The present disclosure relates generally to engines, and, more particularly, to operating an engine.
For engines having a multistage fueling system, the engine may be operated by using one fuel stage and turning off the other fuel stage(s). However, stagnant fuel may be present in the fuel stage(s) not being used. This stagnant fuel may be exposed to high temperatures, which may lead to fuel coking in the unused fuel stage(s).
As such, there is a need for improvement.
In one aspect, there is provided a method for operating an engine. The method comprises operating the engine at low power by supplying fuel to a combustor through a first set of fuel nozzles of at least one first manifold and without supplying fuel to the combustor through a second set of fuel nozzles of at least one second manifold, determining an amount of fuel to at least in part fill the at least one second manifold to impede fuel coking of the second set of fuel nozzles, and supplying the amount of fuel periodically to the at least one second manifold.
In one aspect, there is provided a system for operating an engine. The system comprises at least one processing unit and a non-transitory computer-readable memory having stored thereon program instructions. The program instructions are executable by the at least one processing unit for operating the engine at low power by supplying fuel to a combustor through a first set of fuel nozzles of at least one first manifold and without supplying fuel to the combustor through a second set of fuel nozzles of at least one second manifold, determining an amount of fuel to at least in part fill the at least one second manifold to impede fuel coking of the second set of fuel nozzles, and supplying the amount of fuel periodically to the at least one second manifold.
In once aspect, there is provided a computer readable medium having stored thereon program code executable by a processor for operating an engine. The program code comprises instructions for operating the engine at low power by supplying fuel to a combustor through a first set of fuel nozzles of at least one first manifold and without supplying fuel to the combustor through a second set of fuel nozzles of at least one second manifold, determining an amount of fuel to at least in part fill the at least one second manifold to impede fuel coking of the second set of fuel nozzles, and supplying the amount of fuel periodically to the at least one second manifold.
Reference is now made to the accompanying figures in which:
It will be noted that throughout the appended drawings, like features are identified by like reference numerals.
When the second set of fuel nozzles 202 is not in use, residual fuel may remain in the second manifold 212 and in and/or at the tips of the nozzles 202. Furthermore, the nozzles 202, and possibly at least part of the second manifold 212, can heat up to high temperatures when they are not in use. If the fuel is allowed to heat up beyond a coking temperature, coke can begin to buildup in the fuel, at the tip and/or on the walls of the nozzles 202 and/or in the manifold 212. The coking temperature refers to the temperature at which fuel begins to coke. By way of a specific and non-limiting example, the coking temperature of fuel used in aircraft engines may be approximately 400° F. The coking temperature varies depending on the fuel used. If the nozzles 202 are allowed to exceed the coking temperature, the coke particulates can build up and clog the nozzles 202, reducing the nozzles' effectiveness, or completely blocking fuel from passing through the nozzles 202. When coke particulates are formed within the nozzles 202, the nozzles 202 would typically be cleaned out or replaced. The cleaning and replacement process can be tedious and costly. To impede fuel coking, an amount of fuel is periodically provided to the second manifold 212 to cause the second set of fuel nozzles 202 to supply fuel to the combustor 14, as is further described herein.
The controller 240 determines an amount of fuel to at least in part fill the second manifold 202 to impede fuel coking when the second set of fuel nozzles 202 are not in use. The controller 240 controls the fuel pump 242 to cause the amount of fuel to be periodically supplied to the second manifold 212 to impede fuel coking. Periodically supplying the amount of fuel to the second manifold 212 causes a flow of fresh fuel to the second set of fuel nozzles 202 and the second manifold 212 to clear any residual fuel gathered in the second manifold 212 and/or at the nozzles 202.
In some embodiments, the fuel flow divider 248 is a hydraulic flow divider valve. When the fuel pump 242 generates pressure less than an amount to maintain flow in the second manifold 212, the hydraulic flow divider valve cuts off the fuel to the second manifold 212. That is, the hydraulic flow divider valve has a cracking pressure below which the hydraulic flow divider valve cuts off fuel to the second manifold 212. The cracking pressure is a minimum pressure for the hydraulic flow divider valve to operably provide fuel flow to the second manifold 212. The amount of fuel periodically supplied to the second manifold 212 may be provided at a pressure above the cracking pressure of the hydraulic flow divider valve in order to provide the amount of fuel to the second manifold 212.
In some embodiments, the fuel flow divider 248 is a solenoid actuated flow divider valve. The controller 240 may be communicatively connected to the solenoid actuated flow divider valve to actuate a solenoid of the solenoid actuated flow divider valve to cause fuel to be provided to the second manifold 212. The controller 240 may synchronize the control of the fuel pump 242 (to provide the additional amount of fuel) and the actuation of the solenoid actuated flow divider valve.
With reference to
The controller 240 may determine the amount of fuel 250, the first value 251, the second value 252, the duration 254, the interval 256 and/or the rate 258. In some embodiments, one or more of the amount of fuel 250, the first value 251, the second value 252, the duration 254, the interval 256 and the rate 258 may be predetermined values that are obtained by the controller 240. In some embodiments, one or more of the amount of fuel 250, the first value 251, the second value 252, the duration 254, the interval 256 and the rate 258 may be calculated by the controller 240.
In some embodiments, the engine 10 comprises more than two manifolds, where each manifold is associated with a set of fuel nozzles. For example, the engine 10 may comprise three manifolds, four manifolds, five manifolds, and so forth. The engine 10 may be operated with one or more primary manifolds being used to supply fuel to the combustor 14 and with one or more secondary manifolds not being used to supply fuel to the combustor 14. The amount of fuel may be determined to replenish the secondary manifold(s) and supplied periodically to the secondary manifold(s) to impede fuel coking.
With reference to
In some embodiments, the method 300 comprises, at step 306, determining a time interval 256 for supplying the amount of fuel 250 periodically to the at least one second manifold. Determining the time interval 256 may comprises determining an amount of time for residual fuel at the second set of fuel nozzles 202 of the at least one second manifold 212 to reach the coking temperature and setting the time interval 256 at less than this amount of time.
In some embodiments, the method 300 comprises, at step 308, determining a duration 254 for supplying the amount of fuel 250 to the at least one second manifold 212 to refill the at least one second manifold 212.
In some embodiments, the method 300 comprises, at step 310, determining a rate 258 for supplying the amount of fuel 250 to the at least one second manifold 212 to prevent the engine 10 from surging.
In some embodiments, step 312 comprises increasing fuel pressure of the fuel supplied to the hydraulic flow divider valve above the cracking pressure. The hydraulic flow divider valve is operatively connected to the at least one first manifold 211 and the at least one second manifold 212, and the hydraulic flow divider valve diverting the amount of fuel to the at least one second manifold 212.
In some embodiments, step 312 comprises actuating the solenoid of solenoid actuated flow divider valve. The solenoid actuated flow divider valve operatively connected to the at least one first manifold 211 and the at least one second manifold 212, the solenoid when actuated causing the solenoid actuated flow divider valve to divert the amount of fuel to the at least one second manifold 212.
In some embodiments, one or more of the amount of fuel 250, the first value 251, the second value 252, the duration 254, the interval 256 and the rate 258 may be determined to prevent one or more components of the engine 10 from overheating. For instance, when the engine 10 runs at low power for an extended period of time, one or more components of the engine 10 from overheating. For example, the amount of time for one or more components of the engine 10 to overheat when the engine runs at low power may be determined and the interval 256 may be set at less than this amount of time.
In some embodiments, an indicator may be outputted to an aircraft computer for display on a display device, to indicate that the engine 10 is operated in a mode where the amount of fuel is periodically being provided to the second manifold 212 to prevent fuel coking.
With reference to
The memory 414 may comprise any suitable known or other machine-readable storage medium. The memory 414 may comprise non-transitory computer readable storage medium, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. The memory 414 may include a suitable combination of any type of computer memory that is located either internally or externally to device, for example random-access memory (RAM), read-only memory (ROM), compact disc read-only memory (CDROM), electro-optical memory, magneto-optical memory, erasable programmable read-only memory (EPROM), and electrically-erasable programmable read-only memory (EEPROM), Ferroelectric RAM (FRAM) or the like. Memory 414 may comprise any storage means (e.g., devices) suitable for retrievably storing machine-readable instructions 416 executable by processing unit 412. Note that the computing device 400 can be implemented as part of a full-authority digital engine controls (FADEC) or other similar device, including electronic engine control (EEC), engine control unit (ECU), electronic propeller control, propeller control unit, and the like.
The methods and systems for operating an engine described herein may be implemented in a high level procedural or object oriented programming or scripting language, or a combination thereof, to communicate with or assist in the operation of a computer system, for example the computing device 400. Alternatively, the methods and systems for operating an engine may be implemented in assembly or machine language. The language may be a compiled or interpreted language. Program code for implementing the methods and systems for operating an engine may be stored on a storage media or a device, for example a ROM, a magnetic disk, an optical disc, a flash drive, or any other suitable storage media or device. The program code may be readable by a general or special-purpose programmable computer for configuring and operating the computer when the storage media or device is read by the computer to perform the procedures described herein. Embodiments of the methods and systems for operating an engine may also be considered to be implemented by way of a non-transitory computer-readable storage medium having a computer program stored thereon. The computer program may comprise computer-readable instructions which cause a computer, or more specifically the processing unit 412 of the computing device 400, to operate in a specific and predefined manner to perform the functions described herein, for example those described in the method 300.
Computer-executable instructions may be in many forms, including program modules, executed by one or more computers or other devices. Generally, program modules include routines, programs, objects, components, data structures, etc., that perform particular tasks or implement particular abstract data types. Typically the functionality of the program modules may be combined or distributed as desired in various embodiments.
In some embodiments, the methods and/or systems described herein may be used in a multi-engine aircraft.
More particularly, the multi-engine system 105 of this embodiment includes first and second engines 102, 104 each having a respective transmission 152 which are interconnected by a common output gearbox 150 to drive a common load 170. In one embodiment, the common load 170 may comprise a rotary wing of a rotary-wing aircraft. For example, the common load 170 may be a main rotor of a rotorcraft. Depending on the type of the common load 170 and on the operating speed thereof, each of engines 102, 104 may be drivingly coupled to the common load 170 via the output gearbox 150, which may be of the speed-reduction type.
For example, the gearbox 150 may have a plurality of transmission shafts 156 to receive mechanical energy from respective output shafts 154 of respective engines 102, 104. The gearbox 150 may be configured to direct at least some of the combined mechanical energy from the plurality of the engines 102, 104 toward a common output shaft 158 for driving the common load 170 at a suitable operating (e.g., rotational) speed. It is understood that the multi-engine system 105 may also be configured, for example, to drive accessories and/or other elements of an associated aircraft. The gearbox 150 may be configured to permit the common load 170 to be driven by either of the engines 102, 104 or, by a combination of both engines 102, 104 together.
Each output shaft 154 is independently engaged or disengaged from the gearbox 150. A given transmission 152 can selectively couple or decouple a given output shaft 154 to/from the transmission shaft 156. When one or both of the output shafts 154 are engaged with the gearbox 150, the output shafts that are engaged with the gearbox 150 drive the rotor 170. When a given output shaft 154 is disengaged from the gearbox 150, rotation of that output shaft does not drive the rotor 170. When the rotor 170 rotates faster than a given output shaft 154, that output shaft becomes decoupled from the gearbox 150.
The multi-engine system 250 may be implemented according to the systems and/or methods described in U.S. Provisional Application Nos. 62/715,917, 62/803,064 and 62/803,070, and U.S. application Ser. No. 16/366,293, the contents of which are hereby incorporated by reference.
In some embodiments, the rotor 170 is driven by the first engine 102 without the second engine 104 driving the rotor 170. When the second engine 104 is not driving the rotor 170, the second engine 104 is decoupled from the rotor 170. That is, the output shaft 154 of the second engine 104 is decoupled from the gearbox 150. When the second engine 104 is decoupled from the rotor 108, the second engine 104 could be operated at low power. For example, the second engine 104 may be operated at a very low idle condition. The second engine 104 is operating at low power by supplying fuel to the first set of fuel nozzles 201 and without any fuel being supplied to at least the second set of fuel nozzles 202. In some embodiments, the amount of fuel is determined to prevent the engine 104 from being recoupled to the rotor 170. In some embodiments, one or more of the amount of fuel 250, the first value 251, the second value 252, the duration 254, the interval 256 and the rate 258 may be determined to prevent the second engine 104 from being recoupled to the rotor 170.
The above description is meant to be exemplary only, and one skilled in the art will recognize that changes may be made to the embodiments described without departing from the scope of the invention disclosed. Still other modifications which fall within the scope of the present invention will be apparent to those skilled in the art, in light of a review of this disclosure.
Various aspects of the methods and systems for operating an engine may be used alone, in combination, or in a variety of arrangements not specifically discussed in the embodiments described in the foregoing and is therefore not limited in its application to the details and arrangement of components set forth in the foregoing description or illustrated in the drawings. For example, aspects described in one embodiment may be combined in any manner with aspects described in other embodiments. Although particular embodiments have been shown and described, it will be obvious to those skilled in the art that changes and modifications may be made without departing from this invention in its broader aspects. The scope of the following claims should not be limited by the embodiments set forth in the examples, but should be given the broadest reasonable interpretation consistent with the description as a whole.
The present application claims priority under 35 U.S.C. 119(e) of Provisional Patent Application bearing Ser. No. 62/848,146 filed on May 15, 2019, the contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3834160 | Moehring et al. | Sep 1974 | A |
4404806 | Bell, III et al. | Sep 1983 | A |
4491272 | Bradley et al. | Jan 1985 | A |
5243816 | Huddas | Sep 1993 | A |
5277023 | Bradley et al. | Jan 1994 | A |
5339845 | Huddas | Aug 1994 | A |
5349811 | Stickler et al. | Sep 1994 | A |
5402634 | Marshall | Apr 1995 | A |
5406798 | Wiesner, Jr. | Apr 1995 | A |
5694764 | Blain et al. | Dec 1997 | A |
5735117 | Toelle | Apr 1998 | A |
5799872 | Nesbitt et al. | Sep 1998 | A |
5809771 | Wernberg | Sep 1998 | A |
5899073 | Akimaru | May 1999 | A |
6125624 | Prociw | Oct 2000 | A |
6463741 | Frutschi | Oct 2002 | B1 |
6619025 | Wernberg | Sep 2003 | B2 |
7003939 | Rackwitz et al. | Feb 2006 | B1 |
8122720 | Miyake | Feb 2012 | B2 |
8991186 | Griffiths et al. | Mar 2015 | B2 |
9103284 | Erickson et al. | Aug 2015 | B2 |
9267439 | Corson et al. | Feb 2016 | B2 |
9303562 | Codron et al. | Apr 2016 | B2 |
9382850 | Menon et al. | Jul 2016 | B2 |
9404423 | Griffiths et al. | Aug 2016 | B2 |
9404424 | Morawski et al. | Aug 2016 | B2 |
9581088 | Qin et al. | Feb 2017 | B2 |
9683744 | Patel et al. | Jun 2017 | B2 |
9863267 | O'Dea et al. | Jan 2018 | B2 |
9863322 | Williams et al. | Jan 2018 | B2 |
10233846 | Zhang et al. | Mar 2019 | B2 |
10400674 | Xu | Sep 2019 | B2 |
10408131 | Thompson et al. | Sep 2019 | B2 |
10451509 | Mehrer et al. | Oct 2019 | B2 |
10465908 | Stevenson et al. | Nov 2019 | B2 |
10465909 | Boardman et al. | Nov 2019 | B2 |
10539073 | Richards, Jr. | Jan 2020 | B2 |
20100031670 | Hoffman | Feb 2010 | A1 |
20130042920 | Snodgrass et al. | Feb 2013 | A1 |
20130061599 | Van Alen | Mar 2013 | A1 |
20130259088 | Bellis et al. | Oct 2013 | A1 |
20140000270 | Dobbeling | Jan 2014 | A1 |
20150027100 | Qin et al. | Jan 2015 | A1 |
20150292412 | Rodrigues | Oct 2015 | A1 |
20160201917 | Dautova et al. | Jul 2016 | A1 |
20160245524 | Hill | Aug 2016 | A1 |
20160273453 | Frish et al. | Sep 2016 | A1 |
20160273775 | Griffiths | Sep 2016 | A1 |
20170234229 | Ribarov et al. | Aug 2017 | A1 |
20170298840 | Doody | Oct 2017 | A1 |
20170306856 | Bickley | Oct 2017 | A1 |
20180163637 | Griffiths | Jun 2018 | A1 |
20180163966 | Jones et al. | Jun 2018 | A1 |
20180372321 | Yates | Dec 2018 | A1 |
20180372323 | Griffiths | Dec 2018 | A1 |
20190063754 | Dudebout et al. | Feb 2019 | A1 |
20190101062 | Vise et al. | Apr 2019 | A1 |
20190271470 | Boardman et al. | Sep 2019 | A1 |
20190292996 | Hicks | Sep 2019 | A1 |
Number | Date | Country |
---|---|---|
105716119 | Jun 2016 | CN |
105823087 | Aug 2016 | CN |
109356725 | Feb 2019 | CN |
888243 | Jan 1962 | GB |
2523126 | Aug 2015 | GB |
2572753 | Oct 2019 | GB |
2572783 | Oct 2019 | GB |
Number | Date | Country | |
---|---|---|---|
20200362769 A1 | Nov 2020 | US |
Number | Date | Country | |
---|---|---|---|
62848146 | May 2019 | US |