The present invention relates to a new accessible and accurate computational modeling approach to compute electromagnetic scattering and radiation from large predominantly metallic electrically large targets including but not limited to airplanes, missiles, and ships.
The solution of computational electromagnetics (CEM) problems for electrically large scatterer and radiation targets is of much interest to commercial as well as defense applications. Efficient and accurate CEM simulation enables, for example, a research engineer to visualize and optimize a radar cross-section of an airplane, a ship, or a missile on a computer, providing in many cases more information than can ever be measured in a laboratory or in situ.
Commonly used techniques for the analysis of electrically large metallic and dielectric scatterer and radiation targets are:
Therefore, an iterative method is commonly applied, which computes a matrix-vector product multiple times, depending on the number of iterations. This iterative method is often accelerated by a Fast Multipole Method, or FMM, which enables a fast computation of the matrix-vector product in O (N log N) operations where N is the number of unknowns. The iterative solution yields the unknown current expansion coefficients cm, m=1, . . . , N. The original current and charge distributions on the surface of the target are then determined by introducing these coefficients back into the basis function expansion. Scattered or radiated field of the target including its radar cross-sections is then found by computing the radiation of the already known surface currents and charges at required points in space.
Some approaches do use FMM to solve integral equations (see, e.g., Song & Chew. Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering. Microw. Opt. Technol. Lett. 1995 September; 10(1):14-19) but they use custom FMM codes tailored to specific problems. Those custom FMM codes have unknown complexity, accuracy, and limitations. Those custom approaches would also require a high degree of complexity to implement. In contrast, the present invention will implement the general-purpose widely-known and proven FMM algorithm, hereinafter, FMM3D, to solve MFIE, EFIE, and CFIE for scattering and radiation problems in a straightforward, efficient, simple, and reproducible way.
Methods and systems for obtaining scattering and radiation properties of electrically large metal targets are presented, while improving speed and accuracy of computational electromagnetic modeling environments.
In contrast to prior art, these methods do not employ a custom version of the fast multipole method (FMM) tailored to a specific CEM application. Instead, they are based on the accurate integration of a general-purpose already existing fast multipole method (FMM) algorithm [1], which is equally well applicable to electromagnetic, mechanical, and fluid dynamics problems.
In a preferred embodiment, these methods are based on the integration of the open-source parallelized FMM library, FMM3D originating from the inventors of the FMM and made accessible for commercial use since 2017. This FMM3D library summarizes a more than 20 years long ongoing effort of a group of leading mathematicians. This FMM3D library possesses high performance and speed, which could hardly be surpassed by custom codes.
In a preferred embodiment, these methods are first based on the special formulation and discretization of the magnetic field integral equation (MFIE), which makes the integration with the general-purpose FMM3D possible.
In a preferred embodiment, MFIE is discretized with extended Rao-Wilton-Glisson (RWG) basis functions (Jakobus et al. Improved PO-MM Formulation for Scattering from Three-Dimensional Perfectly Conducting Bodies of Arbitrary Shape. IEEE Trans. Antennas and Propagation, vol. AP-43, no. 2, pp. 162-169, February 1995) shown in
In a further embodiment, to enable the direct and efficient integration of the general-purpose fast multipole method FMM3D for MFIE, three computational steps are made after applying the collocation method:
As a result of these three steps, the standard general-purpose FMM3D library (Gimbutas et al. fmm3D Documentation. Release 0.1.0. 2019.) is directly applied to compute the left-hand side of MFIE as a potential of the double layer (the “dipole” layer) three times in parallel.
In a preferred embodiment, these methods are next based on the special formulation and discretization of the electric field integral equation (EFIE) in the mixed-potential formulation, which makes the integration with the general-purpose FMM3D possible.
In a preferred embodiment, EFIE is discretized with the standard Rao-Wilton-Glisson (RWG) basis functions (Rao et al. Electromagnetic Scattering by Surfaces of Arbitrary Shape. IEEE Trans. on Antennas and Propagation. 1982 May; 30(3):409-418). EFIE describes scattering of any metal targets, but it possesses a slow convergence speed since it is a Fredholm equation of the first kind. In a preferred embodiment, the Galerkin method is used to solve EFIE.
To enable the direct and efficient integration of the general-purpose fast multipole method for EFIE, two computational steps are made after applying the Galerkin method:
As a result of these two steps, the standard general-purpose FMM3D library (Gimbutas et al. fmm3D Documentation. Release 0.1.0. 2019.) is applied to directly compute the electric scalar potential and the magnetic vector potential, and the left-hand side of EFIE as a potential of the single layer (the “charge” layer) four times in parallel.
In a preferred embodiment, EFIE and MFIE are further combined together with a proper weight to form combined field integral equation (CFIE) augmented with the known incident electromagnetic wave. CFIE possesses better convergence and allows to solve resonant problems. CFIE is solved iteratively with the general-purpose FMM3D library applied at every step of the iterative solution as described herein. The intrinsic FMM3D accuracy for surface (not volume) integration can be chosen moderate: 1e-3 to 1e-4 without affecting solution accuracy significantly.
Methods and systems are presented for assessing scattering and radiation performance of large metal scattering targets such as an airplane, a ship, a missile, or a large antenna array (Makarov S N, Iyer V, Kulkarni S. Method and system for assessing performance of arbitrarily large arrays. U.S. Pat. No. 10,275,547. Apr. 30, 2019) on a computer, providing more information than can ever be measured in a laboratory or in situ. This is done while improving speed and accuracy of computational electromagnetics modeling environments. Solutions for modeled targets are obtained through use of Method of Moment (MoM) analyses, coupled with the general-purpose fast multipole method. For the purpose of clarity, several embodiments described below are presented in the context of an arbitrary metal target, using triangular surface discretization. But those of skill in the art will recognize that the systems and methods described herein below are applicable to alternative discretization approaches (e.g., rectangular, hexagonal lattice, etc.). In addition, those of skilled in the art will recognize that the principles can also be applied to determining performance characteristics for targets that include dielectric materials.
In some embodiments, the systems and methods are embodied in software stored and executable on one or more computing devices. A user can access the systems and methods using a user device, e.g., a computing device, remotely or locally. For example, the user device can interact with the systems and methods through a network, e.g., the Internet, and can display a user interface, e.g., a webpage, to the user. The user device can also host the systems and methods locally, e.g., by downloading and installing the software on the user device. The models can be constructed using the same systems and methods or different systems and methods that are hosted by the same computing device(s).
Example of Systems
In the example shown in
The server device 150 hosts a technical computing environment (TCE) 130 in which the historical data is processed and the target models are processed and/or generated. In some implementations, the client device 110 may employ a TCE 130(160) to provide a display, e.g., a webpage. In some implementations, a user interacts with the server device 150 via the displayed webpage. The displayed TCE 130 operating on the client device 110 can be the same as or be part of the TCE 130 hosted by the server device 150. In some implementations, the TCE 160 is hosted on the client device 110. In such implementations, the client device 110 may not need to access the server device 150 to generate and/or process the desired model. Instead, target models can be generated locally at the client device 110 in the TCE 130. The TCE 130 can provide an interface that allows a user to interact with the client device 110 and the server device 150.
The server device 150, the client device 110, and the network 140 can be connected through wired connections, wireless connections, or a combination of wired and wireless connections. Although one client device 110 and one server device 150 are shown, multiple client devices 110 can access one or more server devices 150 through the same network 140 or a different network. In some implementations, one or more server devices 150 host one or more TCEs 130, e.g., using virtual machines. Multiple server devices 150 can be used to execute program code, e.g., serially or in parallel, and may provide respective results of executing the program code to the client device 110.
The client device 110 can include one or more devices capable of receiving, generating, storing, processing, and/or providing program code and/or information associated with program code for a model. For example, the client device 110 includes a computing device, such as a desktop computer, a laptop computer, a tablet computer, a mobile phone (e.g., a smart phone, a radiotelephone, etc.), or a similar device. In some implementations, the client device 110 receives information from and/or transmits information to the server device 150.
The server device 150 may include one or more devices capable of receiving, generating, storing, processing, evaluating, and/or providing program code and/or information associated with program code for a model. Additionally, the server device 150 also includes one or more devices capable of comparing multiple models generated from the same set of historical data. For example, the server device 150 includes a computing device, such as a server, a desktop computer, a laptop computer, a tablet computer, or a similar device.
The network 140 can include one or more wired and/or wireless networks. For example, network 140 includes a cellular network, a public land mobile network (PLMN), a local area network (LAN), a wide area network (WAN), a metropolitan area network (MAN), a telephone network (e.g., the Public Switched Telephone Network (PSTN)), an ad hoc network, an intranet, the Internet, a fiber optic-based network, a private network, a cloud computing network, and/or a combination of these or other types of networks.
Referring also to
The numbers and arrangements of devices and networks shown in
With reference to
Initially, upon receipt of a request, step 302 to estimate the performance of a physical target, e.g., from a user or a user device, the system may prompt the user or user device to input information about the target model(s) to be imported or generated, step 304. These inputs can be the same as TCE inputs 262 of
In step 306, the target mesh model is either imported or created internally.
Results, such as described above, of the scattered/radiated field estimation process 308 may be output in Step 330. A determination (Step 332) may then be made to determine whether the determined performance characteristics of the physical target meet user's requirements. Typical performance requirements specified for a physical target include monostatic radar cross-section and bi-static radar cross-sections including the frontal lobe, the backlobes and sidelobes. If the requirements are satisfied, the process may then proceed to other target modeling tasks, or progress to prototype development (Step 334). If the performance measures output does not meet the specified requirements, the process may iterate, e.g., from step 332, permitting the user to enter additional and/or different input parameters or change the target mesh, or the system to automatically vary certain input parameters, until the output performance characteristics for the modeled physical antenna array satisfy the requirements.
Sections IV through IX will now describe in detail exemplary solutions for the scattering algorithm with the general purpose fast multipole method, FMM3D, of process 300 including steps 310, 314, 316, 318, 320, 322, 324, 326.
Let cn denote a collection of charge strengths, νn denote a collection of dipole strengths. Let k denote the wavenumber. The Helmholtz FMM3D computes the potential u(r) and its gradient ∇u(r) given by
at the source and target locations. When r=rn, the term corresponding to rn is dropped from the sum. When k is negative (i.e. when the exp(jωt) convention is used), a complex conjugate should be applied to Eq. (*) to properly use FMM3D.
The following notations are introduced: ƒn—RWG basis functions, ln—edge lengths; An—triangle areas. RWG vector expansion for surface current density and, simultaneously, scalar expansion for the surface charge density reads with reference to
Following ((Jakobus et al. Improved PO-MM Formulation for Scattering from Three-Dimensional Perfectly Conducting Bodies of Arbitrary Shape. IEEE Trans. Antennas and Propagation, vol. AP-43, no. 2, pp. 162-169, February 1995)), along with the standard definition, we will require two unit normal vectors nn± and two unit vectors tn± also shown in
ln±=tn±×nn± (2)
and establish that both such unit vectors directed along the edge are identical, i.e.
ln+=ln−=ln (3)
Only vector ln will eventually be needed. Along with the extended RWGs, extra numerical arrays—basis function signatures—will be generated allowing fast transitions to/from currents and charges determined by RWG bases from/to currents and charges on individual facets. Those are
In terms of phasors, the magnetic field integral equation for the surface current density J(r) induced by an incident field Hi (r) on the surface of a metal target has the form
Expanding the current into vector RWG basis functions Eq. (1) with unknown coefficients cn, one has
The following collocation method is used: choose
(asymptotically) as the collocation points. In other words, the two collocation points will approach the edge center Rm from both edge sides. Then, the scalar multiplication of both sides of Eq. (5) by tm± (the dot product) is performed. In this case, only one term on the left-hand side of Eq. (5) will be retained, which corresponds to the m-th basis function, since all other basis functions will be perpendicular to tm± at this edge. The result becomes
Eq. (6) in fact includes two formally separate equations for ±triangles of the m-th basis function. They will be shown to be identical later on. The self terms (with m=n) on the right-hand side of Eq. (6) are exactly equal to zero since the inner cross product is in the direction of the normal vector n(rm±). Using the vector identity A·(B×C)=C·(A×B) with A=tm±, B=n(rm±), and taking into account Eqs. (2) and (3), we obtain the following result for the primary field in Eq. (6),
lmPO=tm±·2n(rm±)×Hi(rm±)=2Hi(rm±)·(tm±×n(rm±))=2lm·Hi(Rm) (7)
The same vector identity is applied and the same method to transform the right-hand side of Eq. (6). Lastly, the factor
on the left-hand side of Eq. (6) is the normal component of the RWG basis function across the base edge; it is exactly equal to one ((Rao et al. Electromagnetic Scattering by Surfaces of Arbitrary Shape. IEEE Trans. on Antennas and Propagation. 1982 May; 30(3):409-418)). Eq. (6) is therefore rewritten in a simpler form:
Eq. (8) is now one single equation irrespective of the fact from which side (plus or minus triangle) the collocation point approaches the edge center Rm.
With all other quantities unchanged, the sum over the mesh edges in Eq. (8) can be transformed to the sum over the triangular facets themselves as follows
is the sum of the contributions of three basis functions sharing the same n-th triangle. Triangles, which belong to basis function ƒm in Eq. (9), will automatically give zero contribution.
The central-point approximation is used for all integrals in Eq. (9) yielding
where rn are triangle centroids and, after taking gradient of the Green's function, r′ is replaced by rn. Furthermore,
Eq. (11) is finally rewritten in the form (the gradient operation is the same as above)
Eqs. (13), (14) are proved by direct substitution.
Eqs. (13), (14) enable us to compute the sum on the left-hand side of Eq. (13) by using the FMM3D Eq. (*) directly, i.e. by computing (in the vectorized form) potentials of three dipole layers with strengths M1, M2, M3. FMM3D's target points are centers of mesh edges Rm while FMM3D's source points are triangle centroids rn.
In order to form the effective current in Eq. (12), one ay pre-compute:
Integrals (13) for the centers of mesh edges Rm may be approximated as a half sum of the integrals computed for the centers of adjacent triangles rm±. This operation can be straightforwardly implemented into FMM3D. Alternatively, integrals (13) for the centers of mesh edges Rm may be approximated as a half sum of the integrals computed for the corners of the edge. This operation can be straightforwardly implemented into FMM3D.
The near-field integrals in Eq. (9) may be computed analytically as described in (Wang et al. Comparison of semi-analytical formulations and Gaussian-quadrature rules for quasi-static double-surface potential integrals. IEEE Antennas and Propagation Magazine. 2003 December; 45(6):96-102) and then substituted into the final expression Eq. (13). This substitution is equivalent to the replacement of a single term in the sum in Eq. (13) by its averaged version.
Both sides of all equations starting with Eq. (4) and up to Eq. (13) have the units of amperes per meter.
The electric field integral equation on the surface of a metal target has the form:
Ets=−Eti (15)
where index t denotes the tangential component of the electric field on the surface, index s means scattered field, and index i—incident field. For the scattered field and in terms of electric scalar potential φ and magnetic vector potential A, one has
Es(r)=−jωA−∇φ (16)
Instead of the collocation method, the Galerkin method will be applied with testing functions in the form of RWG basis functions, that is
jω∫S(ƒ
Integration by parts with taking into account the properties of RWG functions, yields
jω∫S(ƒ
Using the central-point integration approximation (at triangle centers rm±) everywhere except for the self integrals as well as the definition of RWG basis functions, one has
With all other quantities unchanged and using the central-point approximation, we can compute the magnetic vector potential and the electric scalar potential in Eq. (19) as follows (three times the potential of a single layer)
and in the form (the potential of the single layer)
Here, the surface current density In at the center of facet n is given by Eq. (12). The surface charge density σn on facet n is given by (this is an exact relation, without any approximation)
Eqs. (21), (22) enable us to use the general-purpose fast multipole method FMM3D Eq. (*) directly, by computing (in the vectorized form i.e. in parallel) potentials of four single layers with effective charges Inx, Iny, Inz, σn. FMM's target and source points now coincide: they are triangle centroids rn.
In order to form the facet current in Eq. (12) and facet charge in Eq. (23), one may pre-compute:
The near-field integrals in Eqs. (18) may be computed analytically as described in (Wang et al. Comparison of semi-analytical formulations and Gaussian-quadrature rules for quasi-static double-surface potential integrals. IEEE Antennas and Propagation Magazine. 2003 December; 45(6):96-102) and then substituted into the final expressions Eq. (21) and Eq. (22). This substitution is equivalent to the replacement of a single term in the sum in Eq. (21) or (22) by its averaged version.
Both sides of all equations starting with Eq. (15) and up to Eq. (20) have the units of volts per meter.
The left-hand side of Eq. (13) is denoted by LHSHm and the left-hand side of Eq. (19) by LHSEm. The combined field integral equation (CFIE) has the form
αLHSEm+(1−α)ηLHSHm=αVm(1−α)ηlmPO (24)
where α is a dimensionless constant and η=376.73Ω is the impedance of free space. The value for α is ½. Both sides of Eq. (24) have the units of volts per meter.
The fast multipole is applied to compute the left-hand side of Eq. (24) multiple times as described above. This results in (i) computing the potential of the single layer four times in Eqs. (21) and (22) and, (iii) computing the potential of the double layer three times in Eq. (13). These computations use the same FMM3D space partitioning and can be performed in a batch mode.
The iterative solution can be accomplished using Generalized Minimum Residual Method or GMRES. A diagonal preconditioner can be applied to Eq. (24).
As used herein in relation to computing, the term component is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software.
Program code, referred to herein as code or program code, is to be broadly interpreted to include text-based code that may not require further processing to execute (e.g., C or C++ code, Hardware Description Language (HDL) code, very-high-speed integrated circuits (VHSIC) HDL (VHDL) code, Verilog code, Java code, another type of hardware and/or software based code that may be compiled and/or synthesized, etc.), binary code that may be executed (e.g., executable files that may be directly executed by an operating system, bitstream files that may be used to configure an FPGA, Java byte code, object files combined together with linker directives, source code, makefiles, etc.), text files that may be executed in conjunction with other executables (e.g., Python text files, Octave files, MATLAB files, a collection of dynamic-link library (DLL) files with text-based combining, configuration information that connects pre-compiled modules, an extensible markup language (XML) file describing module linkage, etc.), graphical design models that may be executed in conjunction with other executables (e.g., LabView models, SystemVue models, Simulink models, Ptolemy models), source code (e.g., readable by a human), machine code (e.g., readable by a machine), or the like. In some implementations, program code may include different combinations of the above-identified classes of code (e.g., text-based code, graphical models, binary code, text files, source code, machine code, etc.). Additionally, or alternatively, program code may include code generated using a dynamically-typed programming language (e.g., the M language, a MATLAB® language, a MATLAB-compatible language, a MATLAB-like language, etc.) that may be used to express problems and/or solutions using mathematical notations. Additionally, or alternatively, program code may be of any type, such as a function, a script, an object, etc.
It will be apparent that systems and/or methods, described herein, may be implemented in different forms of hardware, firmware, or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the implementations. Thus, the operation and behavior of the systems and/or methods were described herein being understood that software and hardware can be designed to implement the systems and/or methods based on the description herein.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of possible implementations. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of possible implementations includes each dependent claim in combination with every other claim in the claim set.
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items, and may be used interchangeably with “one or more.” Furthermore as used herein, the term “set” is intended to include one or more items, and may be used interchangeably with “one or more.” Where only one item is intended, the term “one” or similar language is used. Also, as used herein, the terms “has,” “have,” “having,” or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
Headings used herein are intended as aids for readability and should not be used to interpret or construe aspects of the technology or claims.
Number | Name | Date | Kind |
---|---|---|---|
7844407 | Shaeffer | Nov 2010 | B1 |
10460007 | Zheng | Oct 2019 | B1 |
20080027689 | Jandhyala | Jan 2008 | A1 |
20090046753 | Petrescu-Prahova | Feb 2009 | A1 |
20170102623 | Pisarenco | Apr 2017 | A1 |
20170299643 | Okhmatovski | Oct 2017 | A1 |
Entry |
---|
D. Li, Z. Song, J. Hu, W. Hong, “Improving Combined Version of Current and Charge Integral Equation With Pyramid Shaped Functions”, pp. 1630-1633, IEEE 2015 (Year: 2015). |
W. D. Li, Z. Song, J. Hu, W. Hong, “Improving Combined Version of current and charge Integral Eequation with Pyramid Shaped Function”, pp. 1630-1633, IEEE 2015 (Year: 2015). |
J. M. Song, W. C. Chew, “fast Multipole Method Solution of Three Dimensional Integral Equation” pp. 1528-1531, 1995 IEEE (Year: 1995). |
Kolundzija, “Electromagnetic Modeling of Composite Metallic and Dielectric Structures” pp. 1021-1032, IEEE 1999 (Year: 1999). |
Makarov SN, Hamalainen M, Okada Y, Noetscher GM, Ahveninen J, Nummenmaa A. Boundary Element Fast Multipole Method for Enhanced Modeling of Neurophysiological Recordings. IEEE Trans. Biomed. Eng. Jun. 1, 2020. doi: 10.1109/TBME.2020.2999271, PubMed PMID: 32746015. |
Makarov SN, Wartman WA, Daneshzand M, Fujimoto K, Raij T, Nummenmaa A. A software toolkit for TMS electric-field modeling with boundary element fast multipole method: An efficient MATLAB implementation. J Neural Eng. Aug. 4, 2020;17(4):046023. doi: 10.1088/1741-2552/ab85b3, PubMed PMID: 32235065. |
Htet AT, Saturnino GB, Burnham EH, Noetscher G, Nummenmaa A, Makarov SN. Comparative performance of the finite element method and the boundary element fast multipole method for problems mimicking transcranial magnetic stimulation (TMS). J Neural Eng. Apr. 2019;16(2):024001. doi: 10.1088/1741-2552/aafbb9, PubMed PMID: 30605893, PubMed Central PMCID: PMC6546501. |
Makarov SN, Noetscher GM, Raij T, Nummenmaa A. A Quasi-Static Boundary Element Approach with Fast Multipole Acceleration for High-Resolution Bioelectromagnetic Models. IEEE Trans Biomed Eng. Mar. 7, 2018. doi: 10.1109/ TBME.2018.2813261, PubMed PMID: 29993385; PubMed Central PMCID: PMC7388683. |
Makarov SN, Noetscher GM, Nummenmaa A, eds. Brain and Human Body Modeling. vol. 2. Springer Nature, Aug. 2020. Open access. ISBN 978-3-030-45622-1. |
Makarov SN, Noetscher GM, Horner M., eds. Brain and Human Body Modeling. vol. 1. Springer Nature, 2019. Open access. ISBN 978-3-030-21293-3, PubMed PMID: 31725207. |
Makarov SN, Noetscher GM, Nazarian A. Low-Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB, Wiley, New York 2015. 648 p. ISBN-10: 1119052564. |
Makarov SN, Noetscher GM, Yanamadala J, Piazza MW, Louie S, Prokop A, Nazarian A, and Nummenmaa A. Virtual Human Models for Electromagnetic Studies and Their Applications. IEEE Rev Biomed Eng. 2017;10:95-121. doi: 10.1109/RBME.2017.2722420, PubMed PMID: 28682265. |
Number | Date | Country | |
---|---|---|---|
20210373126 A1 | Dec 2021 | US |