1. Field of the Invention
The present invention relates to a method and apparatus for playing back an audio signal at an accelerated rate by a signal processing unit and simultaneously keeping pitch of the audio signal constant using multiresolution analysis technique.
2. Description of the Related Art
A signal can be viewed as composed of a smooth background and fluctuations or details on top of it. The distinction between the smooth part and the details is determined by the resolution. At a given resolution, a signal is approximated by ignoring all fluctuations below that scale. The resolution can be progressively increased; at each stage of the increase in resolution finer details being added to the coarser description, providing a successively better approximation to the signal. Eventually when the resolution goes to infinity, the exact signal is recovered. Multiresolution refers to the simultaneous presence of different resolutions.
Systems are available in the market, which enable users to play back an audio signal at an accelerated rate. The audio signals that are typically played back at accelerated rates can be a speech signal, a music recording and an audio data signal. However in none of the available systems does the pitch of the audio signal remain constant when it is played back at an accelerated rate.
Typically, when an audio signal is played back at a faster rate than the rate at which it is sampled, the pitch of the output audio signal is typically different than that of the original signal. Thus, sound quality deteriorates as it is played faster. There are no known audio systems that can handle this problem.
There may be several reasons for playing an audio signal at a rate that is faster than its sampling rate during audio signal capture or recording. However, the playback at a faster rate is often unpleasant if not a strange version of the original that sounds significantly different than the original.
The object of this invention is to overcome the drawbacks of the above-mentioned conventional audio systems and methods. The present invention is directed to methods and systems for playing back an audio signal at an accelerated rate that obviate one or more problems of the art.
By way of example, a plurality of bandpass filters with different pass bands and stop bands but same Q factor are used. A first plurality of samples of the audio signal are passed through each of the plurality of bandpass filters. The plurality of bandpass filters extract the audio signal with different resolutions; coarse resolution to very fine resolution. Output of each of the plurality of bandpass filters is communicatively connected with only one of a plurality of decimator. At outputs of the plurality of decimators, downsampled versions of the audio signal with different resolutions are available. An adder superimposes samples available at outputs of the plurality of decimators, thereby generating an accelerated version of the audio signal but also recovering the characteristics of the audio signal.
The first plurality of samples of the audio signal are passed through each of a plurality of bandpass filters, which generate a second set of plurality of samples at their outputs. A plurality of decimators are communicatively connected to the outputs of the plurality of bandpass filters. The plurality of decimators generate a third set of plurality of samples after passing the second set of plurality of samples generated by the plurality of bandpass filters through them. The constituents of the third set of plurality of samples are superimposed in an adder on a sample by sample basis and thus giving rise to a fourth plurality of samples. The fourth plurality of samples are played and the playing generates an accelerated version of the audio signal having a pitch which is consistent with a pitch of the audio signal in a non-accelerated condition.
The first plurality of samples of the audio signal is obtained by sampling the audio signal at a sampling rate. The sampling rate depends on a nature of the audio signal. The audio signal can be one of a speech signal, a pure music signal or an audio data signal which is combination of both speech and music signal. The accelerated rate at which the audio signal is to be played back and a number of the first plurality of samples of the audio signal determine a number of the fourth plurality of samples.
A method and system of playing back the audio signal at an accelerated rate has a plurality of subunits connected in parallel. There is at least a bandpass filter and a decimator in each of the plurality of subunits. Number of the plurality of subunits to be connected in parallel is determined by inspecting at least the sampling frequency of the audio signal, the accelerated rate at which the audio signal is to be played back and an interference introduced by bandpass filters provided in the plurality of subunits.
These and other objects of the present invention will be described in or be apparent from the following description of the preferred embodiments.
For the present invention to be easily understood and readily practiced, preferred embodiments will now be described, for purposes of illustration and not limitation, in conjunction with the following figures:
In one embodiment of the present invention, x(n) is, for example, two hundred and fifty six number of samples of the audio signal and the audio signal is played back at an accelerated rate of two. The constituents of the second set of plurality of samples in the said embodiment are thus each two hundred and fifty six in number. The constituents of the third set of plurality of samples in the said embodiment will be each 256/2=128 (one hundred and twenty eight) number of samples. The plurality of decimators 105, 109, 113 employ different decimation techniques. The decimation techniques employed by the plurality of decimators in the said embodiment may be as follows. The decimator 105 retains the first one hundred and twenty eight samples passing through it and drops the last one hundred and twenty eight samples. Thus the number of samples generated at an output of the decimator 105 is one hundred and twenty eight. The decimator 109 divides the two hundred and fifty six samples into four groups of sixty four samples each. It retains the first sixty four samples passing through it and drops the next sixty samples. It retains the third group of sixty four samples and drops the fourth group of sixty four samples. Hence the number of plurality of samples generated at an output of the decimator 109 is one hundred and twenty eight. The decimator 113 divides the two hundred and fifty six samples into one hundred and twenty eight groups of two samples each. It retains every alternate group of two samples and drops the rest of the samples. Number of plurality of samples generated at an output of the decimator 113 is also one hundred and twenty eight. In the embodiment of the invention discussed above, the adder 115 superimposes one hundred and twenty eight samples generated by each of the plurality of decimators 105, 109, 113. y(n) is thus one hundred and twenty eight samples available at an output of the signal processing unit 101. x(n) is two hundred and fifty six number of samples of the audio signal. Hence on playing y(n), an accelerated version of the audio signal is obtained.
By way of example, an audio signal is to be played back at an accelerated rate of two. Suppose, x(n) is two hundred and fifty six number of samples of the audio signal. x(n) is passed through each of the plurality of subunits, 203, 205, 207. The plurality of subunits generate a second set of plurality of samples after passing x(n) through them. The constituents of the second set of plurality of samples in the present embodiment are each 256/2=128 number of samples. In other words, number of samples present at outputs of each of the plurality of subunits 203, 205, 207 is one hundred and twenty eight. Number of samples in y(n), output of the adder, is again one hundred and twenty eight in the present embodiment. On playing y(n), a two times accelerated version of the audio signal is obtained.
The signal processing unit has a plurality of bandpass filters, a plurality of decimators and an adder. In block 307, the plurality of bandpass filters and the plurality of decimators are provided. The number of bandpass filters in the signal processing unit depends at least on the acceleration rate, the sampling frequency and an interference introduced by the plurality of bandpass filters. Q factor across the plurality of bandpass filters is kept constant. Pass bands and stop bands of the plurality of bandpass filters are designed to be different.
The plurality of decimators and the plurality of the bandpass filters correspond in number. Decimation technique employed by each of the plurality of decimators is different. The decimation technique employed in a decimator can include retaining at least one of a plurality of samples passing through the decimator and dropping the rest of the plurality of samples. The determination of which of the plurality of bandpass filters is to be connected with which of the plurality of decimators is done at the next block 309. Such a determination comprises inspecting a pass band and a stop band for each of the plurality of bandpass filters and inspecting the decimation technique for each of the plurality of decimators. The plurality of decimators are communicatively connected with outputs of the plurality of bandpass filters in block 311.
Block 313 illustrates that the first plurality of samples of the audio signal collected at block 303 are passed through each of the plurality of bandpass filters. The plurality of bandpass filters generate a second set of plurality of samples. In the next block 315, samples generated at an output of each of the plurality of bandpass filters is passed through the corresponding decimator to which the bandpass filter is connected. The plurality of decimators generate a third set of plurality of samples. Constituents of the third set of plurality of samples are superimposed in step 317 on a sample by sample basis, giving rise to a fourth plurality of samples. The fourth plurality of samples are played in step 319 generating an accelerated version of the audio signal. Actions described in blocks 305, 307, 309, 311, 313, 315 and 317 ensure that pitch of the accelerated version of the audio signal is consistent with a pitch of a non-accelerated version of the audio signal. The process ends at block 321.
The above-discussed embodiments of the invention are discussed for illustrative purposes only. It would be understood to a person of skill in the art that other embodiments and other configurations are possible, while still maintaining the spirit and scope of the invention. For a proper determination of the scope of the present invention, reference should be made to the appended claims.