The present invention is related to broadcast of audio, visual, multi-media, and other content in commercial environments and, in particular, to a method and system for selecting content for broadcast that is optimal or near-optimal with respect to a set of goals.
Commercial enterprises, most particularly retail establishments, have, for many years, broadcast music, audio information, and other audio, video, and multi-media content to customers in order to entertain customers, inform customers of available and upcoming products and services, and to generally create an attractive environment within retail establishments. Retail establishments frequently contract with broadcast-music providers, such as Musak, for audio content, compile and broadcast music and other content themselves, or re-broadcast radio, television, or other broadcast entertainment and information. In some cases, retailers may interrupt broadcast music, or other broadcast content, in order to broadcast high-priority information or to customize broadcast information for the particular retail establishment. Unfortunately, these currently used techniques may provide less than satisfying entertainment and dissemination of information to customers, and may fail to provide an attractive and pleasing environment to customers of particular retail establishments. Moreover, management of retail-establishment broadcasts may represent a significant burden for retailers, and may provide little feedback or metrics to allow retailers to optimize entertainment and information broadcasts for particular purposes. For these reasons, content distributors, individual retailers, managers of retail outlets, and, ultimately, customers of retail establishments have all recognized the need for better methods and systems for broadcast of entertainment and information content within retail establishments.
Many different embodiments of the present invention are directed to customizing and optimizing entertainment-content and information-content broadcast within retail establishments. In many embodiments of the present invention, an automated system employs a wide variety of different types of processed and compiled input information to compile and filter available content for broadcast, assign weights to the filtered, available content, and to continuously select content from the filtered and weighted content. In a described embodiment, the automated system selects content for broadcast to optimally, or near-optimally, satisfy one or more goals established for the broadcast of entertainment content and information content within a retail establishment within a set of constraints.
FIGS. 3A-D show control-flow diagrams that describe a content-selection method that represents one embodiment of the present invention.
Embodiments of the present invention are directed to automated systems for managing broadcast of entertainment and information content within retail establishments. System embodiments of the present invention employ continuously updated input information, defined constraints, and one or more defined goals in order to optimally or near-optimally select content for broadcast.
The computer system 102 may be a personal computer (“PC”), work station, or higher-end computer system used within a retail establishment for various management and control purposes. The computer system may also comprise multiple computer systems in a single retail establishment, or multiple computer systems in multiple retail establishments that are interconnected together in order to collectively manage two or more retail establishments. The computer system runs an automated content-selection program that, in certain embodiments, transmits content to a broadcast device for broadcast within a retail establishment and, in other embodiments, transmits references, or indications, of content to a broadcast device that independently acquires or accesses the referenced content. For example, the computer system 102 may download content from a remote content source 112, such as a centralized computing system, maintained at a home office or headquarters, for provision of content for broadcast in a number of retail establishments, and may store the downloaded content in a data-storage system 104 for subsequent transmission to the broadcast device 116. Alternatively, the computer system may acquire content from remote content sources and store the content on a content-distribution medium, such as a CD or DVD, which can then be manually transferred to the broadcast device. In yet a different embodiment of the present invention, the computer system may acquire content from remote content sources and download the content to memory or attached data-storage devices of a broadcast device 116. Alternatively, the computer system may simply send lists of references, or indications, of content to the broadcast device 116, which then, independently, acquires the content either from a remote content source 112 or from data-storage device 104.
The data-storage system or systems 104 store various processed and compiled input data used by the content-selection system and may store encoded constraints, goals, and other data used by the content-selection program executing on a computer system to optimally or near-optimally select the next content for broadcast. The data-storage system or systems may also store content for transmission to the broadcast device. Processed and compiled input data, constraints, goals, and other data may be transferred from the data-storage systems to memory of the computer system, as needed, during the content-selection process. In addition, certain input data may generally be stored in volatile memory of the computer system, without being persistently stored in the data-storage systems.
The input devices may include any number of different types of data-collection devices within a retail establishment. For example, input devices may include: (1) computerized cache registers; (2) order-entry and retailing devices, including music kiosks; (3) surveillance devices, such as video monitors; (4) information-input devices through which customers and staff may input personal information, suggestions, observations, and other information; and (5) various monitoring devices that monitor the entrance and exit of customers from the retail establishment, the presence of customers at various locations within the retail establishment, and various customer-related activities. The data collected by these input devices may be continuously transferred to the computer system, or transferred in compiled or partially compiled batches to the computer system, for processing and compilation by the computer system into encoded input data used by the computer system to select content for broadcast. The encoded input data may indicate, for example, the number of customers present in a retail establishment at each point in time during some previous time interval, demographic and personal information related to customers, indications of customer preferences and desires with respect to broadcast content, product and services availability, customer interests, data concerning the rate of sales of particular products at particular points in time during a previous time interval, data concerning the attractiveness of particular displayed information, kiosks, provided services, and other features within the retail establishment, and other data that may be useful in selecting content for broadcast within the retail establishment.
Remote input devices may include any of the above-discussed input devices in remote retail locations, and may additionally include centralized computer systems that compile and store constraint and rule criteria for content broadcast, as well as remote input devices that collect and transmit data concerning one or more retail establishments. Remote input devices may additionally include centralized, automated management centers and information systems.
Remote content sources 112 may include file servers, web servers, centralized data-storage services, and many other content sources that may be accessed by the computer system in order to acquire content for broadcast. Remote content sources may also include content-storage media, such as CDs and DVDs, remote computers or transmission devices that broadcast or feed content through any of numerous broadcasts or information-transmission media, and any other potential source for acquisition of content for broadcast within the retail establishment.
The broadcast device may be any of numerous audio, video, multi-media, or other content-broadcasting devices, such as amplifiers and loudspeakers, video-display monitors, projection equipment, and other such broadcast devices. As discussed above, the broadcast devices may store content received from either the computer system or from remote content sources, or may access content on an as-needed basis from the computer system, data-storage devices, remote content sources, or internally stored content-storage media, such as CDs and DVDs.
The content-selection program selects content in order to achieve certain goals, limited by certain constraints, which may be pre-defined, dynamic, or pre-defined and dynamically updated. Thus, customer behavior is continuously monitored, and content selected in order to satisfy customer needs and desires as well as retail-establishment goals. For example, the retail establishment may have a goal of selling as much holiday-related merchandize as possible within a period of time preceding a particular holiday. The content-selection program may acquire and filter content for broadcast related to the holiday, in addition to other content, and continuously refine selection of the holiday-related content and other content in order to maximize sales of holiday-related merchandize. It may turn out, for example, that reasonably constant broadcast of certain holiday-related content may lead to an increase in sales of holiday-related merchandize. However, it may also turn out that broadcast of holiday-related content may have the opposite effect, because customers have grown tired of holiday-related content broadcast in the retail establishment employing the content-selection program, or in other retail establishments or home environments. Therefore, although certain rules, indications, and principles may be employed in the content-selection process, actual monitoring and feedback is necessary in order to optimize content selection, particularly in dynamic retail establishments where users' needs, desires, and preferences may change on a daily or even hourly basis.
The content-selection problem is not trivial, and many different possible methods may be used to address the problem of content selection for broadcast in a retail establishment in order to achieve particular results, or to achieve a number of possibly conflicting results. For example, one may employ various statistical learning techniques, including hidden-Markov models and Bayesian-network techniques, neural networks, rule-based systems, inference engines, or combinations of all of these and other techniques in order to create a content-selection system that continuously learns to select content for broadcast in a retail establishment in order to achieve particular, specified goals. However, the content-selection problem perhaps most generally falls within the class of high-dimensional optimization problems, in which a large number of dynamic variables are continuously considered, along with various constraints, in order to select optimal or near-optimal trajectories, procedures, or variable values with respect to one or more goals. Such high-dimensional optimization problems are typically addressed by linear control theory, mathematical optimization theory, and other optimization methodologies.
FIGS. 3A-D show control-flow diagrams that describe one content-selection method that represents one embodiment of the present invention. This described content-selection method represents one method that may be carried out by a content-selection program running within a computer system of a retail establishment to manage broadcast of entertainment and information content to customers and staff within the retail establishment.
In step 347, the routine “selectNextContent” is step 347, in which the routine employs available data in order to select a next content entity from the list or database of filtered content. As discussed above, this step may be carried out by a wide variety of different artificially-intelligent inference engines, statistical-learning programs, rule-based systems, neural networks, or other such learning and inference engines that can draw inferences, or make decisions, based on a large amount of input information. In one embodiment, however, the selection of a next content entity may be accomplished by a largely mathematical optimization procedure. In such procedures, a goal, or set of goals, is mathematically encoded. The possible result set is generally considered to be a state space or hyperdimensional manifold, with local minima or maxima representing near-optimal or optimal result sets with respect to the mathematically expressed goals. The constraints may be employed to limit the volume of the state space, or surface of the hyperdimensional manifold, from which near-optimal or optimal result sets are selected, and the goal and constraints may both be employed to steer the optimization procedure towards local minima or maxima in an efficient manner, such as by a gradient-based steepest-descent procedure. Using a mathematical optimization technique, the routine “selectNextContent” can select a next content entity from the filtered list or database of content that best achieves the mathematically expressed goal or goals.
For example, the retail establishment may decide that its goal in broadcasting content to customers and staff is to achieve the greatest volume of sales, at any particular point in time, as well as to efficiently entertain customers so that the average length of stay for customers is 23 minutes. The retail establishment may have decided, from previous research, that 23 minutes is the optimal length of stay for customers in order to minimize the average amount of staff time devoted to each customer as well as to maximize exposure of the customer to offered products and services. The constraints may include prohibitions against broadcasting offensive material, preferences for broadcasting commercials and other advertising information sparingly, so as not to irritate customers, a strong preference for quickly broadcasting certain time-critical information as quickly as possible, and other such constraints. As discussed above, the compiled input data may include any number of different statistics and inferences regarding the number and types of customers expected to be in the store, the time of year and day, current products and services offered by the retail establishment, current trends and fashions, and a large variety of additional types of information. This input information defines the state space or hyperdimensional manifold, while the goals define a direction with respect to which particular result values are optimal, minimal, or have intermediate values.
Although the present invention has been described in terms of a particular embodiment, it is not intended that the invention be limited to this embodiment. Modifications within the spirit of the invention will be apparent to those skilled in the art. For example, as discussed above, the content-selection method and system of the present invention may be used locally, within a single retail establishment, over collections of two or more retail establishments, and may be controlled and modified by centralized, corporate management systems or may be essentially self-contained. As discussed above, any number of different types of statistical-learning engines, inference engines, rule-based decision systems, neural networks, or a wide variety of other decision and selection processes may be used to select content for broadcast based on input data and a list or databases of available content. A content-selection program embodiment of the present invention may be implemented in an essentially limitless number of ways, using different programming languages, control structures, data structures, modular organizations, and other such programming parameters. As discussed above, content may be compiled and distributed electronically, using content-storage media, such as CDs and DVDs, and in many other ways.
The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the invention. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the invention. The foregoing descriptions of specific embodiments of the present invention are presented for purpose of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously many modifications and variations are possible in view of the above teachings. The embodiments are shown and described in order to best explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents: