device (e.g., a cache server) or a data producer that can provide the requested data to satisfy the request or Interest.


The methods disclosed herein are not limited to CCN networks and are applicable to other architectures as well. A description of a CCN architecture is described in U.S. patent application Ser. No. 12/338,175, which is herein incorporated by reference.


Exemplary Network and Communication



FIG. 1 illustrates an exemplary environment which facilitates efficient name encryption in a content centric network, in accordance with an embodiment of the present invention. A network 100 can include a consumer or content requesting device 116, producers or content producing devices 118 and 120, and a router or other forwarding device at nodes 102, 104, 106, 108, 110, 112, and 114. A node can be a computer system, an end-point representing users, and/or a device that can generate interests or originate content. A node can also be an edge router (e.g., CCN nodes 102, 104, 112, and 114) or a core router (e.g., intermediate CCN routers 106, 108, and 110). Network 100 can be a content centric network.


During operation, consumer or client computing device 116 can determine, for a name N of “/a/b/c/d/x/y/z,” an index at which device 116 may begin encrypting the name N (get index function 170, described in detail below in relation to FIGS. 2A-2C and 3). This index may be referred to as the “split index.” The split index can indicate “3” as the “minimum_routable_prefix,” which also indicates the remainder of the name N as the “sensitive_name” that can be encrypted. In other words, the split index can indicate the name prefix of the name N through the name component whose position index is equal to “3” (e.g., “a/b/c/d”), and can also indicate the name components following the name component whose position index is equal to 3 that can be encrypted (e.g., “/x/y/z”). Device 116 can generate an interest 150 with a name 150.1 of “/minimum_routable_prefix/ECk(/sensitive_name),” where “Ck” is the public key of consumer or device 116. Interest 150 can also include an optional payload 150.2 with a value of “<data>.”


Interest 150 can travel through network 100 via nodes 102, 110, and 112, before reaching producer or content producing device 118. Device 118 can serve content or satisfy requests for content with the prefix of “/a/b/c/d” or “minimum_routable_prefix.” Assume that device 118 is in possession of or has a way to retrieve the public key of device 116. Device 118 can decrypt the encrypted portion of name 150.1 of interest 150 (function 180), and generate a content object 160 corresponding to the name “/minimum_routable_prefix/sensitive_data” (function 182). Device 118 can replace a name 160.1 in content object 160 with the original partially encrypted name (e.g., name 150.1 with a value of “/minimum_routable_prefix/ECk(/sensitive_name)”), and transmits content object 160 to device 118 on a reverse path (e.g., via nodes 112, 110, and 102).


Name-Based Negotiation Based on Linear Probing


A consumer can determine the split index (which indicates the minimum routable prefix) for a given name using a name-based negotiation by sending probing interests with an increasing number of name components. FIG. 2A illustrates an exemplary communication 200 which facilitates efficient name encryption in a content centric network, based on a linear probing method, in accordance with an embodiment of the present invention. Device 202 can be a consumer or a client computing device. Nodes 204 and 206 can be intermediate nodes or routers or content-hosting devices that can forward an interest with the prefix “/a.” Node 208 can be an intermediate node or router or a content-hosting device that can forward an interest for the prefix “/a/b.” Node 210 can be an intermediate node or router or a content-hosting device that can serve content for the prefix “/a/b/c/d.” For the sake of illustration, nodes 204-208 are depicted as intermediate routers, and device 210 is depicted as a server, but any of entities 204-210 can be an intermediate router or a content-hosting device that can serve content (as described above).


Assume that a name N 280 hasp name components, N1-Np, e.g., for a name N of “/a/b/c/d/x/y/z,” p is equal to 7. The determined split index i indicates that all components Nj where j is greater than i may be encrypted. In addition, the consumer can generate for each probe interest a random nonce rx that is appended to the name for a respective probing interest.


During operation, a consumer or a client computing device 202 can send a set of probes 200.1-200.4 to determine the split index i. For example, device 202 can generate and transmit an interest 220 with a name 220.1 of “/a/r1,” which is a probing interest to determine whether the split index i=1. Interest 220 can travel to a node 204, which can determine based on its local FIB to forward interest 220 to node 206. Node 206 can determine based on its local FIB that no route exists for name 220.1. Node 206 can return a negative acknowledgment to device 202 in the form of a content object 222 with a name 222.1 of “/a/r1” and a payload 222.2 with a value of “NACK.”


Device 202 can receive the NACK of content object 222, and determine to send another probing interest with an additional name component. Device 202 can generate and transmit an interest 224 with a name 224.1 of “/a/b/r2,” which is a probing interest to determine whether the split index i=2. Interest 224 can reach node 204, which forwards interest 224 to node 206, which in turn forwards interest 224 to node 208. Node 208 can determine based on its local FIB that no route exists for name 224.1. Node 208 can return a negative acknowledgment to device 202 in the form of a content object 226 with a name 226.1 of “/a/b/r2” and a payload 226.2 with a value of “NACK.”


Device 202 can receive the NACK of content object 226, and determine to send another probing interest with an additional name component. Device 202 can generate and transmit an interest 228 with a name 228.1 of “/a/b/c/r3,” which is a probing interest to determine whether the split index i=3. Interest 228 can reach node 204, which forwards interest 228 to node 206, which in turn forwards interest 228 to node 208. Node 208 can determine based on its local FIB that no route exists for name 228.1. Node 208 can return a negative acknowledgment to device 202 in the form of a content object 230 with a name 230.1 of “/a/b/c/r3” and a payload 230.2 with a value of “NACK.”


Finally, device 202 can receive the NACK of content object 230, and determine to send another probing interest with an additional name component. Device 202 can generate and transmit an interest 232 with a name 232.1 of “/a/b/c/d/r4,” which is a probing interest to determine whether the split index i=4. Interest 232 can reach node 204, which forwards interest 232 to node 206, which in turn forwards interest 232 to node 208, which in turn forwards interest 232 to device 210. Device 210 can determine that it can serve content under the prefix “/a/b/c/d,” but that the content corresponding to name 232.1 does not exist (“DNE”). Device 210 can return a positive acknowledgment to device 202 in the form of a content object 234 with a name 234.1 of “/a/b/c/d/r4” and a payload 234.2 with a value of “DNE.”


Device 202, in possession of a positive acknowledgment from probes 201.1-201.4, can determine that content object 234 indicates that a content producing device can return a content object with the minimum routable prefix of “/a/b/c/d.” Device 202 can also determine that the key identifier of content object 234 matches the key identifier of the public key of content producing device 210. This allows device 202 to determine that the minimum routable prefix for the name N of “/a/b/c/d/x/y/z” is “/a/b/c/d,” and that the split index i is equal to 4 (or 3, when the index count begins at zero instead of at one).



FIG. 2B illustrates an exemplary communication 240 which facilitates efficient name encryption in a content centric network, based on a linear probing method, in accordance with an embodiment of the present invention. FIG. 2B corresponds to FIG. 2A. Device 202 can use the determined split index i=4 to encrypt the name components of name N starting from the name component following the name component at index 4 (e.g., after the minimum routable prefix name of “/a/b/c/d”). Device 202 can generate and transmit an encrypted interest 250 with a name 250.1 of “/a/b/c/d/ECk(/x/y/z),” which interest travels via nodes 204, 206, and 208 until it reaches device 210. Device 210 can decrypt the encrypted portion of name 250.1 based on a public key of device 202, and generate a responsive content object 252 with a payload 252.2 of “<data>” that corresponds to the unencrypted name. Device 210 can further replace the unencrypted name with a name 252.1 of “a/b/c/d/ECk(/x/y/z),” which matches name 250.1 of interest 250. Device 210 can then return content object 252 to device 202 along a reverse path.


Device 210 can also obtain the content corresponding to the decrypted name from a different entity in the network. Thus, device 210 can generate and transmit an interest 254 with a name 254.1 of “/a/b/c/d/x/y/z,” and receive a responsive content object 256 with a name 256.1 of “/a/b/c/d/x/y/z” and a payload 256.2 of “<data>.” Device 210 can subsequently create a content object 252 as described above (by replacing name 256.1 with name 252.1), and return 252 to device 202 along the reverse path.


An example of pseudocode for a linear probe function is provided herein:

















def LinearProbe (N, low, high):









for i = low to high do









Ri := GenerateRandomNonce( )



Probe := [N1, ..., Ni].Append(Ri)



Content Object = RequestInterestWithName(Probe)



if (ContentObject == DNE and









ContentObject.KeyId == KeyId(pk))









return i









end









done









return −1 // error










Thus, the consumer can perform a name-based negotiation using a linear probing method to determine the split index for subsequent encryption of an interest name. Using only the name N, the consumer can call the function as:

split_index=LinearProbe(N,0,len(N)−1)  Function (1)

The term “len(N)” is equal to the number of name components in N, and the function LinearProbe( ) is performed on a zero-based index count.


Name-Based Negotiation Based on Binary Probing



FIG. 2C illustrates an exemplary communication 260 which facilitates efficient name encryption in a content centric network, based on a binary probing method, in accordance with an embodiment of the present invention. FIG. 2C includes device 202 and nodes 204-210, which correspond to the same entities depicted in FIG. 2A. FIG. 2C additionally includes a node 212 which can be an intermediate node or router or a content-hosting device that can forward an interest with the prefix “/a/b/c/d/x,” and a node or device 214 which can be an intermediate node or router or a content-hosting device that can serve content for the prefix “/a/b/c/d/x/y.”


Assume that a name 282 hasp name components, M1-Mp, e.g., for a name M 282 of “/a/b/c/d/x/y,” p is equal to 6. Note that the index count shown for name M 282 is a zero-based count, i.e., the index number begins from zero, which is different from the index count shown for name N 280 of FIG. 2A, which begins from “1.” During operation, a consumer or a client computing device 202 can send a set of probes 261.1-261.3 to determine the split index. Device 202 can determine a midpoint target index of t=2 for the name components M1-Mp, where a lower portion of the name consists of the name components from M1-Mt−1, and an upper portion of the name consists of the name components from Mt+1 to Mp. Device 202 can generate and transmit an interest 262 with a name 262.1 of “/a/b/c/r2.” Interest 262 can reach node 204, which forwards interest 262 to node 206, which in turn forwards interest 262 to node 208. Node 208 can determine based on its local FIB that no route exists for name 262.1. Node 208 can return a negative acknowledgment to device 202 in the form of a content object 264 with a name 264.1 of “/a/b/c/r3” and a payload 264.2 with a value of “NACK.”


Based on the NACK of content object 264, device 202 can determine to continue the binary probe on the upper portion of the name. Device 202 can determine a new midpoint target index t=4 of the upper portion (and again determine a new lower and upper portion of the name based on the new midpoint target index). Device 202 can generate and transmit an interest 266 with a name 266.1 of “/a/b/c/d/x/r4.” Interest 266 can reach node 204, which forwards interest 266 to node 206, which in turn forwards interest 266 to node 208, which in turn forwards interest 266 to node 210, which in turn forwards interest 266 to node 212. Node 212 can determine that it can serve content under the prefix “/a/b/c/d/x,” but that the content corresponding to name 266.1 does not exist (“DNE”). Node or device 212 can return a positive acknowledgment to device 202 in the form of a content object 268 with a name 268.1 of “/a/b/c/d/x/r4” and a payload 234.2 with a value of “DNE.” Node 212 can further include in content object 268 a KeyId 268.3 which indicates that its KeyId anchors or is associated with the public key of a producer of content for a number of name components less than t+1 (e.g., which allows consumer or client computing device 202 to determine that the key identifier for content object 268 is associated with the key identifier of a public key of a content producing device that can serve the requested content).


Upon receiving content object 268, device 202 can determine from the DNE of payload 268.2 and the anchor indication of KeyId 268.3 to continue the binary probe search on the (new) lower portion of the name. Device 202 can determine an updated midpoint target index t=3 of the (new) lower portion (and, if necessary, determine an updated lower and upper portion of the name based on the updated midpoint target index). Device 202 can generate and transmit an interest 270 with a name 270.1 of “/a/b/c/d/r3.” Interest 270 can reach node 204, which forwards interest 270 to node 206, which in turn forwards interest 270 to node 208, which in turn forwards interest 270 to node 210. Node or device 210 can determine that it can serve content under the prefix “/a/b/c/d/x,” but that the content corresponding to name 270.1 does not exist (“DNE”). Device 210 can return a positive acknowledgment to device 202 in the form of a content object 272 with a name 272.1 of “/a/b/c/d/x/r4” and a payload 272.2 with a value of “DNE.” Device 210 can further include in content object 272 a KeyId 272.3 which indicates that its KeyId matches the public key of a producer of content for a number of name components equal to t (e.g., which allows consumer or client computing device 202 to determine that the key identifier for content object 272 matches the key identifier of a public key of a content producing device that can serve the requested content).


Device 202, in possession of a positive acknowledgment from probes 261.1-261.3, can determine that content object 272 indicates that a content producing device can return a content object with the minimum routable prefix of “/a/b/c/d.” Device 202 can also determine that the key identifier of content object 272 matches the key identifier of the public key of the content producing device. This allows device 202 to determine that the minimum routable prefix for the name N of “/a/b/c/d/x/y/z” is “/a/b/c/d,” and that the split index i is equal to 3 (in the case of a zero-based index count). Device 202 can subsequently send an encrypted interest 250, as shown in relation to communication 240 of FIG. 2B.


An example of pseudocode for a binary probe function is provided herein:

















def BinaryProbe(N, low, high):









i := ((high − low) / 2)



visited = [ ]



while len(visited) < (high − low) do









Ri := GenerateRandomNonce( )



Probe := [N1, ..., Ni, ..., N(low + i)]. Append(Ri)



ContentObject = RequestInterestWithName(Probe)



if (KeyId(pk) anchors ContentObject.KeyId and









ContentObject == DNE) then









visited.Append(i + low); i := i − (i / 2)









elseif (ContentObject.KeyId == KeyId(pk) and









ContentObject == DNE)









return i + low









else // != KeyId or a NACK (P cannot serve probe)









visited.Append(i + low); i := i − (i / 2)









end



return −1 // error










Thus, the consumer can perform a name-based negotiation using a binary probing method to determine the split index for subsequent encryption of an interest name. Using only the name N, the consumer can call the function as:

split_index=BinaryProbe(N,0,len(N)−1)  Function (2)

The term “len(N)” is equal to the number of name components in N, and the function BinaryProbe( ) is performed on a zero-based index count.


The consumer can also generate and transmit nested probing interests within each other. The probing interests can be sent and processed similar to onion routing, where each gateway or decrypting node acts as an application-layer gateway or forwarder for the nested probe on behalf of the original issuer. For example, for an interest with a name N of “/a/b/c/MARK</d/e/f/MARK</g/h/i/>>,” where “MARK” indicates that the following suffix is encrypted, the consumer can send out probing interests that corresponds to each “layer” of the name. A first probing interest may include a name NO of “/a/b/c/MARK</d/e/f/MARK</g/h/i/>>,” which can return a first index that corresponds to a minimum routable prefix for the outer layer. A second probing interest may include a name N1 of “/a/b/c/d/e/f/MARK<g/h/i/>,” which can return a second index that corresponds to a minimum routable prefix for that respective layer. Finally, a third probing interest may include a name N2 of “/a/b/c/d/e/f/g/h/i/,” which can return a third index that corresponds to a minimum routable prefix for that respective layer. In addition, name prefixes may be inherited (as described in the example above), or name prefixes may not be inherited, e.g.: N0=“/a/b/c/MARK</d/e/f/MARK</g/h/i/>>”; N1=“/d/e/f/MARK</g/h/i/”; and N2=“/g/h/i.”


Route-Based Negotiation


An extension of the name-based negotiation protocol is route-based negotiation, where the routing algorithm takes into account the number of prefixes that were truncated or collapsed during publication. Recall that a CCN node has a forwarding information base (“FIB”) which is a table with entries of name prefixes and corresponding outgoing interfaces. If two or more name prefixes correspond to the same outgoing interface, the CCN node may collapse or truncate the entries into one entry. A local FIB can contain the minimum number of hops to the nearest anchor for a given prefix. For example, in FIG. 2A, if the local FIB for node 204 has a first entry for the name prefix “/a” which corresponds to an interface(s) associated with node 206, and a second entry for the name prefix “/a/b” which also corresponds to an interface(s) associated with node 208, then node 204 can collapse or truncate the names prefixes in its FIB. If 1* indicates the total number of name prefixes in the name (taking into account the collapsed name prefixes under this extension to the protocol), the consumer can call the function as:

split_index=LinearProbe(N,1*,len(N)−1); or  Function (3)
split_index=BinaryProbe(N,1*,len(N)−1).  Function (4)

Explicit Negotiation Protocol



FIG. 3 illustrates an exemplary communication 300 which facilitates efficient name encryption in a content centric network, including communication with a third party service, in accordance with an embodiment of the present invention. FIG. 3 includes a consumer or client computing device 202, a content-hosting or content-producing device 210, and a third party service (“R”) 216 to which device 210 has delegated responsibility in the negotiation protocol for determining the split index. Device 202 can perform an explicit request for the split index for a target name N. Device can 202 can also possess “Rk,” the public key of R 216. For example, for a target name N of “/a/b/c/d/e/f,” device 202 can perform a get index 300.1 function by sending an interest 310 with a name 310.1 of “/R/routable/prefix/get index,” a payload 310.2 of “ECk(Rk, “/a/b/c/d/e/f),” and a reserved field 310.3 which indicates a public key certificate of device 202 (e.g., “<client_202_pk_certificate>”). Third party service R 216 can receive interest 310, decrypt the encrypted payload 310.2 to obtain the target name N, and determine the appropriate split index i. R 216 can generate and transmit a content object 312 with a name 312.1 of “/R/routable/prefix/get_index” and a payload 312.2 of “ECk(i, “/a/b/c/d/e/f).”


Upon discovering the split index i, device 202 can retrieve content via a get content 300.2 function by generating and transmitting an interest 320 with a name 320.1 of “/a/b/c/d/ECk(/e/f)” and an optional payload 320.2 of “<data>.” Device 210 can receive interest 320, decrypt the encrypted portion of the name 320.1, generate a responsive content object 322 with a name 322.1 which matches the encrypted name 320.1 of interest 320 and includes a payload 322.2 with a value of “<data>.” Device 210 can transmit content object 322 to device 202 along a reverse path.


Role of Client-Computing Device in Facilitating Efficient Name Encryption



FIG. 4A presents a flow chart 400 illustrating a method by a client computing device for facilitating efficient name encryption in a content centric network, in accordance with an embodiment of the present invention. During operation, the system determines, by a client computing device, an index for a name of an interest, wherein the name is an HSVLI that includes contiguous name components ordered from a most general level to a most specific level (operation 402). The index indicates a minimum number of the contiguous name components beginning from the most general level that represent a minimum routable prefix needed to route the interest to a content producing device that can satisfy the interest. The operation can continue based on a linear probe (as indicated at Label A of FIG. 4B) or based on a binary probe (as indicated at Label B of FIG. 4C). The system encrypts one or more name components of the interest name beginning with the name component immediately following the minimum routable prefix (operation 404). The system transmits the interest based on the encrypted name (operation 406).



FIG. 4B presents a flow chart 410 illustrating a method by a client computing device for facilitating efficient name encryption in a content centric network, based on a linear probing method, in accordance with an embodiment of the present invention. During operation, the system generates a first probing interest with a name that comprises one or more contiguous name components of the interest name beginning from the most general level (operation 412). The system can generate and append a random nonce to a probing interest, as described above in relation to FIG. 2A. The system determines whether it receives a first content object that indicates a positive response (decision 414). If it does, the system determines that the first content object indicates that a content producing device can return a content object based on the name components of the interest name as included in the first probing interest (operation 420). The system further determines that a key identifier of the first content object matches a public key of the content producing device (operation 422). The system then sets the index to the number of name components in the first probing interest (operation 424). The positive response can also be indicated with any other indicator, such as a notification flag or a reserved field or bit.


If the system determines that it receives a first content object that is not a positive response (i.e., the first content object indicates a negative response) (decision 414), the system generates a second probing interest with a name that comprises the first probing interest name followed by a next name component of the interest name (operation 416). The system can replace the first probing interest with the second probing interest (for purposes of looping), and the operation returns to decision 414, where the system determines whether it receives a first content object that is a positive response to the first probing interest (i.e., the second probing interest previously generated in operation 416). The operations continue until a positive response is received, and the system performs operations 420, 422, and 424 as described above. If the operation reaches the end of the name (e.g., processes all name components) and does not return the index, the operation can return an error (not shown).



FIG. 4C presents a flow chart 430 illustrating a method by a client computing device for facilitating efficient name encryption in a content centric network, based on a binary probing method, in accordance with an embodiment of the present invention. During operation, the system determines a midpoint index of the number of name components in the interest name (operation 432). A lower portion of the interest name includes the name components from the most general level name component to the name component preceding the name component corresponding to the midpoint index, and an upper portion of the interest name includes the name components from the name component following the name component corresponding to the midpoint index to the most specific level name component. The system generates a first probing interest with a name that comprises one or more contiguous name components of the interest name beginning from the most general level to the name component corresponding to the midpoint index (operation 434). The system can generate and append a random nonce to a probing interest, as described above in relation to FIG. 2A.


The system determines whether it receives a first content object that indicates a positive response (decision 436). If it does, the system determines that the first content object indicates that a content producing device can return a content object based on the name components of the interest name as included in the first probing interest (operation 438). The system further determines that a key identifier of the first content object matches a public key of the content producing device (operation 440). The system then sets the index to the number of name components in the first probing interest (operation 442). The positive response can also be indicated with any other indicator, such as a notification flag or a reserved field or bit.


If the system determines that it receives a first content object that is not a positive response (i.e., the first content object indicates a negative response) (decision 436), the operation continues as indicated at label C of FIG. 4D. FIG. 4D presents a flow chart 450 illustrating a method by a client computing device for facilitating efficient name encryption in a content centric network, based on a binary probing method, in accordance with an embodiment of the present invention. The system determines that the first content object does not indicate a positive response (operation 452), and the operation can continue as depicted by operation 454 or by operation 460. The system can determine that the first content object indicates that a content producing device can return a content object based on the interest name as included in the first probing interest, and can further determine that the key identifier of the first content object is associated with the public key of the content producing device (operation 454). The system can determine a lower midpoint index of the lower portion of the interest name (operation 456). The system can generate a second probing interest with a name that comprises one or more contiguous name components of the interest name beginning from the most general level name component to the name component corresponding to the lower midpoint index (operation 458). The system can replace the first probing interest with the second probing interest (for purposes of recursion), and the operation returns to decision 436, where the system determines whether it receives a first content object that is a positive response to the first probing interest (i.e., the second probing interest previously generated in operation 458). This begins the binary probe search again on the lower portion of the interest name.


Alternatively, after operation 452, the system can determine that the first content object indicates a negative acknowledgment of the first probing interest (operation 460). The system can determine an upper midpoint index of the upper portion of the interest name (operation 462). The system can generate a third probing interest with a name that comprises one or more contiguous name components of the interest name beginning from the most general level name component to the name component corresponding to the upper midpoint index (operation 464). As described above, the system can replace the first probing interest with the second probing interest (for purposes of recursion), and the operation returns to decision 436, which begins the binary probe search again on the upper portion of the interest name.



FIG. 5 presents a flow chart 500 illustrating a method by a client computing device for facilitating efficient name encryption in a content centric network, including communication with a third party service, in accordance with an embodiment of the present invention. During operation, the system determines, by a client computing device, an index for a name of an interest, wherein the name is an HSVLI that includes contiguous name components ordered from a most general level to a most specific level (operation 502). The index indicates a minimum number of the contiguous name components beginning from the most general level, wherein the minimum number indicates a minimum routable prefix needed to route the interest to a content producing device that can satisfy the interest. The system generates an initial interest for the index, wherein the initial interest is transmitted to a third party service and has a payload that includes the interest name and a public key of the third party service (operation 504). The payload of the initial interest is encrypted based on a public key of the client computing device, and the initial interest indicates the public key of the client computing device.


In response to the initial interest, the system receives an initial content object that has a payload that indicates the index, wherein the payload of the initial content object is encrypted based on the public key of the third party service (operation 506). The system encrypts one or more name components of the interest name beginning with the name component immediately following the minimum routable prefix (operation 508). Subsequently, the system transmits the interest based on the encrypted name (operation 510).


Role of Content-Hosting Device in Facilitating Efficient Name Encryption



FIG. 6 presents a flow chart 600 illustrating a method by a content-hosting device for facilitating efficient name encryption in a content centric network, in accordance with an embodiment of the present invention. During operation, the system receives, by a content-hosting device, an interest with a name that is an HSVLI, wherein a random nonce is appended to the interest name (operation 602). The content-hosting device determines whether it can return a content object based on the interest name (decision 604). For example, if the device can serve content under the prefix “/a/b/c” and if the interest name is “/a/b/c/<nonce>,” the device can determine that it can serve content under the prefix “/a/b/c” but that the content object with the name of “/a/b/c/<nonce>” does not exist. The device can generate a first content object which indicates a positive response (e.g., “does not exist” or “DNE”) (operation 606).


The device can transmit the first content object (operation 608). The device can subsequently receive a second interest with a name that includes one or more encrypted name components (operation 612). The device can decrypt the encrypted name components of the second interest name (operation 612). The device can generate or obtain a second content object corresponding to the decrypted second interest name (operation 614). The device can replace the decrypted second interest name with the partially encrypted second interest name in the second content object (not shown), and transmit the second content object (operation 616).


If the content-hosting device determines that it cannot return a content object based on the interest name (decision 604), the device generates a first content object which indicates a negative acknowledgement (“NACK”) (operation 620). The device then transmits the first content object (operation 622).


Exemplary Computer Systems



FIG. 7 illustrates an exemplary computer system that facilitates efficient name encryption in a content centric network, in accordance with an embodiment of the present invention. Computer system 702 includes a processor 704, a memory 706, and a storage device 708. Memory 706 can include a volatile memory (e.g., RAM) that serves as a managed memory, and can be used to store one or more memory pools. Furthermore, computer system 702 can be coupled to a display device 710, a keyboard 712, and a pointing device 714. Storage device 708 can store an operating system 716, a content-processing system 718, and data 730.


Content-processing system 718 can include instructions, which when executed by computer system 702, can cause computer system 702 to perform methods and/or processes described in this disclosure. Specifically, content-processing system 718 may include instructions for sending and/or receiving data packets to/from other network nodes across a computer network, such as a content centric network (communication module 720). A data packet can include an interest packet or a content object packet with a name which is an HSVLI that includes contiguous name components ordered from a most general level to a most specific level, and the name can include a random nonce appended to the end of the name (e.g., as a last name component).


Further, content-processing system 718 can include instructions for determining an index for a name of an interest, wherein the index indicates a minimum number of the contiguous name components beginning from the most general level that represent a minimum routable prefix needed to route the interest to a content producing device that can satisfy the interest (index-determining module 722). Content-processing system 718 can include instructions for encrypting one or more name components of the interest name beginning with the name component immediately following the minimum routable prefix (name-encrypting module 724). Content-processing system 718 can include instructions for transmitting the interest based on the encrypted name (communication module 720).


Content-processing system 718 can also include instructions for generating a first probing interest with a name that comprises one or more contiguous name components of the interest name beginning from the most general level (interest-generating module 726). Content-processing system 718 can also include instructions for, in response to receiving a first content object which indicates a positive response of the first probing interest (communication module 720), setting the index to a number of name components in the first probing interest name (index-determining module 722). Content-processing system 718 can also include instructions for, in response to receiving a second content object which indicates a negative acknowledgment of the first probing interest (communication module 720), generating a second probing interest with a name that comprises the first probing interest name followed by a next contiguous name component of the interest name (interest-generating module 726).


Content-processing system 718 can also include instructions for determining a midpoint index of a number of name components in the interest name (index-determining module 722). Content-processing system 718 can also include instructions for generating a first probing interest with a name that comprises one or more contiguous name components of the interest name beginning from the most general level name component to the name component corresponding to the midpoint index (interest-generating module 726). Content-processing system 718 can also include instructions for, in response to receiving a first content object which indicates a positive response of the first probing interest (communication module 720), setting the index to a number of name components in the first probing interest name (index-determining module 722).


Content-processing system 718 can also include instructions for determining a lower midpoint index of a lower portion of the interest name (index-determining module 722). Content-processing system 718 can also include instructions for generating a second probing interest with a name that comprises one or more contiguous name components of the interest name beginning from the most general level name component to a name component corresponding to the lower midpoint index. Content-processing system 718 can also include instructions for, in response to receiving a third content object which indicates a negative acknowledgment of the first probing interest (communication module 728), determining an upper midpoint index of the upper portion (index-determining module 722) and generating a third probing interest with a name that comprises one or more contiguous name components of the interest name beginning from the most general level name component to a name component corresponding to the upper midpoint index (interest-generating module 726).


Content-processing system 718 can also include instructions for generating an initial interest for the index, wherein the initial interest is transmitted to a third party service and has a payload that includes the interest name and a public key of the third party service (interest-generating module 726). Content-processing system 718 can also include instructions for, in response to the initial interest, receiving an initial content object that has a payload that indicates the index, wherein the payload of the initial content object is encrypted based on the public key of the third party service (communication module 720).


Content-processing system 718 can also include instructions for receiving a first interest with a name that is an HSVLI, wherein a random nonce is appended to the first interest name (communication module 720). Content-processing system 718 can include instructions for, in response to determining that the system can return a content object based on the first interest name (packet-processing module 730), generating a first content object which indicates a positive response (content-generating module 728). Content-processing system 718 can also include instructions for, in response to determining that the content-hosting device cannot return a content object based on the first interest name (packet-processing module 730), generating a second content object which indicates a negative acknowledgment of the first interest (content-generating module 728).


Data 732 can include any data that is required as input or that is generated as output by the methods and/or processes described in this disclosure. Specifically, data 732 can store at least: an interest or a content object packet; a name; a name that is an HSVLI that includes contiguous name components ordered from a most general level to a most specific level; an index that corresponds to a position of a name component in the HSVLI; an index which is a split index that indicates a minimum routable prefix; a routable prefix; one or more encrypted name components; a probing interest with a random nonce appended as a last name component; an indicator of a positive response; an indicator of a negative response or acknowledgment (“NACK”); a key identifier of a content object; a public key or associated key identifier of a consumer, a third party service, or a content-hosting or content-producing device; a midpoint index which is an index corresponding to a midpoint of a total number of name components in an interest name; a lower portion of an interest name which includes name components from the most general level name component to the name component preceding the name component corresponding to the midpoint index; an upper portion of an interest name which includes name components from the name component following the name component corresponding to the midpoint index to the most specific level name component; a lower midpoint index of the lower portion; an upper midpoint index of the upper portion; and an indicator of a number of collapsed name prefixes in a forwarding information base.


The data structures and code described in this detailed description are typically stored on a computer-readable storage medium, which may be any device or medium that can store code and/or data for use by a computer system.


The computer-readable storage medium includes, but is not limited to, volatile memory, non-volatile memory, magnetic and optical storage devices such as disk drives, magnetic tape, CDs (compact discs), DVDs (digital versatile discs or digital video discs), or other media capable of storing computer-readable media now known or later developed.


The methods and processes described in the detailed description section can be embodied as code and/or data, which can be stored in a computer-readable storage medium as described above. When a computer system reads and executes the code and/or data stored on the computer-readable storage medium, the computer system performs the methods and processes embodied as data structures and code and stored within the computer-readable storage medium.


Furthermore, the methods and processes described above can be included in hardware modules. For example, the hardware modules can include, but are not limited to, application-specific integrated circuit (ASIC) chips, field-programmable gate arrays (FPGAs), and other programmable-logic devices now known or later developed. When the hardware modules are activated, the hardware modules perform the methods and processes included within the hardware modules.


The foregoing descriptions of embodiments of the present invention have been presented for purposes of illustration and description only. They are not intended to be exhaustive or to limit the present invention to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. Additionally, the above disclosure is not intended to limit the present invention. The scope of the present invention is defined by the appended claims.

Claims
  • 1. A computer system for facilitating efficient name encryption, the system comprising: a processor; anda storage device storing instructions that when executed by the processor cause the processor to perform a method, the method comprising:determining, by a client computing device, an index for a name of an interest, wherein the name is a hierarchically structured variable length identifier that includes a plurality of contiguous name components ordered from a most general level to a most specific level, wherein the index indicates a minimum number of name components of the plurality of contiguous name components beginning from the most general level that represent a minimum routable prefix needed to route the interest to a content producing device that can satisfy the interest;encrypting one or more name components of the plurality of contiguous name components beginning with a first name component that immediately follows the minimum routable prefix to generate an encrypted name of the interest; andtransmitting the interest based on the encrypted name, thereby facilitating efficient name encryption in a content centric network.
  • 2. The computer system of claim 1, wherein determining the index comprises: generating a first probing interest with a name that comprises one or more contiguous name components of the interest name beginning from the most general level;in response to receiving a first content object which indicates a positive response of the first probing interest, setting the index to a number of name components in the first probing interest name; andin response to receiving a second content object which indicates a negative acknowledgment of the first probing interest, generating a second probing interest with a name that comprises the first probing interest name followed by a next contiguous name component of the interest name.
  • 3. The computer system of claim 2, wherein the method further comprises determining that the first content object indicates a positive response of the first probing interest, which comprises: determining that the first content object indicates that a receiving content producing device can return a content object based on the name components of the interest name as included in the first probing interest name; anddetermining that a key identifier of the first content object matches a public key of the content producing device.
  • 4. The computer system of claim 2, wherein the method further comprises: appending a first random nonce to the first probing interest name; andappending a second random nonce to the second probing interest name.
  • 5. The computer system of claim 1, wherein determining the index further comprises: determining a midpoint index of a number of name components in the interest name, wherein a lower portion of the interest name includes the name components from the most general level name component to the name component preceding the name component corresponding to the midpoint index, and wherein an upper portion of the interest name includes the name components from the name component following the name component corresponding to the midpoint index to the most specific level name component;generating a first probing interest with a name that comprises one or more contiguous name components of the interest name beginning from the most general level name component to the name component corresponding to the midpoint index; andin response to receiving a first content object which indicates a positive response of the first probing interest, setting the index to a number of name components in the first probing interest name.
  • 6. The computer system of claim 5, wherein determining the index further comprises: in response to receiving a second content object which indicates that a receiving content producing device can return a content object based on the name components of the interest name as included in the first probing interest, and in response to determining that a key identifier of the second content object is associated with a public key of the content producing device: determining a lower midpoint index of the lower portion; andgenerating a second probing interest with a name that comprises one or more contiguous name components of the interest name beginning from the most general level name component to a name component corresponding to the lower midpoint index; andin response to receiving a third content object which indicates a negative acknowledgment of the first probing interest: determining an upper midpoint index of the upper portion; andgenerating a third probing interest with a name that comprises one or more contiguous name components of the interest name beginning from the most general level name component to a name component corresponding to the upper midpoint index.
  • 7. The computer system of claim 5, wherein the method further comprises: appending a first random nonce to the first probing interest name;appending a second random nonce to the second probing interest name; and;appending a third random nonce to the third probing interest name.
  • 8. The computer system of claim 1, wherein determining the index further comprises generating one or more probing interests based on a number of number components for the interest name and further based on one or more of: a linear search;a binary search; anda number of collapsed name prefixes in a forwarding information base, wherein a collapsed name prefix indicates a plurality of name components with a same forwarding information in the forwarding information base.
  • 9. The computer system of claim 1, wherein determining the index further comprises: generating an initial interest for the index, wherein the initial interest is transmitted to a third party service and has a payload that includes the interest name and a public key of the third party service, wherein the payload of the initial interest is encrypted based on a public key of the client computing device, wherein the initial interest indicates the public key of the client computing device; andin response to the initial interest, receiving an initial content object that has a payload that indicates the index, wherein the payload of the initial content object is encrypted based on the public key of the third party service.
  • 10. The computer system of claim 1, wherein the interest name includes one or more nested and encrypted names suffixes, wherein a name suffix comprises one or more contiguous name components of the interest name, and wherein the method further comprises: determining a second index for a nested and encrypted name suffix, wherein the second index indicates a minimum number of contiguous name components beginning from the most general level that represent a minimum routable prefix needed to route the interest to a content producing device that can satisfy a nested interest with a name which includes the nested and encrypted name suffix; andencrypting the name components following the name components corresponding to the second index.
  • 11. A computer-implemented method for facilitating efficient name encryption, the method comprising: determining, by a client computing device, an index for a name of an interest, wherein the name is a hierarchically structured variable length identifier that includes a plurality of contiguous name components ordered from a most general level to a most specific level, wherein the index indicates a minimum number of name components of the plurality of contiguous name components beginning from the most general level that represent a minimum routable prefix needed to route the interest to a content producing device that can satisfy the interest;encrypting one or more name components of the plurality of contiguous name components beginning with a first name component that immediately follows the minimum routable prefix to generate an encrypted name of the interest; andtransmitting the interest based on the encrypted name, thereby facilitating efficient name encryption in a content centric network.
  • 12. The method of claim 11, wherein determining the index comprises: generating a first probing interest with a name that comprises one or more contiguous name components of the interest name beginning from the most general level;in response to receiving a first content object which indicates a positive response of the first probing interest, setting the index to a number of name components in the first probing interest name;in response to receiving a second content object which indicates a negative acknowledgment of the first probing interest, generating a second probing interest with a name that comprises the first probing interest name followed by a next contiguous name component of the interest name;appending a first random nonce to the first probing interest name; andappending a second random nonce to the second probing interest name.
  • 13. The method of claim 12, further comprising determining that the first content object indicates a positive response of the first probing interest, which comprises: determining that the first content object indicates that a receiving content producing device can return a content object based on the name components of the interest name as included in the first probing interest name; anddetermining that a key identifier of the first content object matches a public key of the content producing device.
  • 14. The method of claim 1, wherein determining the index further comprises: determining a midpoint index of a number of name components in the interest name, wherein a lower portion of the interest name includes the name components from the most general level name component to the name component preceding the name component corresponding to the midpoint index, and wherein an upper portion of the interest name includes the name components from the name component following the name component corresponding to the midpoint index to the most specific level name component;generating a first probing interest with a name that comprises one or more contiguous name components of the interest name beginning from the most general level name component to the name component corresponding to the midpoint index; andin response to receiving a first content object which indicates a positive response of the first probing interest, setting the index to a number of name components in the first probing interest name.
  • 15. The method of claim 14, wherein determining the index further comprises: in response to receiving a second content object which indicates that a receiving content producing device can return a content object based on the name components of the interest name as included in the first probing interest, and in response to determining that a key identifier of the second content object is associated with a public key of the content producing device: determining a lower midpoint index of the lower portion; andgenerating a second probing interest with a name that comprises one or more contiguous name components of the interest name beginning from the most general level name component to a name component corresponding to the lower midpoint index;in response to receiving a third content object which indicates a negative acknowledgment of the first probing interest:determining an upper midpoint index of the upper portion; andgenerating a third probing interest with a name that comprises one or more contiguous name components of the interest name beginning from the most general level name component to a name component corresponding to the upper midpoint index;appending a first random nonce to the first probing interest name;appending a second random nonce to the second probing interest name; and;appending a third random nonce to the third probing interest name.
  • 16. The method of claim 11, wherein determining the index further comprises generating one or more probing interests based on a number of number components for the interest name and further based on one or more of: a linear search;a binary search; anda number of collapsed name prefixes in a forwarding information base, wherein a collapsed name prefix indicates a plurality of name components with a same forwarding information in the forwarding information base.
  • 17. The method of claim 11, wherein determining the index further comprises: generating an initial interest for the index, wherein the initial interest is transmitted to a third party service and has a payload that includes the interest name and a public key of the third party service, wherein the payload of the initial interest is encrypted based on a public key of the client computing device, wherein the initial interest indicates the public key of the client computing device; andin response to the initial interest, receiving an initial content object that has a payload that indicates the index, wherein the payload of the initial content object is encrypted based on the public key of the third party service.
  • 18. The method of claim 11, wherein the interest name includes one or more nested and encrypted names suffixes, wherein a name suffix comprises one or more contiguous name components of the interest name, and wherein the method further comprises: determining a second index for a nested and encrypted name suffix, wherein the second index indicates a minimum number of contiguous name components beginning from the most general level that represent a minimum routable prefix needed to route the interest to a content producing device that can satisfy a nested interest with a name which includes the nested and encrypted name suffix; andencrypting the name components following the name components corresponding to the second index.
  • 19. A computer system for facilitating efficient content exchange, the system comprising: a processor; anda storage device storing instructions that when executed by the processor cause the processor to perform a method, the method comprising:receiving, by a content-hosting device, a first interest with a name that is a hierarchically structured variable length identifier that includes contiguous name components ordered from a most general level to a most specific level, the name of the first interest including a minimum routable prefix needed to route the first interest to the content-hosting device that can satisfy the first interest, and wherein a random nonce is appended to the first interest name immediately following the minimum routable prefix;in response to determining that the content-hosting device can return a content object based on the first interest name, generating a first content object which indicates a positive response; andin response to determining that the content-hosting device cannot return a content object based on the first interest name, generating a second content object which indicates a negative acknowledgment of the first interest.
  • 20. The computer system of claim 19, wherein the method further comprises: receiving a second interest with a partially encrypted name that includes one or more encrypted name components;decrypting the partially encrypted name for the second interest;determining a second content object corresponding to the decrypted name for the second interest;replacing, in the second content object, the decrypted name for the second interest with the partially encrypted name for the second interest; andtransmitting the second content object.
US Referenced Citations (607)
Number Name Date Kind
817441 Niesz Apr 1906 A
4309569 Merkle Jan 1982 A
4921898 Lenney May 1990 A
5070134 Oyamada Dec 1991 A
5110856 Oyamada May 1992 A
5214702 Fischer May 1993 A
5377354 Scannell Dec 1994 A
5506844 Rao Apr 1996 A
5629370 Freidzon May 1997 A
5845207 Amin Dec 1998 A
5870605 Bracho Feb 1999 A
6021464 Yao Feb 2000 A
6047331 Medard Apr 2000 A
6052683 Irwin Apr 2000 A
6085320 Kaliski, Jr. Jul 2000 A
6091724 Chandra Jul 2000 A
6128623 Mattis Oct 2000 A
6128627 Mattis Oct 2000 A
6173364 Zenchelsky Jan 2001 B1
6209003 Mattis Mar 2001 B1
6226618 Downs May 2001 B1
6233617 Rothwein May 2001 B1
6233646 Hahm May 2001 B1
6289358 Mattis Sep 2001 B1
6292880 Mattis Sep 2001 B1
6332158 Risley Dec 2001 B1
6363067 Chung Mar 2002 B1
6366988 Skiba Apr 2002 B1
6574377 Cahill Jun 2003 B1
6654792 Verma Nov 2003 B1
6667957 Corson Dec 2003 B1
6681220 Kaplan Jan 2004 B1
6681326 Son Jan 2004 B2
6732273 Byers May 2004 B1
6769066 Botros Jul 2004 B1
6772333 Brendel Aug 2004 B1
6775258 vanValkenburg Aug 2004 B1
6834272 Naor Dec 2004 B1
6862280 Bertagna Mar 2005 B1
6901452 Bertagna May 2005 B1
6915307 Mattis Jul 2005 B1
6917985 Madruga Jul 2005 B2
6957228 Graser Oct 2005 B1
6968393 Chen Nov 2005 B1
6981029 Menditto Dec 2005 B1
7007024 Zelenka Feb 2006 B2
7013389 Srivastava Mar 2006 B1
7031308 Garcia-Luna-Aceves Apr 2006 B2
7043637 Bolosky May 2006 B2
7061877 Gummalla Jun 2006 B1
7080073 Jiang Jul 2006 B1
RE39360 Aziz Oct 2006 E
7149750 Chadwick Dec 2006 B2
7152094 Jannu Dec 2006 B1
7177646 ONeill Feb 2007 B2
7206860 Murakami Apr 2007 B2
7206861 Callon Apr 2007 B1
7210326 Kawamoto May 2007 B2
7233948 Shamoon Jun 2007 B1
7246159 Aggarwal Jul 2007 B2
7257837 Xu Aug 2007 B2
7287275 Moskowitz Oct 2007 B2
7315541 Housel Jan 2008 B1
7339929 Zelig Mar 2008 B2
7350229 Lander Mar 2008 B1
7362727 ONeill Apr 2008 B1
7382787 Barnes Jun 2008 B1
7395507 Robarts Jul 2008 B2
7430755 Hughes Sep 2008 B1
7444251 Nikovski Oct 2008 B2
7466703 Arunachalam Dec 2008 B1
7472422 Agbabian Dec 2008 B1
7496668 Hawkinson Feb 2009 B2
7509425 Rosenberg Mar 2009 B1
7523016 Surdulescu Apr 2009 B1
7535926 Deshpande May 2009 B1
7542471 Samuels Jun 2009 B2
7543064 Juncker Jun 2009 B2
7552233 Raju Jun 2009 B2
7555482 Korkus Jun 2009 B2
7555563 Ott Jun 2009 B2
7564812 Elliott Jul 2009 B1
7567547 Mosko Jul 2009 B2
7567946 Andreoli Jul 2009 B2
7580971 Gollapudi Aug 2009 B1
7620975 Guichard Nov 2009 B2
7623535 Guichard Nov 2009 B2
7636767 Lev-Ran Dec 2009 B2
7647507 Feng Jan 2010 B1
7660324 Oguchi Feb 2010 B2
7685290 Satapati Mar 2010 B2
7698463 Ogier Apr 2010 B2
7698559 Chaudhury Apr 2010 B1
7769887 Bhattacharyya Aug 2010 B1
7779467 Choi Aug 2010 B2
7801069 Cheung Sep 2010 B2
7801177 Luss Sep 2010 B2
7816441 Elizalde Oct 2010 B2
7831733 Sultan Nov 2010 B2
7873619 Faibish Jan 2011 B1
7908337 Garcia-Luna-Aceves Mar 2011 B2
7916739 Trostle Mar 2011 B2
7924837 Shabtay Apr 2011 B1
7953014 Toda May 2011 B2
7953885 Devireddy May 2011 B1
7979912 Roka Jul 2011 B1
8000267 Solis Aug 2011 B2
8010691 Kollmansberger Aug 2011 B2
8069023 Frailong Nov 2011 B1
8074289 Carpentier Dec 2011 B1
8117441 Kurien Feb 2012 B2
8160069 Jacobson Apr 2012 B2
8204060 Jacobson Jun 2012 B2
8214364 Bigus Jul 2012 B2
8224985 Takeda Jul 2012 B2
8225057 Zheng Jul 2012 B1
8239331 Shanmugavelayutham Aug 2012 B2
8271578 Sheffi Sep 2012 B2
8271687 Turner Sep 2012 B2
8312064 Gauvin Nov 2012 B1
8332357 Chung Dec 2012 B1
8375420 Farrell Feb 2013 B2
8386622 Jacobson Feb 2013 B2
8447851 Anderson May 2013 B1
8462781 McGhee Jun 2013 B2
8467297 Liu Jun 2013 B2
8473633 Eardley Jun 2013 B2
8553562 Allan Oct 2013 B2
8572214 Garcia-Luna-Aceves Oct 2013 B2
8654649 Vasseur Feb 2014 B2
8661263 Mattsson Feb 2014 B2
8665757 Kling Mar 2014 B2
8667172 Ravindran Mar 2014 B2
8677451 Bhimaraju Mar 2014 B1
8688619 Ezick Apr 2014 B1
8699350 Kumar Apr 2014 B1
8718055 Vasseur May 2014 B2
8750820 Allan Jun 2014 B2
8761022 Chiabaut Jun 2014 B2
8762477 Xie Jun 2014 B2
8762570 Qian Jun 2014 B2
8762707 Killian Jun 2014 B2
8767627 Ezure Jul 2014 B2
8817594 Gero Aug 2014 B2
8826381 Kim Sep 2014 B2
8832302 Bradford Sep 2014 B1
8836536 Marwah Sep 2014 B2
8861356 Kozat Oct 2014 B2
8862774 Vasseur Oct 2014 B2
8868779 ONeill Oct 2014 B2
8874842 Kimmel Oct 2014 B1
8880682 Bishop Nov 2014 B2
8903756 Zhao Dec 2014 B2
8923293 Jacobson Dec 2014 B2
8934496 Vasseur Jan 2015 B2
8937865 Kumar Jan 2015 B1
8972969 Gaither Mar 2015 B2
8977596 Montulli Mar 2015 B2
9002921 Westphal Apr 2015 B2
9032095 Traina May 2015 B1
9071498 Beser Jun 2015 B2
9112895 Lin Aug 2015 B1
9137152 Xie Sep 2015 B2
9253087 Zhang Feb 2016 B2
9270598 Oran Feb 2016 B1
9280610 Gruber Mar 2016 B2
9531679 Uzun Dec 2016 B2
20020002680 Carbajal Jan 2002 A1
20020010795 Brown Jan 2002 A1
20020038296 Margolus Mar 2002 A1
20020048269 Hong Apr 2002 A1
20020054593 Morohashi May 2002 A1
20020077988 Sasaki Jun 2002 A1
20020078066 Robinson Jun 2002 A1
20020138551 Erickson Sep 2002 A1
20020152305 Jackson Oct 2002 A1
20020176404 Girard Nov 2002 A1
20020188605 Adya Dec 2002 A1
20020199014 Yang Dec 2002 A1
20030004621 Bousquet Jan 2003 A1
20030009365 Tynan Jan 2003 A1
20030033394 Stine Feb 2003 A1
20030046396 Richter Mar 2003 A1
20030046421 Horvitz et al. Mar 2003 A1
20030046437 Eytchison Mar 2003 A1
20030048793 Pochon Mar 2003 A1
20030051100 Patel Mar 2003 A1
20030061384 Nakatani Mar 2003 A1
20030074472 Lucco Apr 2003 A1
20030088696 McCanne May 2003 A1
20030097447 Johnston May 2003 A1
20030099237 Mitra May 2003 A1
20030140257 Peterka Jul 2003 A1
20030229892 Sardera Dec 2003 A1
20040024879 Dingman Feb 2004 A1
20040030602 Rosenquist Feb 2004 A1
20040064737 Milliken Apr 2004 A1
20040071140 Jason Apr 2004 A1
20040073617 Milliken Apr 2004 A1
20040073715 Folkes Apr 2004 A1
20040139230 Kim Jul 2004 A1
20040196783 Shinomiya Oct 2004 A1
20040218548 Kennedy Nov 2004 A1
20040221047 Grover Nov 2004 A1
20040225627 Botros Nov 2004 A1
20040233916 Takeuchi Nov 2004 A1
20040246902 Weinstein Dec 2004 A1
20040252683 Kennedy Dec 2004 A1
20040267902 Yang Dec 2004 A1
20050003832 Osafune Jan 2005 A1
20050028156 Hammond Feb 2005 A1
20050043060 Brandenberg Feb 2005 A1
20050050211 Kaul Mar 2005 A1
20050066121 Keeler Mar 2005 A1
20050074001 Mattes Apr 2005 A1
20050132207 Mourad Jun 2005 A1
20050149508 Deshpande Jul 2005 A1
20050159823 Hayes Jul 2005 A1
20050198351 Nog Sep 2005 A1
20050249196 Ansari Nov 2005 A1
20050259637 Chu Nov 2005 A1
20050262217 Nonaka Nov 2005 A1
20050281288 Banerjee Dec 2005 A1
20050286535 Shrum Dec 2005 A1
20050289222 Sahim Dec 2005 A1
20060010249 Sabesan Jan 2006 A1
20060029102 Abe Feb 2006 A1
20060039379 Abe Feb 2006 A1
20060051055 Ohkawa Mar 2006 A1
20060072523 Richardson Apr 2006 A1
20060099973 Nair May 2006 A1
20060129514 Watanabe Jun 2006 A1
20060133343 Huang Jun 2006 A1
20060146686 Kim Jul 2006 A1
20060173831 Basso Aug 2006 A1
20060193295 White Aug 2006 A1
20060203804 Whitmore Sep 2006 A1
20060206445 Andreoli Sep 2006 A1
20060215684 Capone Sep 2006 A1
20060223504 Ishak Oct 2006 A1
20060242155 Moore Oct 2006 A1
20060256767 Suzuki Nov 2006 A1
20060268792 Belcea Nov 2006 A1
20060288237 Goodwill Dec 2006 A1
20070019619 Foster Jan 2007 A1
20070073888 Madhok Mar 2007 A1
20070094265 Korkus Apr 2007 A1
20070112880 Yang May 2007 A1
20070124412 Narayanaswami May 2007 A1
20070127457 Mirtorabi Jun 2007 A1
20070156998 Gorobets Jul 2007 A1
20070160062 Morishita Jul 2007 A1
20070162394 Zager Jul 2007 A1
20070171828 Dalal Jul 2007 A1
20070189284 Kecskemeti Aug 2007 A1
20070195765 Heissenbuttel Aug 2007 A1
20070204011 Shaver Aug 2007 A1
20070209067 Fogel Sep 2007 A1
20070239892 Ott Oct 2007 A1
20070240207 Belakhdar Oct 2007 A1
20070245034 Retana Oct 2007 A1
20070253418 Shiri Nov 2007 A1
20070255677 Alexander Nov 2007 A1
20070255699 Sreenivas Nov 2007 A1
20070255781 Li Nov 2007 A1
20070274504 Maes Nov 2007 A1
20070275701 Jonker Nov 2007 A1
20070276907 Maes Nov 2007 A1
20070283158 Danseglio Dec 2007 A1
20070294187 Scherrer Dec 2007 A1
20080005056 Stelzig Jan 2008 A1
20080005223 Flake Jan 2008 A1
20080010366 Duggan Jan 2008 A1
20080037420 Tang Feb 2008 A1
20080043989 Furutono Feb 2008 A1
20080046340 Brown Feb 2008 A1
20080059631 Bergstrom Mar 2008 A1
20080080440 Yarvis Apr 2008 A1
20080082662 Dandliker Apr 2008 A1
20080095159 Suzuki Apr 2008 A1
20080101357 Iovanna May 2008 A1
20080107034 Jetcheva May 2008 A1
20080107259 Satou May 2008 A1
20080123862 Rowley May 2008 A1
20080133583 Artan Jun 2008 A1
20080133755 Pollack Jun 2008 A1
20080151755 Nishioka Jun 2008 A1
20080159271 Kutt Jul 2008 A1
20080165775 Das Jul 2008 A1
20080186901 Itagaki Aug 2008 A1
20080200153 Fitzpatrick Aug 2008 A1
20080215669 Gaddy Sep 2008 A1
20080216086 Tanaka Sep 2008 A1
20080243992 Jardetzky Oct 2008 A1
20080250006 Dettinger Oct 2008 A1
20080256138 Sim-Tang Oct 2008 A1
20080256359 Kahn Oct 2008 A1
20080270618 Rosenberg Oct 2008 A1
20080271143 Stephens Oct 2008 A1
20080287142 Keighran Nov 2008 A1
20080288580 Wang Nov 2008 A1
20080291923 Back Nov 2008 A1
20080298376 Takeda Dec 2008 A1
20080320148 Capuozzo Dec 2008 A1
20090006659 Collins Jan 2009 A1
20090013324 Gobara Jan 2009 A1
20090022154 Kiribe Jan 2009 A1
20090024641 Quigley Jan 2009 A1
20090030978 Johnson Jan 2009 A1
20090037763 Adhya Feb 2009 A1
20090052660 Chen Feb 2009 A1
20090067429 Nagai Mar 2009 A1
20090077184 Brewer Mar 2009 A1
20090092043 Lapuh Apr 2009 A1
20090097631 Gisby Apr 2009 A1
20090103515 Pointer Apr 2009 A1
20090113068 Fujihira Apr 2009 A1
20090116393 Hughes May 2009 A1
20090117922 Bell May 2009 A1
20090132662 Sheridan May 2009 A1
20090135728 Shen May 2009 A1
20090144300 Chatley Jun 2009 A1
20090157887 Froment Jun 2009 A1
20090185745 Momosaki Jul 2009 A1
20090193101 Munetsugu Jul 2009 A1
20090198832 Shah Aug 2009 A1
20090222344 Greene Sep 2009 A1
20090228593 Takeda Sep 2009 A1
20090254572 Redlich Oct 2009 A1
20090268905 Matsushima Oct 2009 A1
20090274158 Sharp Nov 2009 A1
20090276396 Gorman Nov 2009 A1
20090285209 Stewart Nov 2009 A1
20090287835 Jacobson Nov 2009 A1
20090287853 Carson Nov 2009 A1
20090288076 Johnson Nov 2009 A1
20090288143 Stebila Nov 2009 A1
20090288163 Jacobson Nov 2009 A1
20090292743 Bigus Nov 2009 A1
20090293121 Bigus Nov 2009 A1
20090296719 Maier Dec 2009 A1
20090300079 Shitomi Dec 2009 A1
20090300407 Kamath Dec 2009 A1
20090300512 Ahn Dec 2009 A1
20090307286 Laffin Dec 2009 A1
20090307333 Welingkar Dec 2009 A1
20090323632 Nix Dec 2009 A1
20100005061 Basco Jan 2010 A1
20100027539 Beverly Feb 2010 A1
20100046546 Ram Feb 2010 A1
20100057929 Merat Mar 2010 A1
20100058346 Narang Mar 2010 A1
20100088370 Wu Apr 2010 A1
20100094767 Miltonberger Apr 2010 A1
20100094876 Huang Apr 2010 A1
20100098093 Ejzak Apr 2010 A1
20100100465 Cooke Apr 2010 A1
20100103870 Garcia-Luna-Aceves Apr 2010 A1
20100124191 Vos May 2010 A1
20100125911 Bhaskaran May 2010 A1
20100131660 Dec May 2010 A1
20100150155 Napierala Jun 2010 A1
20100165976 Khan Jul 2010 A1
20100169478 Saha Jul 2010 A1
20100169503 Kollmansberger Jul 2010 A1
20100180332 Ben-Yochanan Jul 2010 A1
20100182995 Hwang Jul 2010 A1
20100185753 Liu Jul 2010 A1
20100195653 Jacobson Aug 2010 A1
20100195654 Jacobson Aug 2010 A1
20100195655 Jacobson Aug 2010 A1
20100217874 Anantharaman Aug 2010 A1
20100217985 Fahrny Aug 2010 A1
20100232402 Przybysz Sep 2010 A1
20100232439 Dham Sep 2010 A1
20100235516 Nakamura Sep 2010 A1
20100246549 Zhang Sep 2010 A1
20100250497 Redlich Sep 2010 A1
20100250939 Adams Sep 2010 A1
20100257149 Cognigni Oct 2010 A1
20100268782 Zombek Oct 2010 A1
20100272107 Papp Oct 2010 A1
20100281263 Ugawa Nov 2010 A1
20100284309 Allan Nov 2010 A1
20100284404 Gopinath Nov 2010 A1
20100293293 Beser Nov 2010 A1
20100316052 Petersen Dec 2010 A1
20100322249 Thathapudi Dec 2010 A1
20100332595 Fullagar Dec 2010 A1
20110013637 Xue Jan 2011 A1
20110019674 Iovanna Jan 2011 A1
20110022812 vanderLinden Jan 2011 A1
20110029952 Harrington Feb 2011 A1
20110055392 Shen Mar 2011 A1
20110055921 Narayanaswamy Mar 2011 A1
20110060716 Forman Mar 2011 A1
20110060717 Forman Mar 2011 A1
20110090908 Jacobson Apr 2011 A1
20110106755 Hao May 2011 A1
20110131308 Eriksson Jun 2011 A1
20110137919 Ryu Jun 2011 A1
20110145597 Yamaguchi Jun 2011 A1
20110145858 Philpott Jun 2011 A1
20110149858 Hwang Jun 2011 A1
20110153840 Narayana Jun 2011 A1
20110158122 Murphy Jun 2011 A1
20110161408 Kim Jun 2011 A1
20110202609 Chaturvedi Aug 2011 A1
20110219093 Ragunathan Sep 2011 A1
20110219427 Hito Sep 2011 A1
20110219727 May Sep 2011 A1
20110225293 Rathod Sep 2011 A1
20110231578 Nagappan Sep 2011 A1
20110239256 Gholmieh Sep 2011 A1
20110258049 Ramer Oct 2011 A1
20110264824 Venkata Subramanian Oct 2011 A1
20110265159 Ronda Oct 2011 A1
20110265174 Thornton Oct 2011 A1
20110271007 Wang Nov 2011 A1
20110280214 Lee Nov 2011 A1
20110286457 Ee Nov 2011 A1
20110286459 Rembarz Nov 2011 A1
20110295783 Zhao Dec 2011 A1
20110299454 Krishnaswamy Dec 2011 A1
20120011170 Elad Jan 2012 A1
20120011551 Levy Jan 2012 A1
20120023113 Ferren Jan 2012 A1
20120036180 Thornton Feb 2012 A1
20120045064 Rembarz Feb 2012 A1
20120047361 Erdmann Feb 2012 A1
20120066727 Nozoe Mar 2012 A1
20120079056 ZoltÃ?Âin RichÃ?Âird Mar 2012 A1
20120102136 Srebrny Apr 2012 A1
20120106339 Mishra May 2012 A1
20120110159 Richardson May 2012 A1
20120114313 Phillips May 2012 A1
20120120803 Farkas May 2012 A1
20120127994 Ko May 2012 A1
20120136676 Goodall May 2012 A1
20120136936 Quintuna May 2012 A1
20120136945 Lee May 2012 A1
20120137367 Dupont May 2012 A1
20120141093 Yamaguchi Jun 2012 A1
20120155464 Kim Jun 2012 A1
20120158973 Jacobson Jun 2012 A1
20120163373 Lo Jun 2012 A1
20120166433 Tseng Jun 2012 A1
20120170913 Isozaki Jul 2012 A1
20120179653 Araki Jul 2012 A1
20120197690 Agulnek Aug 2012 A1
20120198048 Ioffe Aug 2012 A1
20120221150 Arensmeier Aug 2012 A1
20120224487 Hui Sep 2012 A1
20120226902 Kim Sep 2012 A1
20120257500 Lynch Oct 2012 A1
20120284791 Miller Nov 2012 A1
20120290669 Parks Nov 2012 A1
20120290919 Melnyk Nov 2012 A1
20120291102 Cohen Nov 2012 A1
20120300669 Zahavi Nov 2012 A1
20120307629 Vasseur Dec 2012 A1
20120314580 Hong Dec 2012 A1
20120317307 Ravindran Dec 2012 A1
20120317655 Zhang Dec 2012 A1
20120322422 Frecks Dec 2012 A1
20120323933 He Dec 2012 A1
20120331112 Chatani Dec 2012 A1
20130024560 Vasseur Jan 2013 A1
20130041982 Shi Feb 2013 A1
20130051392 Filsfils Feb 2013 A1
20130054971 Yamaguchi Feb 2013 A1
20130060962 Wang Mar 2013 A1
20130061084 Barton Mar 2013 A1
20130066823 Sweeney Mar 2013 A1
20130073552 Rangwala Mar 2013 A1
20130073882 Inbaraj Mar 2013 A1
20130074155 Huh Mar 2013 A1
20130090942 Robinson Apr 2013 A1
20130091237 Ambalavanar Apr 2013 A1
20130091539 Khurana Apr 2013 A1
20130110987 Kim May 2013 A1
20130111063 Lee May 2013 A1
20130128786 Sultan May 2013 A1
20130132719 Kobayashi May 2013 A1
20130139245 Thomas May 2013 A1
20130151584 Westphal Jun 2013 A1
20130151646 Chidambaram Jun 2013 A1
20130152070 Bhullar Jun 2013 A1
20130163426 Beliveau Jun 2013 A1
20130166668 Byun Jun 2013 A1
20130173822 Hong Jul 2013 A1
20130182568 Lee Jul 2013 A1
20130182931 Fan Jul 2013 A1
20130185406 Choi Jul 2013 A1
20130191412 Kitamura Jul 2013 A1
20130197698 Shah Aug 2013 A1
20130198119 Eberhardt, III Aug 2013 A1
20130212185 Pasquero Aug 2013 A1
20130219038 Lee Aug 2013 A1
20130219081 Qian Aug 2013 A1
20130219478 Mahamuni Aug 2013 A1
20130223237 Hui Aug 2013 A1
20130227048 Xie Aug 2013 A1
20130227114 Vasseur Aug 2013 A1
20130227166 Ravindran Aug 2013 A1
20130242996 Varvello Sep 2013 A1
20130250809 Hui Sep 2013 A1
20130262365 Dolbear Oct 2013 A1
20130262698 Schwan Oct 2013 A1
20130275544 Westphal Oct 2013 A1
20130282854 Jang Oct 2013 A1
20130282860 Zhang Oct 2013 A1
20130282920 Zhang Oct 2013 A1
20130304758 Gruber Nov 2013 A1
20130304937 Lee Nov 2013 A1
20130325888 Oneppo Dec 2013 A1
20130329696 Xu Dec 2013 A1
20130332971 Fisher Dec 2013 A1
20130336103 Vasseur Dec 2013 A1
20130336323 Srinivasan Dec 2013 A1
20130339481 Hong Dec 2013 A1
20130343408 Cook Dec 2013 A1
20140003232 Guichard Jan 2014 A1
20140003424 Matsuhira Jan 2014 A1
20140006354 Parkison Jan 2014 A1
20140006565 Muscariello Jan 2014 A1
20140029445 Hui Jan 2014 A1
20140032714 Liu Jan 2014 A1
20140033193 Palaniappan Jan 2014 A1
20140040505 Barton Feb 2014 A1
20140040628 Fort Feb 2014 A1
20140043987 Watve Feb 2014 A1
20140047513 vantNoordende Feb 2014 A1
20140074730 Arensmeier Mar 2014 A1
20140075567 Raleigh Mar 2014 A1
20140082135 Jung Mar 2014 A1
20140082661 Krahnstoever Mar 2014 A1
20140089454 Jeon Mar 2014 A1
20140096249 Dupont Apr 2014 A1
20140098685 Shattil Apr 2014 A1
20140108313 Heidasch Apr 2014 A1
20140108474 David Apr 2014 A1
20140115037 Liu Apr 2014 A1
20140122587 Petker et al. May 2014 A1
20140129736 Yu May 2014 A1
20140136814 Stark May 2014 A1
20140140348 Perlman May 2014 A1
20140143370 Vilenski May 2014 A1
20140146819 Bae May 2014 A1
20140149733 Kim May 2014 A1
20140237095 Petker May 2014 A1
20140156396 deKozan Jun 2014 A1
20140165207 Engel Jun 2014 A1
20140172783 Suzuki Jun 2014 A1
20140172981 Kim Jun 2014 A1
20140173034 Liu Jun 2014 A1
20140173076 Ravindran Jun 2014 A1
20140181140 Kim Jun 2014 A1
20140192677 Chew Jul 2014 A1
20140192717 Liu Jul 2014 A1
20140195328 Ferens Jul 2014 A1
20140195641 Wang Jul 2014 A1
20140195666 Dumitriu Jul 2014 A1
20140204945 Byun Jul 2014 A1
20140214942 Ozonat Jul 2014 A1
20140233575 Xie Aug 2014 A1
20140237085 Park Aug 2014 A1
20140245359 DeFoy Aug 2014 A1
20140254595 Luo Sep 2014 A1
20140280823 Varvello Sep 2014 A1
20140281489 Peterka Sep 2014 A1
20140281505 Zhang Sep 2014 A1
20140282816 Xie Sep 2014 A1
20140289325 Solis Sep 2014 A1
20140289790 Wilson Sep 2014 A1
20140298248 Kang Oct 2014 A1
20140314093 You Oct 2014 A1
20140337276 Iordanov Nov 2014 A1
20140365550 Jang Dec 2014 A1
20150006896 Franck Jan 2015 A1
20150018770 Baran Jan 2015 A1
20150032892 Narayanan Jan 2015 A1
20150033365 Mellor Jan 2015 A1
20150039890 Khosravi Feb 2015 A1
20150063802 Bahadur Mar 2015 A1
20150089081 Thubert Mar 2015 A1
20150095481 Ohnishi Apr 2015 A1
20150095514 Yu Apr 2015 A1
20150120663 LeScouarnec Apr 2015 A1
20150169758 Assom Jun 2015 A1
20150188770 Naiksatam Jul 2015 A1
20150195149 Vasseur Jul 2015 A1
20150207633 Ravindran Jul 2015 A1
20150207864 Wilson Jul 2015 A1
20150222424 Mosko et al. Aug 2015 A1
20150279348 Cao Oct 2015 A1
20150288755 Mosko Oct 2015 A1
20150312300 Mosko Oct 2015 A1
20150349961 Mosko Dec 2015 A1
20150358436 Kim et al. Dec 2015 A1
20150372903 Hui Dec 2015 A1
20150381546 Mahadevan Dec 2015 A1
20160019275 Mosko Jan 2016 A1
20160021172 Mahadevan Jan 2016 A1
20160062840 Scott Mar 2016 A1
20160110466 Uzun Apr 2016 A1
20160171184 Solis Jun 2016 A1
Foreign Referenced Citations (31)
Number Date Country
103873371 Jun 2014 CN
1720277 Jun 1967 DE
19620817 Nov 1997 DE
0295727 Dec 1988 EP
0757065 Jul 1996 EP
1077422 Feb 2001 EP
1383265 Jan 2004 EP
1384729 Jan 2004 EP
1473889 Nov 2004 EP
2120402 Nov 2009 EP
2120419 Nov 2009 EP
2120419 Nov 2009 EP
2124415 Nov 2009 EP
2214357 Aug 2010 EP
2299754 Mar 2011 EP
2323346 May 2011 EP
2552083 Jan 2013 EP
2214356 May 2016 EP
03005288 Jan 2003 WO
03042254 May 2003 WO
03049369 Jun 2003 WO
03091297 Nov 2003 WO
2005041527 May 2005 WO
2007113180 Oct 2007 WO
2007122620 Nov 2007 WO
2007144388 Dec 2007 WO
2011049890 Apr 2011 WO
2012077073 Jun 2012 WO
2013123410 Aug 2013 WO
2014023072 Feb 2014 WO
2015084327 Jun 2015 WO
Non-Patent Literature Citations (174)
Entry
Marc Mosko: “CCNx 1.0 Protocol Introduction” Apr. 2, 2014 [Retrieved from the Internet Jun. 8, 2016] http://www.ccnx.org/pubs/hhg/1.1%20CCNx%201.0%20Protocol%20Introduction.pdf *paragraphs [01.3], [002], [02.1], [0003].
Akash Baid et al: “Comparing alternative approaches for networking of named objects in the future Internet”, Computer Communications Workshops (Infocom Wkshps), 2012 IEEE Conference on, IEEE, Mar. 25, 2012, pp. 298-303, *Paragraph [002]* *figure 1*.
Priya Mahadevan: “CCNx 1.0 Tutorial”, Mar. 16, 2014, pp. 1-11, Retrieved from the Internet: http://www.ccnx.org/pubs/hhg/1.2%20CCNx%201.0%20Tutorial.pdf [retrieved on Jun. 8, 2016] *paragraphs [003]-[006], [0011], [0013]* *figures 1,2*.
Marc Mosko et al “All-In-One Streams for Content Centric Networks”, May 24, 2015, retrieved from the Internet: http://www.ccnx.org/pubs/AllinOne.pdf [downloaded Jun. 9, 2016] *the whole document*.
Cesar Ghali et al. “Elements of Trust in Named-Data Networking”, Feb. 13, 2014 Retrieved from the internet Jun. 17, 2016 http://arxiv.org/pdf/1402.3332v5.pdf *p. 5, col. 1* *p. 2, col. 1-2* * Section 4.1; p. 4, col. 2* *Section 4.2; p. 4, col. 2*.
Priya Mahadevan et al. “CCN-KRS”, Proceedings of the 1st International Conference on Information-Centric Networking, Inc. '14, Sep. 24, 2014.
Flavin Roberto Santos Et al. “Funnel: Choking Polluters in BitTorrent File Sharing Communities”, IEEE Transactions on Network and Service Management, IEEE vol. 8, No. 4, Dec. 1, 2011.
Liu Wai-Xi et al: “Multisource Dissemination in content-centric networking”, 2013 Fourth International conference on the network of the future (NOF), IEEE, Oct. 23, 2013, pp. 1-5.
Marie-Jose Montpetit et al.: “Network coding meets information-centric networking”, Proceedings of the 1st ACM workshop on emerging Name-Oriented mobile networking design, architecture, algorithms, and applications, NOM '12, Jun. 11, 2012, pp. 31-36.
Asokan et al.: “Server-Supported Signatures”, Computer Security Esorics 96, Sep. 25, 1996, pp. 131-143, Section 3.
Mandl et al.: “A Fast FPGA Based Coprocessor Supporting Hard Real-Time Search”, New Frontiers of Information Technology, Proceedings of the 23rd Euromicro Conference Budapest, Sep. 1, 1997, pp. 499-506 *The Whole Document*.
Sun et al.: “Content-Based Route Lookup Using CAMs”, Global Communications Conference, IEEE, Dec. 3, 2012 *The Whole Document*.
Gelenbe et al.: “Networks With Cognitive Packets”, Modeling, Analysis and Simulation of Computer and Telecommunication Systems, 2000. IEEE, Aug. 29, 2000, pp. 3-10.
Vangelis et al.: “On the Role of Semantic Descriptions for Adaptable Protocol Stacks in the Internet of Things”, 2014 28th International Conference on Advanced Information Networking and Applications Workshops, IEEE, May 13, 2014, pp. 437-443, *last paragraph of section II.B*.
Smetters et al. “Securing Network Content” Technical Report, PARC TR-2009-1, Oct. 1, 2009, Retrieved from the internet URL:http//www.parc.com/content/attachments/TR-2009-01.pdf [retrieved Nov. 1, 2016].
Marc Mosko “CCNx Label Forwarding (CCNLF)” Jul. 21, 2014.
Gallo Alcatel-Lucent Bell Labs “Content-Centric Networking Packet Header Format” Jan. 26, 2015.
Huard J-F et al. “A Programmable Transport Architecture with QOS Guarantees” IEEE Communications Magazine, vol. 36, No. 10, Oct. 1, 1998.
Microsoft Computer Dictionary, Fifth Edition, 2002, Microsoft Press, p. 23.
Mind—A Brief Introduction, John R. Searle, 2004, Oxford University Press, pp. 62-67.
Jacobson, Van et al., “Content-Centric Networking, Whitepaper Describing Future Assurable Global Networks”, Palo Alto Research Center, Inc., Jan. 30, 2007, pp. 1-9.
Koponen, Teemu et al., “A Data-Oriented (and Beyond) Network Architecture”, SIGCOMM '07, Aug. 27-31, 2007, Kyoto, Japan, XP-002579021, p. 181-192.
Baugher, Mark et al., “Self-Verifying Names for Read-Only Named Data”, 2012 IEEE Conference on Computer Communications Workshops (Infocom Wkshps), Mar. 2012, pp. 274-279.
Gasti, Paolo et al., ‘DoS & DDoS in Named Data Networking’, 2013 22nd International Conference on Computer Communications and Networks (ICCCN), Aug. 2013, pp. 1-7.
Zhang, et al., “Named Data Networking (NDN) Project”, http://www.parc.com/ publication/2709/named-data-networking-ndn-project.html, Oct. 2010, NDN-0001, PARC Tech Report.
Ao-Jan Su, David R. Choffnes, Aleksandar Kuzmanovic, and Fabian E. Bustamante. Drafting Behind Akamai: Inferring Network Conditions Based on CDN Redirections. IEEE/ACM Transactions on Networking {Feb. 2009).
“PBC Library—Pairing-Based Cryptography—About,” http://crypto.stanford.edu/pbc.downloaded Apr. 27, 2015.
C. Gentry and A. Silverberg. Hierarchical ID-Based Cryptography. Advances in Cryptology—ASIACRYPT 2002. Springer Berlin Heidelberg (2002).
Boneh et al., “Collusion Resistant Broadcast Encryption With Short Ciphertexts and Private Keys”, 2005.
D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing. Advances in Cryptology—CRYPTO 2001, vol. 2139, Springer Berlin Heidelberg (2001).
Anteniese et al., “Improved Proxy Re-Encryption Schemes with Applications to Secure Distributed Storage”, 2006.
Xiong et al., “CloudSeal: End-to-End Content Protection in Cloud-based Storage and Delivery Services”, 2012.
J. Bethencourt, A, Sahai, and B. Waters, ‘Ciphertext-policy attribute-based encryption,’ in Proc. IEEE Security & Privacy 2007, Berkeley, CA, USA, May 2007, pp. 321-334.
J. Lotspiech, S. Nusser, and F. Pestoni. Anonymous Trust: Digit.
J. Shao and Z. Cao. CCA-Secure Proxy Re-Encryption without Pairings. Public Key Cryptography. Springer Lecture Notes in Computer ScienceVolume 5443 (2009).
Gopal et al. “Integrating content-based Mechanisms with hierarchical File systems”, Feb. 1999, University of Arizona, 15 pages.
R. H. Deng, J. Weng, S. Liu, and K. Chen. Chosen-Ciphertext Secure Proxy Re-Encryption without Pairings. CANS. Spring Lecture Notes in Computer Science vol. 5339 (2008).
RTMP (2009). Available online at http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/rtmp/ pdf/rtmp specification 1.0.pdf.
S. Chow, J. Weng, Y. Yang, and R. Deng. Efficient Unidirectional Proxy Re-Encryption. Progress in Cryptology—Africacrypt 2010. Springer Berlin Heidelberg (2010).
S. Kamara and K. Lauter. Cryptographic Cloud Storage. Financial Cryptography and Data Security. Springer Berlin Heidelberg (2010).
Sandvine, Global Internet Phenomena Report—Spring 2012. Located online at http://www.sandvine.com/downloads/ documents/Phenomenal H 2012/Sandvine Global Internet Phenomena Report 1H 2012.pdf.
The Despotify Project (2012). Available online at http://despotify.sourceforge.net/.
V. K. Adhikari, S. Jain, Y. Chen, and Z.-L. Zhang. Vivisecting Youtube:An Active Measurement Study. In INFOCOM12 Mini-conference (2012).
Vijay Kumar Adhikari, Yang Guo, Fang Hao, Matteo Varvello, Volker Hilt, Moritz Steiner, and Zhi-Li Zhang. Unreeling Netflix: Understanding and Improving Multi-CDN Movie Delivery. In the Proceedings of IEEE INFOCOM 2012 (2012).
Jacobson, Van et al. ‘VoCCN: Voice Over Content-Centric Networks.’ Dec. 1, 2009. ACM ReArch'09.
Rosenberg, J. “Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols”, Apr. 2010, pp. 1-117.
Shih, Eugene et al., ‘Wake on Wireless: An Event Driven Energy Saving Strategy for Battery Operated Devices’, Sep. 23, 2002, pp. 160-171.
Fall, K. et al., “DTN: an architectural retrospective”, Selected areas in communications, IEEE Journal on, vol. 28, No. 5, Jun. 1, 2008, pp. 828-835.
Gritter, M. et al., ‘An Architecture for content routing support in the Internet’, Proceedings of 3rd Usenix Symposium on Internet Technologies and Systems, 2001, pp. 37-48.
“CCNx,” http://ccnx.org/. downloaded Mar. 11, 2015.
“Content Delivery Network”, Wikipedia, Dec. 10, 2011, http://en.wikipedia.org/w/index.php?title=Content_delivery_network&oldid=465077460.
“Digital Signature” archived on Aug. 31, 2009 at http://web.archive.org/web/20090831170721/http://en.wikipedia.org/wiki/Digital_signature.
“Introducing JSON,” http://www.json.org/. downloaded Mar. 11, 2015.
“Microsoft PlayReady,” http://www.microsoft.com/playready/.downloaded Mar. 11, 2015.
“Pursuing a pub/sub Internet (PURSUIT),” http://www.fp7-pursuit.ew/PursuitWeb/. downloaded Mar. 11, 2015.
“The FP7 4WARD project,” http://www.4ward-project.eu/. downloaded Mar. 11, 2015.
A. Broder and A. Karlin, “Multilevel Adaptive Hashing”, Jan. 1990, pp. 43-53.
Detti, Andrea, et al. “CONET: A content centric inter-networking architecture.” Proceedings of the ACM SIGCOMM workshop on Information-centric networking. ACM, 2011.
A. Wolman, M. Voelker, N. Sharma N. Cardwell, A. Karlin, and H.M. Levy, “On the scale and performance of cooperative web proxy caching,” ACM SIGHOPS Operating Systems Review, vol. 33, No. 5, pp. 16-31, Dec. 1999.
Afanasyev, Alexander, et al. “Interest flooding attack and countermeasures in Named Data Networking.” IFIP Networking Conference, 2013. IEEE, 2013.
B. Ahlgren et al., ‘A Survey of Information—centric Networking’ IEEE Commun. Magazine, Jul. 2012, pp. 26-36.
Bari, MdFaizul, et al. ‘A survey of naming and routing in information-centric networks.’ Communications Magazine, IEEE 50.12 (2012): 44-53.
Brambley, Michael, A novel, low-cost, reduced-sensor approach for providing smart remote monitoring and diagnostics for packaged air conditioners and heat pumps. Pacific Northwest National Laboratory, 2009.
C.A. Wood and E. Uzun, “Flexible end-to-end content security in CCN,” in Proc. IEEE CCNC 2014, Las Vegas, CA, USA, Jan. 2014.
Carzaniga, Antonio, Matthew J. Rutherford, and Alexander L. Wolf. ‘A routing scheme for content-based networking.’ INFOCOM 2004. Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies. vol. 2. IEEE, 2004.
Cho, Jin-Hee, Ananthram Swami, and Ray Chen. “A survey on trust management for mobile ad hoc networks.” Communications Surveys & Tutorials, IEEE 13.4 (2011): 562-583.
Compagno, Alberto, et al. “Poseidon: Mitigating interest flooding DDoS attacks in named data networking.” Local Computer Networks (LCN), 2013 IEEE 38th Conference on. IEEE, 2013.
Conner, William, et al. “A trust management framework for service-oriented environments.” Proceedings of the 18th international conference on World wide web. ACM, 2009.
Content Centric Networking Project (CCN) [online], http://ccnx.org/releases/latest/doc/technical/, Downloaded Mar. 9, 2015.
Content Mediator Architecture for Content-aware Networks (COMET) Project [online], http://www.comet-project.org/, Downloaded Mar. 9, 2015.
D.K. Smetters, P. Golle, and J.D. Thornton, “CCNx access control specifications,” PARC, Tech. Rep., Jul. 2010.
Dabirmoghaddam, Ali, Maziar Mirzazad Barijough, and J. J. Garcia-Luna-Aceves. ‘Understanding optimal caching and opportunistic caching at the edge of information-centric networks.’ Proceedings of the 1st international conference on Information-centric networking. ACM, 2014.
Detti et al., “Supporting the Web with an information centric network that routes by name”, Aug. 2012, Computer Networks 56, pp. 3705-3702.
Dijkstra, Edsger W., and Carel S. Scholten. ‘Termination detection for diffusing computations.’ Information Processing Letters 11.1 (1980): 1-4.
Dijkstra, Edsger W., Wim HJ Feijen, and A_J M. Van Gasteren. “Derivation of a termination detection algorithm for distributed computations.” Control Flow and Data Flow: concepts of distributed programming. Springer Berlin Heidelberg, 1986. 507-512.
E. Rescorla and N. Modadugu, “Datagram transport layer security,” IETF RFC 4347, Apr. 2006.
E.W. Dijkstra, W. Feijen, and A.J.M. Van Gasteren, “Derivation of a Termination Detection Algorithm for Distributed Computations,” Information Processing Letter, vol. 16, No. 5, 1983.
Fayazbakhsh, S. K., Lin, Y., Tootoonchian, A., Ghodsi, A., Koponen, T., Maggs, B., & Shenker, S. {Aug. 2013). Less pain, most of the gain: Incrementally deployable ICN. In ACM SIGCOMM Computer Communication Review (vol. 43, No. 4, pp. 147-158). ACM.
G. Tyson, S. Kaune, S. Miles, Y. El-Khatib, A. Mauthe, and A. Taweel, “A trace-driven analysis of caching in content-centric networks,” in Proc. IEEE ICCCN 2012, Munich, Germany, Jul.-Aug. 2012, pp. 1-7.
G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-based encryption for fine-grained access control in cloud storage services,” in Proc. ACM CCS 2010, Chicago, IL, USA, Oct. 2010, pp. 735-737.
G. Xylomenos et al., “A Survey of Information-centric Networking Research,” IEEE Communication Surveys and Tutorials, Jul. 2013.
Garcia, Humberto E., Wen-Chiao Lin, and Semyon M. Meerkov. “A resilient condition assessment monitoring system.” Resilient Control Systems (ISRCS), 2012 5th International Symposium on. IEEE, 2012.
Garcia-Luna-Aceves, Jose J. ‘A unified approach to loop-free routing using distance vectors or link states.’ ACM SIGCOMM Computer Communication Review. vol. 19. No. 4. ACM, 1989.
Garcia-Luna-Aceves, Jose J. ‘Name-Based Content Routing in Information Centric Networks Using Distance Information’ Proc ACM ICN 2014, Sep. 2014.
Ghali, Cesar, GeneTsudik, and Ersin Uzun. “Needle in a Haystack: Mitigating Content Poisoning in Named-Data Networking.” Proceedings of NDSS Workshop on Security of Emerging Networking Technologies (SENT). 2014.
Ghodsi, Ali, et al. “Information-centric networking: seeing the forest for the trees.” Proceedings of the 10th ACM Workshop on Hot Topics in Networks. ACM, 2011.
Ghodsi, Ali, et al. “Naming in content-oriented architectures.” Proceedings of the ACM SIGCOMM workshop on Information-centric networking. ACM, 2011.
Gupta, Anjali, Barbara Liskov, and Rodrigo Rodrigues. “Efficient Routing for Peer-to-Peer Overlays.” NSDI. vol. 4. 2004.
Heckerman, David, John S. Breese, and Koos Rommelse. “Decision-Theoretic Troubleshooting.” Communications of the ACM. 1995.
Heinemeier, Kristin, et al. “Uncertainties in Achieving Energy Savings from HVAC Maintenance Measures in the Field.” ASHRAE Transactions 118.Part 2 {2012).
Herlich, Matthias et al., “Optimizing Energy Efficiency for Bulk Transfer Networks”, Apr. 13, 2010, pp. 1-3, retrieved for the Internet: URL:http://www.cs.uni-paderborn.de/fileadmin/informationik/ag-karl/publications/miscellaneous/optimizing.pdf (retrieved on Mar. 9, 2012).
Hoque et al., ‘NLSR: Named-data Link State Routing Protocol’, Aug. 12, 2013, ICN 2013, pp. 15-20.
https://code.google.com/p/ccnx-trace/.
I. Psaras, R.G. Clegg, R. Landa, W.K. Chai, and G. Pavlou, “Modelling and evaluation of CCN-caching trees,” in Proc. IFIP Networking 2011, Valencia, Spain, May 2011, pp. 78-91.
Intanagonwiwat, Chalermek, Ramesh Govindan, and Deborah Estrin. ‘Directed diffusion: a scalable and robust communication paradigm for sensor networks.’ Proceedings of the 6th annual international conference on Mobile computing and networking. ACM, 2000.
J. Aumasson and D. Bernstein, “SipHash: a fast short-input PRF”, Sep. 18, 2012.
J. Hur, “Improving security and efficiency in attribute-based data sharing,” IEEE Trans. Knowledge Data Eng., vol. 25, No. 10, pp. 2271-2282, Oct. 2013.
V. Jacobson et al., ‘Networking Named Content,’ Proc. IEEE CoNEXT '09, Dec. 2009.
Jacobson et al., “Custodian-Based Information Sharing,” Jul. 2012, IEEE Communications Magazine: vol. 50 Issue 7 (p. 3843).
Ji, Kun, et al. “Prognostics enabled resilient control for model-based building automation systems.” Proceedings of the 12th Conference of International Building Performance Simulation Association. 2011.
K. Liang, L. Fang, W. Susilo, and D.S. Wong, “A Ciphertext-policy attribute-based proxy re-encryption with chosen-ciphertext security,” in Proc. INCoS 2013, Xian, China, Sep. 2013, pp. 552-559.
Katipamula, Srinivas, and Michael R. Brambley. “Review article: methods for fault detection, diagnostics, and prognostics for building systemsa review, Part I.” HVAC&R Research 11.1 (2005): 3-25.
Katipamula, Srinivas, and Michael R. Brambley. “Review article: methods for fault detection, diagnostics, and prognostics for building systemsa review, Part II.” HVAC&R Research 11.2 (2005): 169-187.
L. Wang et al., ‘OSPFN: An OSPF Based Routing Protocol for Named Data Networking,’ Technical Report NDN-0003, 2012.
L. Zhou, V. Varadharajan, and M. Hitchens, “Achieving secure role-based access control on encrypted data in cloud storage,” IEEE Trans. Inf. Forensics Security, vol. 8, No. 12, pp. 1947-1960, Dec. 2013.
Li, Wenjia, Anupam Joshi, and Tim Finin. “Coping with node misbehaviors in ad hoc networks: A multi-dimensional trust management approach.” Mobile Data Management (MDM), 2010 Eleventh International Conference on. IEEE, 2010.
Lopez, Javier, et al. “Trust management systems for wireless sensor networks: Best practices.” Computer Communications 33.9 (2010): 1086-1093.
M. Green and G. Ateniese, “Identity-based proxy re-encryption,” in Proc. ACNS 2007, Zhuhai, China, Jun. 2007, pp. 288-306.
M. Ion, J. Zhang, and E.M. Schooler, “Toward content-centric privacy in Icn: Attribute-based encryption and routing,” in Proc. ACM SIGCOMM ICN 2013, Hong Kong, China, Aug. 2013, pp. 39-40.
M. Naor and B. Pinkas “Efficient trace and revoke schemes,” in Proc. FC 2000, Anguilla, British West Indies, Feb. 2000, pp. 1-20.
M. Nystrom, S. Parkinson, A. Rusch, and M. Scott, “PKCS#12: Personal information exchange syntax v. 1.1,” IETF RFC 7292, K. Moriarty, Ed., Jul. 2014.
M. Parsa and J.J. Garcia-Luna-Aceves, “A Protocol for Scalable Loop-free Multicast Routing.” IEEE JSAC, Apr. 1997.
M. Walfish, H. Balakrishnan, and S. Shenker, “Untangling the web from DNS,” in Proc. USENIX NSDI 2004, Oct. 2010, pp. 735-737.
Mahadevan, Priya, et al. “Orbis: rescaling degree correlations to generate annotated internet topologies.” ACM SIGCOMM Computer Communication Review. vol. 37. No. 4. ACM, 2007.
Mahadevan, Priya, et al. “Systematic topology analysis and generation using degree correlations.” ACM SIGCOMM Computer Communication Review. vol. 36. No. 4. ACM, 2006.
Matocha, Jeff, and Tracy Camp. ‘A taxonomy of distributed termination detection algorithms.’ Journal of Systems and Software 43.3 (1998): 207-221.
Matteo Varvello et al., “Caesar: A Content Router for High Speed Forwarding”, ICN 2012, Second Edition on Information-Centric Networking, New York, Aug. 2012.
McWilliams, Jennifer A., and Iain S. Walker. “Home Energy Article: A Systems Approach to Retrofitting Residential HVAC Systems.” Lawrence Berkeley National Laboratory (2005).
Merindol et al., “An efficient algorithm to enable path diversity in link state routing networks”, Jan. 10, Computer Networks 55 (2011), pp. 1132-1140.
Mobility First Project [online], http://mobilityfirst.winlab.rutgers.edu/, Downloaded Mar. 9, 2015.
Narasimhan, Sriram, and Lee Brownston. “HyDE—A General Framework for Stochastic and Hybrid Modelbased Diagnosis.” Proc. DX 7 (2007): 162-169.
NDN Project [online], http://www.named-data.net/, Downloaded Mar. 9, 2015.
Omar, Mawloud, Yacine Challal, and Abdelmadjid Bouabdallah. “Certification-based trust models in mobile ad hoc networks: A survey and taxonomy.” Journal of Network and Computer Applications 35.1 (2012): 268-286.
P. Mahadevan, E.Uzun, S. Sevilla, and J. Garcia-Luna-Aceves, “CCN-krs: A key resolution service for ccn,” in Proceedings of the 1st International Conference on Information-centric Networking, Ser. Inc 14 New York, NY, USA: ACM, 2014, pp. 97-106. [Online]. Available: http://doi.acm.org/10.1145/2660129.2660154.
S. Deering, “Multicast Routing in Internetworks and Extended LANs,” Proc. ACM SIGCOMM '88, Aug. 1988.
S. Deering et al., “The PIM architecture for wide-area multicast routing,” IEEE/ACM Trans, on Networking, vol. 4, No. 2, Apr. 1996.
S. Jahid, P. Mittal, and N. Borisov, “Easier: Encryption-based access control in social network with efficient revocation,” in Proc. ACM ASIACCS 2011, Hong Kong, China, Mar. 2011, pp. 411-415.
S. Kamara and K. Lauter, “Cryptographic cloud storage,” in Proc. FC 2010, Tenerife, Canary Islands, Spain, Jan. 2010, pp. 136-149.
S. Kumar et al. “Peacock Hashing: Deterministic and Updatable Hashing for High Performance Networking,” 2008, pp. 556-564.
S. Misra, R. Tourani, and N.E. Majd, “Secure content delivery in information-centric networks: Design, implementation, and analyses,” in Proc. ACM SIGCOMM ICN 2013, Hong Kong, China, Aug. 2013, pp. 73-78.
S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and fine-grained data access control in cloud computing,” in Proc. IEEE INFOCOM 2010, San Diego, CA, USA, Mar. 2010, pp. 1-9.
S.J. Lee, M. Gerla, and C. Chiang, “On-demand Multicast Routing Protocol in Multihop Wireless Mobile Networks,” Mobile Networks and Applications, vol. 7, No. 6, 2002.
Scalable and Adaptive Internet Solutions (SAIL) Project [online], http://sail-project.eu/ Downloaded Mar. 9, 2015.
Schein, Jeffrey, and Steven T. Bushby. A Simulation Study of a Hierarchical, Rule-Based Method for System-Level Fault Detection and Diagnostics in HVAC Systems. US Department of Commerce,[Technology Administration], National Institute of Standards and Technology, 2005.
Shani, Guy, Joelle Pineau, and Robert Kaplow. “A survey of point-based POMDP solvers.” Autonomous Agents and Multi-Agent Systems 27.1 (2013): 1-51.
Sheppard, John W., and Stephyn GW Butcher. “A formal analysis of fault diagnosis with d-matrices.” Journal of Electronic Testing 23.4 (2007): 309-322.
Shneyderman, Alex et al., ‘Mobile VPN: Delivering Advanced Services in Next Generation Wireless Systems’, Jan. 1, 2003, pp. 3-29.
Solis, Ignacio, and J. J. Garcia-Luna-Aceves. ‘Robust content dissemination in disrupted environments.’ proceedings of the third ACM workshop on Challenged networks. ACM, 2008.
Sun, Ying, and Daniel S. Weld. “A framework for model-based repair.” AAAI. 1993.
T. Ballardie, P. Francis, and J. Crowcroft, “Core Based Trees (CBT),” Proc. ACM SIGCOMM '88, Aug. 1988.
T. Dierts, “The transport layer security (TLS) protocol version 1.2,” IETF RFC 5246, 2008.
T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K.H. Kim, S. Shenker, and I. Stoica, ‘A data-oriented (and beyond) network architecture,’ ACM SIGCOMM Computer Communication Review, vol. 37, No. 4, pp. 181-192, Oct. 2007.
V. Goyal, 0. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for fine-grained access control of encrypted data,” in Proc. ACM CCS 2006, Alexandria, VA, USA, Oct.-Nov. 2006, pp. 89-98.
V. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N.H. Briggs, and R.L. Braynard, ‘Networking named content,’ in Proc. ACM CoNEXT 2009, Rome, Italy, Dec. 2009, pp. 1-12.
Verma, Vandi, Joquin Fernandez, and Reid Simmons. “Probabilistic models for monitoring and fault diagnosis.” The Second IARP and IEEE/RAS Joint Workshop on Technical Challenges for Dependable Robots in Human Environments. Ed. Raja Chatila. Oct. 2002.
Vutukury, Srinivas, and J. J. Garcia-Luna-Aceves. A simple approximation to minimum-delay routing. vol. 29. No. 4. ACM, 1999.
W.-G. Tzeng and Z.-J. Tzeng, “A public-key traitor tracing scheme with revocation using dynamic shares,” in Proc. PKC 2001, Cheju Island, Korea, Feb. 2001, pp. 207-224.
Waldvogel, Marcel “Fast Longest Prefix Matching: Algorithms, Analysis, and Applications”, A dissertation submitted to the Swiss Federal Institute of Technology Zurich, 2002.
Walker, Iain S. Best practices guide for residential HVAC Retrofits. No. LBNL-53592. Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US), 2003.
Wang, Jiangzhe et al.,“DMND: Collecting Data from Mobiles Using Named Data”, Vehicular Networking Conference, 2010 IEEE, pp. 49-56.
Xylomenos, George, et al. “A survey of information-centric networking research.” Communications Surveys & Tutorials, IEEE 16.2 (2014): 1024-1049.
Yi, Cheng, et al. ‘A case for stateful forwarding plane.’ Computer Communications 36.7 (2013): 779-791.
Yi, Cheng, et al. ‘Adaptive forwarding in named data networking.’ ACM SIGCOMM computer communication review 42.3 (2012): 62-67.
Zahariadis, Theodore, et al. “Trust management in wireless sensor networks.” European Transactions on Telecommunications 21.4 (2010): 386-395.
Zhang, Lixia, et al. ‘Named data networking.’ ACM SIGCOMM Computer Communication Review 44.3 {2014): 66-73.
Soh et al., “Efficient Prefix Updates for IP Router Using Lexicographic Ordering and Updateable Address Set”, Jan. 2008, IEEE Transactions on Computers, vol. 57, No. 1.
Beben et al., “Content Aware Network based on Virtual Infrastructure”, 2012 13th ACIS International Conference on Software Engineering.
Biradar et al., “Review of multicast routing mechanisms in mobile ad hoc networks”, Aug. 16, Journal of Network and Computer Applications 35 (2012) 221-229.
D. Trossen and G. Parisis, “Designing and realizing and information-centric internet,” IEEE Communications Magazing, vol. 50, No. 7, pp. 60-67, Jul. 2012.
Garcia-Luna-Aceves et al., “Automatic Routing Using Multiple Prefix Labels”, 2012, IEEE, Ad Hoc and Sensor Networking Symposium.
Ishiyama, “On the Effectiveness of Diffusive Content Caching in Content-Centric Networking”, Nov. 5, 2012, IEEE, Information and Telecommunication Technologies (APSITT), 2012 9th Asia-Pacific Symposium.
J. Hur and D.K. Noh, “Attribute-based access control with efficient revocation in data outsourcing systers,” IEEE Trans. Parallel Distrib. Syst, vol. 22, No. 7, pp. 1214-1221, Jul. 2011.
Kaya et al., “A Low Power Lookup Technique for Multi-Hashing Network Applications”, 2006 IEEE Computer Society Annual Symposium on Emerging VLSI Technologies and Architectures, Mar. 2006.
Hoque et al., “NLSR: Named-data Link State Routing Protocol”, Aug. 12, 2013, ICN'13.
Nadeem Javaid, “Analysis and design of quality link metrics for routing protocols in Wireless Networks”, PhD Thesis Defense, Dec. 15, 2010, Universete Paris-Est.
Wetherall, David, “Active Network vision and reality: Lessons form a capsule-based system”, ACM Symposium on Operating Systems Principles, Dec. 1, 1999. pp. 64-79.
Kulkarni A.B. et al., “Implementation of a prototype active network”, IEEE, Open Architectures and Network Programming, Apr. 3, 1998, pp. 130-142.
Xie et al. “Collaborative Forwarding and Caching in Content Centric Networks”, Networking 2012.
Amadeo et al. “Design and Analysis of a Transport-Level Solution for Content-Centric VANETs”, University “Mediterranea” of Reggio Calabria, Jun. 15, 2013.
Lui et al. (A TLV-Structured Data Naming Scheme for Content-Oriented Networking, pp. 5822-5827, International Workshop on the Network of the Future, Communications (ICC), 2012 IEEE International Conference on Jun. 10-15, 2012).
Peter Dely et al. “OpenFlow for Wireless Mesh Networks” Computer Communications and Networks, 2011 Proceedings of 20th International Conference on, IEEE, Jul. 31, 2011 (Jul. 31, 2011), pp. 1-6.
Garnepudi Parimala et al “Proactive, reactive and hybrid multicast routing protocols for Wireless Mesh Networks”, 2013 IEEE International Conference on Computational Intelligence and Computing Research, IEEE, Dec. 26, 2013, pp. 1-7.
Tiancheng Zhuang et al. “Managing Ad Hoc Networks of Smartphones”, International Journal of Information and Education Technology, Oct. 1, 2013.
Internatonal Search Report and Written Opinion in corresponding International Application No. PCT/US2017/019755, dated Jul. 11, 2017, 15 pages.
Related Publications (1)
Number Date Country
20170249468 A1 Aug 2017 US