The present invention generally relates to a wireless detection of objects using MIMO radar, e.g. for use in an automotive vehicle, and more particularly to a method and system for obtaining an angle-Doppler ambiguity function (AF) using random phase center motion (PCM); the invention also provides for a AF that can be made adaptive.
In modern vehicles, radar systems are increasingly used, i.e. for sensing neighboring objects/targets (including other vehicles), for lane changing, collision avoidance and other driver assist functions.
Unambiguous discrimination in radar systems with respect to angle, Doppler and range remains an area of investigation. Angular resolution is physically limited by the total antenna array size.
Known techniques can be divided into three different topics which are all involving a kind of phase center motion but with different terminology.
Synthetic aperture radar (SAR) utilize Displaced Phase Center Antenna (DPCA) technique, in order to improve the performance of Moving-Target-Indicator (MTI) radars mounted on moving platforms. By shifting the phase center of the antenna backward, the DPCA technique compensates for the forward motion of the moving platform so that, over a few pulse repetition intervals, the antenna is effectively stationary in space.
Literature relating to antennas and propagation are mainly dealing with antenna beam pattern shaping and side lobe suppression. The background of those is lying more on antennas and their radiation characteristic and less in designing signal for coding. Nevertheless, the keywords phase center motion and 4 dimensional array (3 space dimension plus time) are introduced.
Time Division Multiplexed (TDM) MIMO was introduced, where only one transmitter is active at a time in order to achieve orthogonal signals with respect to the angle of arrival. The TDM switching scheme itself can be interpreted as a kind of phase center motion for a single trajectory. Therefore, the relevant literature discloses the use of just a single trajectory and the presented trajectories are all suffering from target Doppler shifts and therefore not orthogonal in angle and Doppler simultaneously.
More particularly, the known virtual Multiple-Input-Multiple-Output (MIMO) concept provides better angular resolution with the same number of antenna elements with respect to their phased array counterpart. The utilization of sparse arrays and orthogonal signals leads to a virtually filled array in the processing unit. Achieving orthogonality with respect to the transmit signals has been extensively discussed in the prior art.
B. T. Perry, T. Levy, P. Bell, S. Davis, K. Kolodziej, N. O'Donoughue, J. S. Herd, “Low Cost Phased Array Radar for Applications in Engineering Education,” in IEEE International Symposium on Phased Array Systems and Technology, 2013, discloses low cost Frequency Modulated Continuous Wave (FMCW) radar by switching the transmitters and receivers across FMCW chirps in a linear fashion. The consecutive switching scheme of transmit-receive-pairs yields a simple Discrete Fourier Transform (DFT) based received processing for resolving different angle of arrivals. The side-lobe suppression of the backscatter is addressed by virtual antenna overlapping; this decreases the virtual array aperture and therefore the angular resolution. However, linear switching of antenna elements across pulses results in angle-Doppler coupling.
K. Rambach and B. Yang “Colocated MIMO Radar: Cramer-Rao Bound and Optimal Time Division Multiplexing for DOA Estimation of Moving Targets,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013, have investigated a time division multiplex (TDM) MIMO radar and analyzed the Direction of Arrival (DoA) estimation of a moving target. Using this Cramer-Rao bound (CRB), they deduced optimal TDM schemes such that the CRB is as small as for a stationary target. Simulations confirmed the theoretical results and showed that the Root mean square error (RMSE) of the maximum likelihood estimator is indeed as small as for a stationary target, if an optimal TDM scheme is used.
C. Hammes, Y. Nij sure, B. Shankar, U. Schroeder, B. Ottersten, “Discrimination of Angle-Doppler Signatures using Arbitrary Phase Center Motion for MIMO Radars,” in IEEE Radar Conference, 2017. (available online: http://wwwen.unilu/snt/people/christian_hammes), discloses techniques addressing the aforementioned coupling problem, in which a nonlinear approach is used. That is, a TDM technique is utilized as a virtual motion of the transmit phase center, called Phase Center Motion (PCM). The PCM technique has been introduced as a joint transmit-receive-time modulated array approach, where the PCM is independent of the target motion and, therefore, enables unambiguous multiple target discrimination by using inter-chirp modulation. While time modulated or four dimensional arrays are exploiting apparent antenna motion in an attempt to optimize the radiation pattern sidelobes, the PCM approach in Hammes et al (2017) exploits the time modulation such that a sparse array structure provides thumbtack response within the angle-Doppler domain, called angle-Doppler Ambiguity Function (AF).
An object of the invention is to address the problem that known techniques do not exploit the space time coding of phase center motion in every sense. In MIMO signal design they do not use phase center motion as a design parameter at all. Therefore, all the signal design algorithms do not consider a complete new degree of freedom. In state of the art MIMO transmit signal design, they are considering time and space separately and not as a joint design parameter, which opens new avenues to signal design.
In TDM MIMO the space time coding is used, but still only on trajectory on a one-dimensional array. The orthogonality in trajectory is not considered and investigated. Furthermore, strong angle Doppler coupling is a big drawback of this approach.
In addition, techniques known from antenna and propagation literature neglect the capability of space time coding with regard to achieving orthogonality at all. To the contrary, they consider it as undesired because the splitting into orthogonal sequences yields a certain energy distribution.
Another object of the present invention is to provide waveforms that can be used to enhance resolution of targets in the angular domain (azimuth and elevation) and Doppler domain as well as interference mitigation in co-existence scenarios.
In order to overcome the abovementioned problems, there is provided a method for obtaining an angle-Doppler ambiguity function (AF) for a target using multiple-input-multiple-output (MIMO) radar, the MIMO radar including a transmit antenna array, the transmit antenna array being at least one-dimensional and having a plurality of antenna elements, the method comprising: generating transmit signals for transmission by the transmit antenna array, the transmit signals defining at least a first transmit trajectory of a phase center within the transmit antenna array; transmitting the transmit signals using the transmit antenna array; receiving receive signals from the target, the receive signals resulting from the incidence of the transmit signals upon the target; and obtaining at least an angle-Doppler ambiguity function (AF) from the receive signals; characterized in that the first transmit trajectory is such that, in operation, the phase center undergoes random phase center motion (PCM) such that a phase center position within the transmit antenna array varies randomly with time.
The phase center position can be varied at any rate. In one embodiment, it is varied on a chirp-by-chirp basis (inter-chip PCM) and denoted by χ(ic). The PCM χ(ic) represents the position of the phase center in the transmit antenna array at the ic's chirp. In other embodiment, the phase center can be changed within a chirp (intra-chirp PCM) at a pre-determined rate 1/Ts where Ts is the sampling rate; in such cases, the PCM χ(is) represents the position of the phase center in the transmit antenna array at the is'th sample.
Preferably, the PCM χ(ic) includes both correlated and uncorrelated transitions between positions within the transmit antenna array.
Preferably, the first transmit trajectory corresponds to an amplitude modulation (AM) of the transmit signals so as to define a virtual array. Preferably, the phase center can assume any real position within the virtual array. The circumstance that one antenna element is active at the time enables orthogonality in time and therefore the virtual array can be constructed. This orthogonality is achieved both for correlated and uncorrelated transitions of the PCM. The problem which is addressed is of angle-Doppler coupling and the masking of weak reflections from the certain targets, e.g., children by strong reflections from other target e.g, truck.
Preferably, the PCM χ(ic) is described by a corresponding probability density function PDF ρχ(i
where χ(ic) denotes the phase center position at the transmit array and the switching across chirps is denoted by the chirp index ic,j is the complex number. The expression for Γ(k′ϕ
Further, the correlation function for PCM induced phase vector
defined as
where E[⋅] denotes the statistical average. When the PCM transitions are uncorrelated, then
r
χ(τ)=δ(τ)+(1−δ(τ))|Γ(k′ϕ
When the PCM transitions are correlated, rχ(τ) is determined by ρχ(i
Preferably, the MIMO radar includes a receive antenna array, the receive antenna array being at least one-dimensional and having a plurality of antenna elements, wherein:
Preferably, obtaining at least an angle-Doppler ambiguity function (AF) from the receive signals comprises down-converting and digitizing the receive signals to obtain digitized receive signals written in matrix notation Y∈I
Particularly, the received samples, [Y]i
Preferably, obtaining at least an angle-Doppler ambiguity function (AF) from the receive signals further comprises rearranging the digitized receive signals in a data-cube, where a first dimension contains the intra-chirp samples, a second dimension denotes the inter-chirp samples and a third dimension refers to the data from each receive antenna element.
Preferably, obtaining at least an angle-Doppler ambiguity function (AF) from the receive signals further comprises using a trajectory matched filter bank to extract Doppler and angular information from the receive signals. Preferably, a matched filter is applied to each dimension in order to compress the continuous wave such that the range, angle and Doppler information can be extracted.
Preferably, obtaining at least an angle-Doppler ambiguity function (AF) from the receive signals further comprises squaring the output [Y]i
where the intra-chirps sampling time is denoted Ts, is describes the intra-chirp sample index, Tc denotes the chirp duration and the switching across chirps is denoted by the chirp index ic.
In an alternate embodiment [{tilde over (Y)}]p,q(l) is computed using a three dimensional Fourier transform of new datacube where the raw signals are reordered according to
In the sparse datacube φ(is, ic, m)ϵCI
[{tilde over (Y)}]p,q(l)=|Fm,i
Preferably, according to one aspect of the invention wherein uncorrelated PCM transitions are considered, obtaining at least an angle-Doppler ambiguity function (AF) from the receive signals further comprises obtaining at least an angle-Doppler ambiguity function (AF) from the receive signals further comprises averaging [{tilde over (Y)}]p,q(l) to obtain
and where the function W(ω′D
Preferably according to another aspect of the invention wherein correlated PCM transitions are considered, obtaining at least an angle-Doppler ambiguity function (AF) from the receive signals further comprise obtaining at least an angle-Doppler ambiguity function (AF) from the receive signals further comprises averaging [{tilde over (Y)}]p,q(l) to obtain
where Tc denotes the chirp time. Similar to the uncorrelated case, ƒχ(q, p) depends on the χ(ic) which is used as a design parameter.
According to an aspect of the invention, the E[[{tilde over (Y)}]p,q(l)] can be controlled through the PDF (ρχ(i
According to another aspect of the invention, there is provided a system for obtaining an angle-Doppler ambiguity function (AF) for a target using multiple-input-multiple-output (MIMO) radar, the system comprising a transmit antenna array, the transmit antenna array being at least one-dimensional and having a plurality of antenna elements; and processing circuitry, coupled to the transmit antenna array, the processing circuitry being configured to carry out the method of any of claims 1 to 14 of the appended claims, or as described and illustrated herein.
The system preferably further comprises a receive antenna array coupled to the processing circuitry, the receive antenna array being at least one-dimensional and having a plurality of antenna elements.
According to another aspect of the invention, there is provided a non-transitory computer readable medium storing instructions which, when executed by processing circuitry, perform the method of any of claims 1 to 14 of the appended claims, or as described and illustrated herein.
An advantage of the invention, at least in some embodiments, is to provide enhanced low cost target detection with the objective of suppressing the angle-Doppler coupling. It considers PCM based on random spatio-temporal modulations of the transmit array followed by a matched filter processing at receiver.
A further advantage is to provide a framework for adapting these waveforms to enhance the AF at certain regions to mitigate the impact of strong targets and enhance the detection of weaker ones. Use of such waveforms leads to adaptive AF.
A further advantage is to provide for a waveform adaptation mechanism where the correlated
PCM is adapted to enhance the AF in certain regions towards obtaining better detection of weak targets masked by strong targets. As mentioned above (see e.g. par. [0028]), the PDF (ρχ(i
A further advantage is the ease of implementation by just using a switched transmit array and a conventional beamforming technique at the receiver.
Simulation results have proven the capability of the invention by illustrating the desired shaping of the AF based on the choice of the PDF.
In another interesting aspect of the invention, the phase center motion (PCM) is designed based on the design of the autocorrelation function to impose nulls at specific Doppler locations, indexed by ω′D
Another interesting aspect of the invention is the use of the method adaptively. One application of this is to detect a weak target in the vicinity of a strong target. Once a strong target had been detected, the PCM can be adapted to suppress it by minimizing the corresponding ƒχ(q, p) in equation (10) to suppress detected target. The process can be continued by suppressing detected targets in the scene and enhancing the illumination of the weaker targets.
One embodiment of obtaining a auto-correlation function is to consider uncorrelated PCM with Gaussian PDF and filter it using a linear filter h( ). This leads to,
which shows that the PCM shaping filter h(τ) plays a role in determining the AF for the case of Gaussian PCM.
In one embodiment, the choice of the filter h(n)=cos(ω0n) for some frequency ω0.
In one embodiment, the system adaptation can take the following steps
This estimate can be used for signal design and the filter coefficients h(τ) can be adjusted to optimize the SINR in regions where it is poor.
Further details and advantages of the present invention will be apparent from the following detailed description of not limiting embodiments with reference to the attached drawing, wherein:
In the following, like numerals will be used to indicate like elements.
Embodiments of the present invention involve one or more of the following considerations. It should be noted that the presented FMCW implementation serves only for illustration purposes and the PCM principle is compatible with other radar waveforms such as OFDM or PMCW.
A phase center motion is nothing other than a space time code of a certain signal. Therefore, one signal can have different space time codes. It can be shown that these space time codes can be orthogonal even though the excitation signal of the antenna elements is the same. The space time code can be expressed by trajectories within the antenna array, therefore, orthogonality in trajectory is introduced as a new degree of freedom.
A random Phase Center Motion (PCM) technique is presented herein, based on Frequency Modulated Continuous Wave (FMCW) radar, in order to suppress the angle-Doppler coupling in Time Division Multiplex (TDM) Multiple-Input-Multiple-Output (MIMO) radar when employing sparse array structures. Embodiments exploit an apparently moving transmit platform or PCM due to spatio-temporal transmit array modulation. In particular, the techniques involve a framework utilizing a random PCM trajectory. The statistical characterization of the random PCM trajectory is devised, such that the PCM and the target motion coupling is minimal, while the angular resolution is increased by enabling the virtual MIMO concept. In more detail, embodiments of the present invention involve sidelobe suppression approaches within the angle-Doppler Ambiguity Function (AF) by introducing a phase center probability density function within the array. This allows for enhanced discrimination of multiple targets. Simulation results demonstrate the suppression angle-Doppler coupling by more than 30 dB, even though spatiotemporal transmit array modulation is done across chirps which leads usually to strong angle-Doppler coupling Further, the temporal characteristics of the PCM, governed by the filtering operation, provide additional degrees of freedom for the adaptive design of AF. In particular, the correlation of PCM can be used to obtain desired AF in regions of interest towards enhancing the detection of weak targets in addition to the improvement in the angle-Doppler coupling.
In contrast to the deterministic PCM in the above-references Hammes et al. paper, the approach used here develops a framework for PCM trajectories where the phase center position varies randomly in time. Embodiments of the present invention utilize random PCM trajectories whose statistical characterization is based on uncorrelated transitions. Such a PCM implies high trajectory fluctuations, which are different from smooth target trajectories, due to the inertia of real targets. Therefore, PCM and the target trajectory can be decoupled due to their independent trajectories. In addition to the uncorrelated transitions, the PCM is described by the Probability Density Function (PDF). An interesting aspect is that the PDF impacts the angle-Doppler determination. Embodiments of the present invention involve the exploitation of the PDF to enhance target discrimination. Since the PCM trajectory parameters are known, a trajectory matched filter bank can be employed in order to extract Doppler and angular information. Embodiments of the present invention involve the development of a matched filter operating on the FMCW samples, chirps and the number of antennas to provide multiple target information. Throughout, the operator ∥⋅∥ is used for the l2-norm. [⋅]η,γ defines a matrix entry with row index η and column index γ. The notation [⋅]η indicates a column vector element with the index η. The E{⋅} is the expectation operator. The symbol defines the set of complex numbers.
The back-scattered signal, which is a superposition of single target back-scatters, is captured by the dense receive array. The receive array contains M collocated antenna elements with an inter-element spacing of dR. Due to the FMCW scheme, the captured signal at each receiver is down-mixed by an instantaneous local oscillator signal and subsequently converted to the digital domain. The accumulated data is rearranged in a data-cube, where the first dimension contains the intra-chirp samples, the second dimension denotes the inter-chirp samples and the third dimension refers to the data from each receive antenna element. A matched filter is applied to each dimension in order to compress the continuous wave such that the range, angle and Doppler information can be extracted. The matched filter output squaring provides the range-angle-Doppler AF.
The transmitted signal u∈l
Since the antenna elements are assumed to be point-like isotropic radiators mounted in x-direction, the propagation vector for x-direction is denoted as kϕ=k0 sin(ϕ), where k0 is the free space wave number and j the complex number. The FMCW parameters are the center angular frequency ω0, the angular bandwidth B and the chirp duration Tc.
The received signal is sampled by the intra-chirps sampling time denoted by Ts, while is describes the intra-chirp sample index. If the signal is reflected by multiple point-like moving targets, the captured down-mixed and digital converted received signals are written in matrix notation Y∈I
The complex constant
which is a result of the FMCW down-mixing procedure and propagation effects, contains the κ-th target radar cross section together with the signal attenuation σκ. The propagation delay
includes the target range rk and speed of light c0. The κ-th target moves continuously during the coherent processing interval, therefore the Doppler shift ωDk appears in the entire sequence considered by the term ωD
After the formation of data-cube, a three dimensional matched filter is applied with a subsequent squaring. Since the matched filter correlates the received signal with its conjugate complex signal, the matched filter operation in is and m direction has the form of a DFT. The matched filter for the inter-chirp dimension ic has to extract Doppler and angular information simultaneously. Further, during the extraction, the angular information in ic direction has to be synchronized with the angular information in m direction. The synchronization problem is solved by zero padding in m dimension such that the spatial DFT wave number resolution is proportional to the inverse virtual array size. While p denotes the index for the Doppler dimension, the index q denotes the angular dimension. The angular resolution depends on the virtual array size
(D. Bliss, K. torsythe, G. Fawcett, “MIMO Radar: Resolution, Performance, and Waveforms,” in Proceedings of ASAP, 2006). The Doppler resolution is proportional to the inverse coherent processing interval
(P. Setlur and M. Rangaswamy, “Waveform Design for Radar STAP in Signal Dependent Interference,” IEEE Trans. Signal Process., vol. 64, no. 1, January 2016) and the range resolution is defined as
By reformulating the range resolution expression, the actual limiting factor for resolution is the angular bandwidth B. Furthermore, (3) illustrates the range migration due to range-Doppler coupling in the FMCW radar. The squared output of the matched filter [{tilde over (Y)}]p,q (l) for the p-th Doppler bin, q-th angular bin and l-th range bin is,
Further, it can be shown, if two targets κ1 and κ2 are in different resolution bins, the cross terms, which are outputs of the squaring, can be neglected. Therefore the squared matched filter output can be formulated as a superposition of targets,
Conveniently, the range and angular filter response are defined as
Due to the squaring operation the phase term from FMCW processing vanishes and just the κ-th target attenuation factor σκ is left. Moreover, for the sake of convenience, the angular coordinates are transferred to k′ϕ
Unlike a deterministic function for PCM as considered in [7], the PCM χ(ic) is considered as a random process. In particular, let ρχ(i
Since the PCM is a white random process, (4) considers an estimate of the expected matched filter output or angle-Doppler AF. Based on this, for further analysis, the average value of (4) is considered,
The consideration of the latter term in (5) leads to an expression of a rectangular windowed periodogram,
The autocorrelation function r(i) depends on the relative time shift i=ic1−ic2. Since the PDF ρχ(i
The function Γ(k′ϕ
The result matches to array factor investigations (see (i) S. Yang, Y.-B. Gan, P. Khiang Tan, “Linear Antenna Arrays With Bidirectional Phase Center Motion,” IEEE Trans. Antennas Propag., vol. 53, no. 5, April 2005, (ii) G. Li, S. Yang, Z. Nie, “Direction of Arrival Estimation in Time Modulated Linear Array With Unidirectional Phase Center Motion,” IEEE Trans. Antennas Propag., vol. 58, no. 4, 2010, (iii) S. Yang, Y.-B. Gan, A. Qing, “Sideband Suppression in Time-Modulated Linear Arrays by the Differential Evolution Algorithm,” IEEE Antennas Wireless Propag. Lett., vol. 1, 2002, (iv) L. Poli, P. Rocca, L. Manica, A. Massa, “Pattern synthesis in timemodulated linear array through pulse shifting,” IET Microwave, Antennas and Propagation, February 2009 and (v) J. Guo, S. Yang, S.-W. Qu, Jun Hu, Zaiping Nie, “A Study on Linear Frequency Modulation Signal Transmission by 4-D Antenna Arrays,” IEEE Trans. Antennas Propag., vol. 63, no. 12, December 2015), where the array factor is the Fourier Transform over the antenna weightings. Therefore, the PDF becomes a design parameter of the ambiguity function shape in angular direction and can be exploited for sidelobe suppression.
The periodogram ƒΨ(q, p) can be further evaluated,
The function W (ω′D
has its maximum at the target position with an amplitude value of one, the latter term
has a lower amplitude. Further, the latter term is a parasitic effect of the chosen random PCM approach. If the latter term vanishes, the angle-Doppler coupling is no longer present and therefore for a large number of chirps, the angle-Doppler coupling is minimal as it is demonstrated through simulations in Section V “SIMULATION RESULTS”.
In this case, we do not consider uncorrelated PCM transitions. While the general expression for correlation in equation (6) holds, the simplification in (7) does not. Using Fourier Transforms, equation (6) can be re-written as,
where W (ω′D
is the Fourier Transform of the correlation sequence evaluated at ω′D
Using (10) and (6) in (5), and, for the sake of argument, focusing on the k=1 target, it can be seen that the ∥ƒr
It is possible to shape the side-lobes in the AF (output of the receiver matched filter) using PCM by controlling its autocorrelation function. The correlation function of the PCM is dependent on the PDF (ρχ(i
The process can be made adaptive. Once a strong target had been detected, the PCM can be adapted to suppress it by minimizing the corresponding ƒχ(q, p) in equation (10) to detect a weak target in the vicinity of the suppressed target. The process can be continued by suppressing detected targets in the scene and enhancing the illumination of the weaker targets.
Several possibilities towards design of rχ(i) can be found. One embodiment is to consider uncorrelated PCM with Gaussian PDF and filter it using a linear filter h( ). For such a scheme, equation (7) reduces to,
Where χ=[χ(ic1), χ(ic2)]T, μ=E[χ] and Rh(τ) is the correlation matrix of χ and takes the form,
where σχ2 is the variance of χ. After some manipulations, it can be shown that,
Thus equation (12) indicates that the PCM shaping filter h(τ) plays a role in determining the AF for the case of Gaussian PCM.
If there is no knowledge about the target scenario, it has to be assumed a worst case with no prior knowledge, where targets could be located anywhere and have the same RCS. It can be shown that for such a scenario, the white PCM provides the best SINR. Thus, h (τ) is chosen as an impulse.
When knowledge about the scene is gathered by applying a matched filter threshold, an estimate of some target positions and their reflected power typically corresponding to strong targets, are determined. The responses corresponding to ones with weak backscatter may be missed by the threshold algorithm.
This estimate can be used for signal design and the filter coefficients h(τ) can be adjusted to optimize the SINR in regions where it is poor.
An analytical approach to the identification of these regions involves computing the clutter covariance matrix RC wherein all the detected targets are considered as clutter. The choice of h(τ) is to ensure that sdHRCsd is minimized where sd is the assumed direction of the desired signal and the superscript H denotes complex conjugation and transposition operations. In fact, sd=aT,K⊗aR,K, where aT,K is a Ic×1 column vector with the ith element being
and aR,K is a M×1 vector with the m th element being ejk
The aforementioned process allows for a better estimation of weaker target contributions to RC. The process is repeated with the updated until further updates do not add significantly to existing RC.
Single Target Simulation Results: The simulation is carried out with N=4 transmit antennas and M=4 receive antennas, mounted in a collocated manner as depicted in
Another degree of freedom by the proposed method is the choice of number of chirps, as it increases the sidelobe floor of the AF. The AF in
Multiple Target Simulations: The simulation is carried out in co-located 4 transmit and 4 receive MIMO configuration, where the four receive antenna elements are mounted along the x-direction with an inter-element spacing of
and the four transmit antenna elements are mounted along the same axis, but with an inter-element spacing of dT=4 dR to achieve the maximum virtual array length. The center frequency is set to 77 GHz leading to a free space wavelength of λ=3.9 mm. The intrapulse modulation scheme is a Frequency Modulated Continuous Wave (FMCW) with a total operating bandwidth of B=250 MHz and CW pulse length of 10 μs. The total number of CW pulses, in a coherent processing interval, is set to 512. The Signal to Noise Ratio (SNR) is defined as 0 dB. All simulation results are based on a two target configuration at an iso-range of r=r1=r2=10m, the radial velocities
and the angular positions are ϕ1=00, ϕ2=50. Further, target one is assumed to have the weak backscatter with a RCS of 1 m2, while the target two has much larger RCS of 50 m2.
In these simulations, h(τ)=cos(ω0τ) and the frequency ω0 is used as a design parameter. It should be noted that the choice of h(τ) is one of the several possibilities.
Finally, the following table compares the proposed White PCM and Colored PCM (with uncorrelated and correlated transitions respectively) with traditional Frequency Division Multiplexing (FDM, S. Appel, D. Berges, D. Mueller, A. Ziroff, M. Vossiek, “MIMO FMCW Reader Concept for Locating Backscatter Transponders,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 9, September 2016). and the Time Division Multiplexed (TDM) MIMO (D. Zoeke, A. Ziroff, “Phase Migration Effects in Moving Target Localization Using Switched MIMO Arrays,” in Proceedings of the 12th European Radar Conference, September 2015). The colored random PCM is able to adaptively enhance certain regions of the sidelobe floor, such that the performance in terms of sidelobe floor increases and becomes similar to the side lobe floor of FDM for the optimized region but maintaining all properties of enhanced resolution and unambiguous Doppler range.
This disclosure provides a novel technique for enhanced low cost target detection of weak targets masked by strong reflections with the objective of suppressing the angle-Doppler coupling. It considers PCM based on random spatio-temporal modulations of the transmit array followed by a matched filter processing at receiver. The ease of implementation, by just using a switched transmit array and a conventional beamforming technique at the receiver, makes the proposed approach attractive. In addition to the ease of implementation, the method offers degrees of freedom, which act as design parameters to serve the objective. These include the PDF of the PCM which determines how often the transmission takes place from a given antenna as well as the nature of transitions from one antenna to the other (being correlated or otherwise). Simulation results have proven the capability of the proposed method by illustrating the desired shaping of the AF based on the choice of the PDF of PCM. This provides for an additional degree of freedom in designing radar systems for target discrimination.
Number | Date | Country | Kind |
---|---|---|---|
LU 100 128 | Mar 2017 | LU | national |
LU 100 480 | Oct 2017 | LU | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/054995 | 3/1/2018 | WO | 00 |