1. Field of the Invention
The present invention generally relates to the field of computer network management, and more particularly relates to allocating a network services among servers within the network.
2. Description of the Related Art
A client-server relationship involves the client sharing the resources of the server, and the server performing necessary services for the client. In a network including multiple clients and servers, each server within the network performs one or more installed services for most, if not all, of the clients of the network. For example, one of the servers of the network can provide a directory service for clients. In a network having a high distribution of services among the servers, the location of a server within the network affects the efficiency of the access by clients of the service(s) provided by the server. In view of the increasing complexity of networks, it is becoming unfeasible for an administrator of the network to decide each location to install a service or to utilize a pre-defined configuration in allocating services among the servers. The computer industry is therefore continually striving to improve upon methods and systems for optimally allocating network services among servers.
One form of the present invention is a method for allocating a service on a network having a plurality of interconnected nodes. First, performance data representative of a set of physical characteristics of the network is collected. Second, two or more node clusters of the network based on the performance data are identified. Third, the node clusters and one or more performance rules as related to the service are correlated to identify each node cluster suitable for supporting the service.
A second form of the present invention is a distributed computing system comprising interconnected nodes and a server operable to allocate a service for the nodes. The server includes a probe, a module, and an engine. The probe is operable to provide performance data as related to a set of physical characteristics of the interconnected nodes. The module is operable to provide node clusters in response to the performance data. The engine is operable to utilize one or more performance rules as related to the service to identify a specific node cluster for supporting the service.
A third form of the present invention is a computer program product comprising a means for collecting a performance data relating to a set of physical characteristics of a network; a means for identifying node clusters of the network in response to performance data; and a means for correlating the node clusters and one or more performance rules for the node clusters as related to the service.
The foregoing forms and other forms, features and advantages of the invention will become further apparent from the following detailed description of the presently preferred embodiments, read in conjunction with the accompanying drawings. The detailed description and drawings are merely illustrative of the invention rather than limiting, the scope of the invention being defined by the appended claims and equivalents thereof.
With reference now to the figures,
In the depicted example, a server 21, a client 22, a client 23, a server 31, and a server 51 are connected to network 20; server 31, a client 32, a client 33, a client 34, and a server 41 are connected to network 30; server 41, a client 42, a client 43, and a server 44 are connected to network 40; server 51, a client 52, a client 53, a server 61, and a server 71 are connected to network 50; server 61, a client 62, a client 63, and a client 64 are connected to network 60; and server 71, a client 72, a client 73, and a client 74 are connected to network 70. Clients 22, 23, 32-34, 42-44, 52, 53, 62-64, and 72-74, and servers 21, 31, 41, 51, 61, and 71 are nodes of distributed data processing system 10 that may be represented by a variety of computing devices, such as mainframes, personal computers, personal digital assistants (PDAs), etc. Distributed data processing system 10 may include additional servers, clients, networks, routers, and other devices not shown. Those of ordinary skill in the art will appreciate that each server 21, 31, 41, 51, 61, and 71 provides one or more assigned services, e.g., lodging service, authentication service, gateway service, etc., for distributed data processing system 10.
Distributed data processing system 10 may include the Internet with network 20, network 30, network 40, network 50, network 60, and network 70 representing a worldwide collection of networks and gateways that use the TCP/IP suite of protocols to communicate with one another. Of course, distributed data processing system 10 may also include a number of different types of networks, such as, for example, an intranet, a local area network (LAN), or a wide area network (WAN).
The present invention could be implemented on a variety of hardware platforms.
With reference now to
Those of ordinary skill in the art will appreciate that the hardware in
Referring to
During stage S112 of method 110, probe 101 receives logical data LD from representative of the logical configuration of distributed data processing system 10. Specifically, logical data LD includes data indicating distributed data processing system 10 includes six (6) networks, six (6) servers, and sixteen (16) servers. Logical data LD also includes data indicating the interconnections of distributed data processing system 10 as previously described herein in connection with
During stage S114 of method 110, probe 101 utilizes logical data LD to collect performance data PD representative of the physical characteristics of distributed data processing system 10 as would occur to those of ordinary skill in the art. Performance data PD can include a round trip time, a hop count, and a bottleneck speed as measured from each server 21, 31, 41, 51, 61, and 71. For example, a round trip time indicating the mean communication time between server 21 and each client 22, 23, 32-24, 42-44, 52, 53, 62-64, and 72-74 can be measured by probe 101. Also by example, a hop count indicating server 31 and server 41 are required to route a service from server 21 to client 43 can be measured by probe 101. Another example is a bottleneck speed indicating a lowest link speed between server 21 and client 63 can be measured by probe 101.
During stage S116 of method 110, module 102 utilizes performance data PD to provide cluster data CD that identifies each node cluster within distributed data processing system 10. A node cluster is an aggregation of nodes of distributed data processing system 10 that can be viewed as one node for purposes of providing the network service for distributed data processing system 10. For example, based on performance data PD, cluster data CD can identify a node cluster NC1 as shown in
Referring again to
Engine 103 includes one or more performance rules that a server within a node cluster is required to comply with in supporting the network service for distributed data processing system 10. During stage S118 of method 110, engine 103 correlates cluster data CD with the performance rule(s). Depending on the number of performance rules and the degree of specificity of each performance rule, the correlation of cluster data CD with the performance rule(s) yields a map of each node cluster of cluster data CD complying with the performance rule(s) and/or a list of one or more servers within a node cluster of cluster data CD that comply with the performance rule(s).
For example, a performance rule may limit an installation of a logging service within node clusters having three (3) or more servers. A correlation node cluster NC1 (
Also by example, a performance rule no. 1 may limit an installation of a logging service within node clusters having two (2) servers, and a performance rule no. 2 may limit an installation of the logging service on a server being connected to two or more networks. A correlation node cluster NC1, node cluster NC2, and node cluster NC3 with performance rule no. 1 and performance rule no. 2 would yield server 31 of node cluster NC2 as the site for supporting the logging service. An administrator of distributed data processing system 10 can thereafter install the logging service at server 31.
Referring to
It is important to note that while the present invention has been described in the context of a fully functioning data processing system, those of ordinary skill in the art will appreciate that the processes of the present invention are capable of being distributed in the forms of instructions in a computer readable medium and a variety of other forms, regardless of the particular type of signal bearing media actually used to carry out the distribution. Examples of computer readable media include media such as EPROM, ROM, tape, paper, floppy disc, hard disk drive, RAM, CD-ROM, and transmission-type media, such as digital and analog communications links.
While the embodiments of the present invention disclosed herein are presently considered to be preferred, various changes and modifications can be made without departing from the spirit and scope of the invention. The scope of the invention is indicated in the appended claims, and all changes that come within the meaning and range of equivalents are intended to be embraced therein.
This application is a continuation of application Ser. No. 09/738,371, filed Dec. 15, 2000, status allowed.
Number | Name | Date | Kind |
---|---|---|---|
5404451 | Nemirovsky et al. | Apr 1995 | A |
5598532 | Liron | Jan 1997 | A |
5666486 | Alfieri et al. | Sep 1997 | A |
5729472 | Seiffert et al. | Mar 1998 | A |
5878420 | de la Salle | Mar 1999 | A |
5881284 | Kubo | Mar 1999 | A |
5909217 | Bereiter | Jun 1999 | A |
5951634 | Sitbon et al. | Sep 1999 | A |
5999712 | Moiin et al. | Dec 1999 | A |
6026425 | Suguri et al. | Feb 2000 | A |
6049774 | Roy | Apr 2000 | A |
6058102 | Drysdale et al. | May 2000 | A |
6070197 | Cobb et al. | May 2000 | A |
6078946 | Johnson | Jun 2000 | A |
6098093 | Bayeh et al. | Aug 2000 | A |
6112239 | Kenner et al. | Aug 2000 | A |
6175869 | Ahuja et al. | Jan 2001 | B1 |
6185601 | Wolff | Feb 2001 | B1 |
6230200 | Forecast et al. | May 2001 | B1 |
6279032 | Short et al. | Aug 2001 | B1 |
6631128 | Lemieux | Oct 2003 | B1 |
6728748 | Mangipudi et al. | Apr 2004 | B1 |
6760775 | Anerousis et al. | Jul 2004 | B1 |
6854013 | Cable et al. | Feb 2005 | B2 |
Number | Date | Country | |
---|---|---|---|
20090144427 A1 | Jun 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09738371 | Dec 2000 | US |
Child | 12371762 | US |