1. Field of the Invention
The present invention relates generally to medical apparatus and procedures. More particularly, the present invention relates to the use of small endoscopes for performing diagnostic and therapeutic procedures with continuous introduction and removal of fluids.
The term “endoscopy” refers to the use of a catheter or other tubular device, commonly referred to as an endoscope, for viewing the inside of a body cavity or lumen. Endoscopes usually include fiberoptic bundles for both viewing and providing a light source, and may optionally include one or more “working channels” for permitting the introduction and removal of fluids as well as the introduction of tools for intervention and diagnosis. Some endoscopes have eliminated fiberoptics by placing an imaging chip and/or light source at the distal end of the device.
The size and nature of endoscopes can vary widely. Relatively large diameter endoscopes are used for colonoscopy and gastroscopy procedures where multiple and/or large diameter working channels provide access for a variety of different procedures. In contrast, small diameter, flexible endoscopes used in urological procedures often have only a single, very small diameter working channel which provides limited access for the introduction and removal of fluids as well as for the introduction of working tools. Typically, the working channel exits the distal end of the endoscope in close proximity and parallel to the axis of the imaging lens, thus irrigation fluid passing through the working channel will clarify the fluid volume in front of the lens.
Of particular interest to the present invention, relatively small endoscopes, referred to as flexible cystourethroscopes, are typically used in diagnostic examinations and for short therapeutic procedures in the lower urinary tract, including the bladder. The small size and highly flexible nature and steerability of the flexible endoscope makes it ideal for use in doctor's offices as well as in hospitals for short diagnostic procedures. They have small diameters, typically about 4-6 mm, steerable distal tips for navigating the anatomy of the urethra, and are sufficiently flexible to conform to the anatomy, making them less painful and useable without general anesthesia.
The small size of the working channel of the flexible endoscope, (which allows a compact size of the overall device) however, limits the type and shortens the of procedures that can be performed. Procedures which require the introduction of an irrigant to improve visibility can only be performed until the bladder, urinary lumen or uterus becomes filled with fluid. Excessive fluid pressure caused by over-filling, can cause significant patient discomfort as well as dangerous diffusion of irrigant into the venous bloodstream. Thus, procedures that require more than several minutes must often be interrupted to allow aspiration or drainage of the fluid to empty the bladder before additional fluid can be introduced to continue the procedure. Repeated introduction and removal of the endoscope can result loss of target acquisition and increased trauma to the tissues.
For these reasons, it would be desirable to provide methods and systems which allow for the continuous flow of fluid irrigants through a flexible endoscope or other small endoscope to allow longer procedures to be performed. It would be particularly useful if such continuous flow systems would provide for the flushing and removal of blood, debris, and other substances from the body lumen or cavity which is being observed or treated. Such continuous flow systems will preferably at least substantially preserve the atraumatic characteristics of the small diameter endoscope, preserve the optical performance, working channel and preferably should further preserve the ability to steer the distal end of the endoscope without significant hindrance. At least some of these objectives will be met by the inventions described hereinbelow.
2. Description of the Background Art
U.S. Pat. Nos. 5,989,183; 4,991,565; and 4,974,580, describe disposable endoscope sheaths having auxiliary external fluid channels. U.S. Pat. No. 4,468,216 describes a vacuum catheter which could be inserted into the working channel of an endoscope. U.S. Pat. No. 5,520,636, describes pressure control of an inlet fluid to flush the bladder. Denes et al., (2006) was a poster presentation at the 20th Annual Meeting of Engineering and Urological Society, presenting a study using a urethral introducer sheath (Cystoglide™), Percutaneous Systems, Inc. (PercSys), Mountain View, Calif., the assignee of the present application, for continuous flow cystoscopy. Dr. Denes, the author, is a consultant and advisor to the assignee of the present application.
The present invention provides methods and systems for the continuous and simultaneous introduction and drainage of irrigation fluid to and from body lumens and cavities. The irrigation fluids will be introduced or removed through a working channel of a small, flexible endoscope and will be removed or introduced through a flow path defined by a flexible sheath disposed coaxially about the endoscope. Introduction and removal of the irrigant fluid will be particularly useful for flushing and removing debris from the visual field of the endoscope to permit continuous viewing without the need to periodically flush and aspirate the viewing field, as has typically been the case with prior small flexible endoscope systems. In some cases, it will be desirable to reverse the flow direction in order to dislodge debris that may have become lodged in the working channel or sheath flow path. The small, flexible endoscopes typically have outer diameters between about 2-7 mm, usually below about 5.5 mm, with room only for the single working channel, which typically has a diameter between about 1-4 mm, typically below about 3.5 mm.
The present invention further provides for the control of volume or pressure within the body lumen or cavity which is receiving the irrigation fluid. The irrigation fluid which is usually introduced through the working channel of the endoscope will typically be allowed to enter at a rate which is determined by the flow resistance of the working channel. The volume of the irrigation fluid which is retained within the body lumen or cavity or the pressure of said fluid within the cavity is controlled by maintaining or adjusting the drainage flow rate of the irrigation fluid through the flexible sheath. In this way, the flow rate of irrigation fluid through the body lumen or cavity can be maximized while controlling distension and preventing excess volume or pressure within the lumen or cavity. While generally less desirable, the irrigation fluid can also be introduced through the sheath and drained through the working channel of the endoscope while controlling volume or pressure as noted.
The systems and methods of the present invention will find particular use for visually guided navigation through the urethra, for introducing and removing irrigation fluid from the bladder, typically in conjunction with imaging the bladder, and for performing medical procedures such as biopsies and fulgarations through the flexible endoscope. The present invention can also be used for viewing and optionally treating the kidney by locating a smaller diameter and longer endoscope and sheath further through the ureter, into the kidney. The methods and systems could be used in a variety of other body lumens and cavities, including the uterus, the stomach, intestine, peritoneum, or sinus tract.
In a first specific aspect of the present invention, methods for irrigating a body lumen or cavity comprise positioning a flexible endoscope in the body lumen or cavity, where the flexible endoscope is positioned in a central passage of a flexible sheath. An irrigation fluid is introduced through a channel in the flexible endoscope into the body lumen. The irrigation fluid is drained through a drainage path defined by the flexible sheath, where the drainage flow rate is controlled to maintain or limit volume or pressure of the irrigation fluid in the body cavity or lumen.
Usually, draining of the irrigation fluid through the drainage path is passive, that is accomplished by gravity and/or as a result of internal pressure within the body lumen or cavity. In other cases, however, the drainage could be enhanced by conventional aspiration techniques, such as pumping, application of a vacuum (for example from an available vacuum source), or the like. In the case of passive drainage, the flow rate will be adjusted by varying a flow resistance in the drainage path, typically by adjusting a valve or variably clamping a drain tube attached to the drainage path. When aspirating with the pump, the drainage flow rate may be maintained by controlling the pumping duration, rate, or some combination thereof. When aspirating using a vacuum, the flow rate may be adjusted by controlling the level or duration of the vacuum. With both pumps and vacuum drainage, however, the flow rate could also be adjusted by adjusting the flow resistance within the drainage path.
The flexible sheath may provide the drainage path in a variety of ways. In one example, at least a portion of the central passage of the sheath is non-collapsible under the conditions of use so that the drainage path is defined between an outside surface of the flexible endoscope and an inside surface of the central passage of the sheath. In addition or alternatively, various surface features could be provided on an inside surface of the flexible sheath in order to maintain spacing between the sheath and the outside surface of the endoscope. Such surface features could also form flow channels, including axial flow channels, helical flow channels, or the like. Still further alternatively, flow channels could be provided between the sheath and the flexible endoscope by an cylindrical insert or other structure having the flow channels defined therein as channels or grooves within its wall or on its outside diameter.
The flexible endoscope and flexible sheath may introduced to the body lumen or cavity in a variety of ways. For example, the flexible endoscope may first be positioned in the body lumen or cavity, with the flexible sheath outside the body then being advanced into the body and/or positioned over the outside of the endoscope. Alternatively, the flexible sheath could first be positioned in the body lumen, and the flexible endoscope then positioned through the central passage of the flexible sheath. Once in position, the flexible endoscope may be connected to a source of irrigation fluid, such as a fluid bag which is raised to a height sufficient to provide gravity flow through the working channel at the desired rate. Alternatively, the irrigation fluid could be delivered by a pump through the working channel, although use of the pump will generally be less desirable. The drainage path defined by the flexible sheath, in turn, will typically be connected to a drain tube which in turn is directly or indirectly connected to a drainage bag or other receptacle. For gravity flow, the drainage bag will be maintained at a level well below the patient, where the drainage flow rate can be controlled by varying the level or the resistance within the drainage tube. Alternatively, the drain tube could be connected to a pump or vacuum source in order to control the drainage rate as discussed above. While the irrigation fluid is being introduced and drained, the target body lumen or cavity can be clearly imaged using the flexible endoscope, despite the presence of blood or debris. Additionally, therapeutic and interventional procedures could be performed through the working channel of the endoscope, although usually placement of instruments in the working channel will cause at least a partial reduction in its flow capacity.
In a second aspect, the present invention provides a system for irrigating a body lumen or cavity comprising a flexible endoscope and a flexible sheath. The flexible endoscope has a single channel for introducing fluids, and the flexible sheath has a distal tip and a central passage for slidably receiving the flexible endoscope. The flexible sheath is further adapted to provide a drainage path for irrigation fluids past the distal end of the sheath. The distal end of the sheath is either blunted to present an atraumatic leading edge, or is tapered to conform to or transition to the outside surface of the flexible endoscope. Usually, the distal tip will have openings to permit entry of the irrigation fluids into the drainage path, where the openings may be on the end of the sheath and/or closely proximal to the end of the sheath. Usually, the sheath will be adapted to drain the irrigation fluid without pumping or applying a vacuum. Alternatively, however, the system could further comprise an aspiration pump or vacuum source which is adapted to connect to the drainage path in order to assist in maintaining fluid drainage therethrough. In all cases, the system could still further comprise a variable flow resistor in the drainage path to control the drainage rate through the drainage path, this will also determine the flow through the entire system as long as the unrestricted drainage flow capacity of the sheath exceeds the inflow capacity through the endoscope.
The systems will typically further include a source of irrigation fluid adapted to connect to the single channel of the flexible endoscope. The irrigation fluid source will typically be adapted to deliver the fluid to the central passage via a gravity flow. In other instances, however, a pump could be provided to deliver the irrigation fluid to the central passage. In still further instances, the systems of the present invention could comprise a controller which monitors irrigation volume and drainage volume to control the amount or pressure of irrigation fluid in the body lumen or cavity An optional pressure relief valve on the drain which allows fluid to drain when a predetermined pressure in the body lumen is exceeded, would allow distension of the organ to be maintained throughout the procedure. This would limit or eliminate the flow rate manipulations required by the user to accomplish the same results.
In a third aspect, the present invention provides flexible sheaths which comprise a sheath body having a proximal end, a distal end, and a central passage therethrough. The distal end is typically tapered to conform to the flexible endoscope, and the central passage is dimensioned to provide a fluid drainage path when the flexible endoscope is present in the central passage. Usually, the drainage path will have a significantly greater flow capacity than that of the endoscope channel. Optionally, an inner surface of the central passage may have surface features which help define the drainage path between the flexible endoscope and said inner wall. The surface features may be formed continuously over at least most of the length of the inner wall, typically being axial ribs, helical ribs, serpentine ribs, or the like. Alternatively, the surface features could be formed discontinuously and distributed over at least most of the wall, for example in the form of knobs, protrusions, bumps, or other radial spacers. Thirdly, the surface features could be inflatable, which would be particularly advantageous with a highly flexible sheath wall that presents a small cross sectional profile during advancement and which could then be inflated to provide sufficient rigidity and space for defining the drainage path.
In the exemplary embodiments, the sheath body has at least one opening which permits fluid drainage therethrough when the flexible endoscope is present in the central passage. The sheath body will typically also include a proximal hub at its proximal end, where the hub includes an axial port for receiving the flexible endoscope and at least one additional port for connecting the drain path for exiting fluids. Usually, for males, the sheath body will have length in the range from 10 cm to 30 cm, an outer diameter in the range from 7 mm to 9 mm, and an inner central passage diameter in the range from 5 mm to 7 mm. For females, the length may be shorter down to 3 cm while the width may be wider by up to 0.5 cm.
As shown in
The flexible sheath 14 comprises a sheath body 30 which is typically formed from a polymer, such as a polyolefin, nylon or polyurethane. Conveniently, the polymer may be extruded into a desired tubular configuration having at least one central passage extending from a proximal end 32 to a distal end 34. The flexible sheath 14 also includes a proximal housing 36 at its distal end. The proximal housing 36 includes both an axial port 38 which receives the endoscope 12 and a drainage port 40 which receives fluid from the central passage 42 (
In use, irrigation fluid may be fed from a source, such as bag 44 through a feed tube 46 which is connected to the fitting 24 on the flexible endoscope 12. Usually, the feed will be by gravity where the bag 44 is elevated from an appropriate support (not shown). Alternatively, a feed pump 48 may be provided to assist in the introduction of irrigation fluid into the endoscope. Usually, a valve 50 or external clamp will be provided in order to control the rate of irrigant flow from the bag, either directly into the endoscope 12 or into the pump 48. Thus, the valve 50 or clamp may be used both to control the flow rate and to shut the flow on and off. Alternatively or additionally, the flow rate may be controlled by varying the speed or other output characteristics of pump 48, when a pump is used.
The irrigation fluid entering from bag 44 through feed tube 46 will flow through the working channel 16 and into a target body lumen or cavity BLC shown in broken line in
Referring now to
In the exemplary embodiments, one or more drainage ports 74 will be formed near the distal end 34 of the sheath body 30 in order to permit the inflow of irrigant and other fluids from the body cavity or lumen into the central passage 42 of the sheath. The drainage ports 74 may be formed in the tapered region 72 or alternatively in the cylindrical region of the sheath body which is immediately proximal to the tapered region. When the endoscope 12 is present in the central passage 42 of the sheath body 30 as illustrated in
Referring now to
As a further alternative, shown in
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
While the above is a complete description of the preferred embodiments of the invention, various alternatives, modifications, and equivalents may be used. Therefore, the above description should not be taken as limiting the scope of the invention which is defined by the appended claims.
The present application claims the benefit of provisional U.S. Application No. 60/884,340 (Attorney Docket No. 021807-003700US), filed Feb. 27, 2007, the full disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60884340 | Feb 2007 | US |