Method and system for positioning implanted hearing aid actuators

Information

  • Patent Grant
  • 6712754
  • Patent Number
    6,712,754
  • Date Filed
    Tuesday, February 26, 2002
    23 years ago
  • Date Issued
    Tuesday, March 30, 2004
    21 years ago
Abstract
A non-invasive method and system are provided for positioning an implantable actuator of a semi or fully-implantable hearing aid relative to a component of the auditory system of a patient. The system includes a fixed member, a telescoping member, and a driver. The fixed member is connected to a mounting device for mounting the positioning system to a patient's skull. The telescoping member is connected to the fixed member and the implantable actuator and is movable relative to the fixed member to interface the implantable actuator with the component of the auditory system. The driver controls the movement of the telescoping member relative to the fixed member in response to electrical inputs. In one embodiment of the invention, a user device externally located relative to the patient provides the electrical inputs to the driver. The electrical inputs may be provided to the driver by the user device using either a wireless signal or via inductively coupling the inputs to the driver.
Description




FIELD OF THE INVENTION




The present invention relates to the field of implantable hearing aid devices, and more particularly, to non-invasive positioning of implanted actuators and interconnected componentry.




BACKGROUND OF THE INVENTION




Implantable hearing aid systems entail the subcutaneous positioning of various componentry on or within a patient's skull, typically at locations proximal to the mastoid process. In semi-implantable systems, a microphone, signal processor, and transmitter may be externally located to receive, process and inductively transmit a processed audio signal to an implanted receiver. Fully-implantable systems locate a microphone and signal processor subcutaneously. In either arrangement, a processed audio drive signal is provided to some form of actuator to stimulate the ossicular chain and/or tympanic membrane within the middle ear of a patient. In turn, the cochlea is stimulated to effect the sensation of sound.




By way of example, one type of implantable actuator comprises an electromechanical transducer having a magnetic coil that drives a vibratory member positioned to mechanically stimulate the ossicular chain via physical engagement. (See e.g. U.S. Pat. No. 5,702,342). In another approach, implanted excitation coils may be employed to electromagnetically stimulate magnets affixed within the middle ear. In each of these approaches, a changing magnetic field is employed to induce vibration. For purposes hereof, the term “electromechanical transducer” is used to refer to any type of implanted hearing aid actuator device that utilizes a changing magnetic field to induce a vibratory response.




In the case of actuators utilizing vibratory members, precise control of the engagement between the vibratory member and the ossicular chain is of critical importance. As will also be appreciated, the axial vibrations can only be effectively communicated to the ossicular chain when an appropriate interface exists (preferably a low mechanical bias or “no-load interface”) between the vibratory member and the ossicular chain. Overloading or biasing of the attachment can result in damage or degraded performance of the biological aspect (movement of the ossicular chain) as well as degraded performance of the mechanical aspect (movement of the vibratory member).




A number of arrangements have been proposed to precisely position actuators. These arrangements typically include among other things, a mechanical screw jack that controls the longitudinal movement of the actuator relative to the attachment interface. These screw jacks include a finely threaded screw that is manually adjusted, using a small tool, in or out to effect movement of a telescoping member that longitudinally positions the actuator relative to the attachment point.




Unfortunately, however, these devices suffer from several drawbacks. One drawback is that finite movements of the actuator are limited by the thread size of the screw. While it is often desirable to achieve a more finite adjustment of the actuator position, it is often not possible because of limitations in the available thread sizes. Another drawback is that regardless of tolerances in the system and screw design, a certain amount of “backlash” (movement of the screw in the reverse direction when forward pressure from the adjustment tool is released) exists in the system. To compensate for “backlash,” the screw is often adjusted slightly beyond the point where a desired position is reached. In some cases, several attempts at achieving the interface position must be made because of the unpredictability of the “backlash” in the system.




Also unfortunately, patients may experience a “drop-off” in hearing function after implantation due to changes in the physical engagement of the actuator caused by tissue growth. After implantation, however, it is difficult to readily assess the performance and adjust an implanted hearing aid actuator and interconnected componentry. For example, it is difficult to assess whether the vibratory member is in the desired physical engagement with the ossicular chain. Further, in the event of a “drop-off” in hearing after implantation, it is difficult to determine the cause, e.g. over/under loading of the interface or some other problem with the hearing aid, without invasive and potentially unnecessary surgery.




SUMMARY OF THE INVENTION




In view of the foregoing, a broad objective of the present invention is to provide a method and system that provides for non-invasive assessment of the performance of implanted hearing aid actuators and interconnected componentry. A related objective of the present invention is to provide a method and system for assessing the physical interface between a vibratory member of an implantable electromechanical transducer and the ossicular chain of a patient. Yet, another objective of the present invention is to provide for implantable hearing aid actuator performance assessment in a relatively simple and straightforward manner, thereby accommodating a simple office visit evaluation.




Another broad objective of the present invention is to provide a method and system for non or minimally-invasive adjustment of implanted actuators. A related objective is to provide a method and system for repositioning an electromechanical transducer to adjust the physical interface between the vibratory member and the ossicular chain of a patient. Yet, another object of the present invention is to provide a method and system for assessing the interface between an actuator and the ossicular chain of a patient and using the assessment to non-invasively reposition the electromechanical transducer to achieve a desirable interface between the transducer and the ossicular chain of the patient.




In carrying out the above objectives, and other objectives, features, and advantages of the present invention, a first aspect is provided, which includes a method and related system for externally assessing the performance of hearing aids that include implanted actuators. The method entails the positioning of a test device external to a patient having an implanted hearing aid actuator, and the use of the test device to obtain at least one test measure indicative of an electrical signal passing through the implanted actuator. In turn, the test measure(s) is employed to assess the performance of the implanted actuator.




In this regard, the present inventors have recognized that the electrical impedance of an implanted actuator (e.g. an electromechanical transducer) is indicative of the mechanical impedance present at the interface between the actuator and the middle ear of a patient (e.g. the ossicular chain). As such, the electrical impedance of an implanted actuator may be assessed to determine whether the desired actuator/middle ear interface is present.




The present inventors have also recognized that for a given implanted actuator driven by a predetermined test signal, the electrical impedance thereof may be determined either directly, (through a measure of the voltage and current of an electrical signal passing through the actuator in response to the test signal), or indirectly (from the magnetic field generated by the actuator in response to an electrical signal passing the implanted actuator.) In the latter case, the magnetic field strength is directly related to the amount of current passing through the actuator. In turn, all other things being equal, such current is inversely related to the electrical impedance present at the implanted actuator. That is, the smaller the electrical current passing through the actuator, the larger the electrical impedance thereof. Conversely, the larger the electrical current passing through the actuator, the smaller the electrical impedance. Such electrical impedance is directly related to the mechanical impedance present at the interface between the implanted actuator and middle ear of a patient. As such, by driving an implanted actuator at one or more predetermined frequencies, the resultant magnetic field measures or voltage and current-measures may be utilized to assess whether the implanted actuator is operative and whether a desired interface between the actuator and the middle ear of patient (e.g. the ossicular chain) is present.




As may be appreciated, for a given implanted actuator driven by a predetermined test signal, the electrical impedance thereof should be within a predeterminable range when the desired actuator/middle ear interface is present. By way of a particular example, when driven at or within a predetermined range of its resonant frequency, the electrical impedance of an implanted actuator will be greater when the actuator is not operatively interfaced with the middle ear of a patient than when a desired interface is present. Stated differently, the actuator will draw more current when the desired actuator/middle ear interface is present than when no operative interface is present.




In view of the foregoing, the method and system may further provide for the comparison of the test measure(s) obtained by the test device (the test measure being indicative of the impedance of an implanted electromechanical transducer) to one or more predetermined values or ranges to assess one or more performance parameters. For example, a single test measure may be first compared to a predeterminable threshold value that confirms a first performance parameter (e.g. that the implanted hearing aid actuator and interconnected componentry are operatively functional.) In that regard, the predetermined threshold value may correspond with a minimum electrical impedance that should be present at the implanted actuator when it receives the predetermined drive signal.




Additionally, or alternatively, when a test signal is provided at or within a predetermined range of the resonant frequency of an implanted actuator, the resultant test measure(s) may be compared to a predetermined range to assess a second performance parameter. For example, the test measure(s) may be compared to a predetermined range that indicates the presence of a desirable interface between an electromechanical transducer and middle ear of a patient. In this regard, and as noted above, the predetermined range may be selected to correspond with the increased current flow through an actuator that should occur when a desired middle ear interface is present.




The inventive method and system may alternatively or also entail the provision of predetermined test signals to an implanted actuator at a plurality of different frequencies distributed across a predetermined range. In turn, by sweeping the frequency of the test signal, the corresponding test-measures that are obtained by the measurement device may be employed for performance assessment. For example, a resonant frequency may be identified and the corresponding test measure(s) utilized to determine whether the hearing aid is operational and the desired actuator/middle interface is present.




In one approach, the test device may be a measurement device non-invasively employed to measure the magnetic field generated by an implanted electromechanical transducer. As noted above, the magnetic field is directly related to the electrical current passing through the transducer and inversely related to the electrical impedance of the implanted transducer. In conjunction with this approach, a predetermined test signal may be provided to the implanted electromechanical transducer and the magnetic field measured and compared to a first threshold value to determine if the transducer is operative (e.g. to confirm that implanted componentry and interconnections therebetween are not faulty). Further, when the predetermined test signal is provided at or within a predetermined range of the resonant frequency of an implanted transducer, the resultant magnetic field test measure(s) may be compared to a predeterminable range to assess whether a desirable transducer/ossicular chain interface is present.




In one embodiment, the measurement device may comprise at least one and preferably a pair of coils for measuring the magnetic field flux passing therethrough. The magnetic field flux measurements may be provided to a test measurement device that uses the predeterminable thresholds and ranges for test measure comparisons and generation of data indicative of the test results for an audiologist or other user. The utilization of dual coils effectively provides for the cancellation of ambient electromagnetic interference that may otherwise compromise the transducer magnetic field measurements. In this regard, when dual coils are utilized, the coils should preferably be of common size and configuration, should be co-axially aligned in relation to the implanted transducer, and be configured in opposing polarity. Further, by positioning the coil(s) within a predetermined orientation range relative to an implanted transducer, the use of predeterminable thresholds and ranges for test measure comparisons is facilitated.




In another approach, voltage and current measuring circuitry may be included in the hearing aid, such as in the implanted speech processing or signal processing logic. In this case, a transmitter may also be included in the hearing aid to transmit the voltage and current measurements to the test device. The test device may use the predeterminable thresholds and ranges for test measure comparisons and generation of data indicative of the test results for an audiologist or other user.




In either of the above approaches, the test device may be employed to provide the test signal transcutaneously from an external transmitter to an implanted receiver via inductive coupling. In turn, the implanted receiver is electrically interconnected with the implanted actuator so that impedance of the actuator may be determined through the measurement of the magnetic field flux or the measurement of the voltage and current passing through the actuator.




In carrying out the above objectives, and other objectives, features, and advantages of the present invention, a second aspect is provided, which includes a method and related system for externally positioning an actuator relative to a component of the auditory system. The method entails providing electrical inputs transcutaneously via a wireless signal or inductive coupling to an implanted actuator positioning system to selectively position the actuator relative to a component of the auditory system. The electrical inputs are provided to the implanted positioning system using an external user device. In this regard, the present method and system may be utilized at the time of the initial implant of an implantable actuator to achieve a desired interface between the actuator and a component of the auditory system (e.g. the ossicular chain.) The present method and system may thereafter be utilized to non-invasively (without surgery or other similar procedure) reposition the actuator relative to the ossicular chain. The positioning system provides significant advantage when utilized with the above described assessment system in that it permits non-invasive repositioning of an actuator to achieve a desired interface in response to an assessment that the interface between the actuator and the ossicular chain has become undesirable.




In one approach, the positioning system includes a fixed member, a telescoping member and a driver. The fixed member is connected to a mounting device for mounting the positioning system to a patient's skull. The telescoping member is connected to the fixed member and includes an actuator (electromechanical transducer) disposed on a distal end thereof. The telescoping member is movable relative to the fixed member to selectively position the actuator relative to the ossicular chain. The driver controls the selectively positioning of the telescoping member relative to the fixed member in response to electrical inputs. An externally located user device transcutaneously provides the electrical inputs to the driver. The user device may provide the electrical inputs via a wireless signal to the driver or may inductively couple the electrical inputs to the driver.




In one embodiment of the positioning system, the driver is a piezoelectric driver that includes first, second, and third piezoelectric elements. The first element cooperates with the second and third elements, which selectively clamp and unclamp the fixed and telescoping members, to selectively position the telescoping member relative to the fixed member.




As will be further described below, the present invention may be utilized in conjunction with either fully or semi-implantable hearing aid systems. In semi-implantable hearing aid applications, the predetermined test signal(s) may be provided via inductive coupling of an external transmitter and implanted receiver as noted above. The receiver output signal is then utilized to drive the implanted actuator. In fully-implantable applications, the predetermined test signal(s) may be provided via an externally located loudspeaker in the form of an audio signal that is received by an implanted microphone. The implanted microphone output signal is then utilized in driving the implanted actuator. Additional aspects, advantages and applications of the present invention will be apparent to those skilled in the art upon consideration of the following.











BRIEF DESCRIPTION OF THE DRAWINGS





FIGS. 1 and 2

illustrate implantable and external componentry respectively, of a semi-implantable hearing aid system application of the present invention.





FIG. 3

is a schematic illustration of alternative semi-implantable and fully-implantable applications for one embodiment of the present invention.





FIG. 4

is a process flow diagram illustrating process steps in one embodiment of the present invention.





FIG. 5

is an exemplary magnetic-field-strength vs. drive signal frequency plot for an exemplary, implanted electromechanical transducer.





FIG. 6

is a schematic illustration of alternative semi-implantable and fully-implantable applications for another embodiment of the present invention.





FIG. 7

is a process flow diagram illustrating process steps for the embodiment of

FIG. 6

of the present invention.





FIG. 8

is an exemplary impedance vs. drive signal frequency plot for an exemplary, implanted electromechanical transducer.





FIG. 9

is a schematic illustration of a positioning system application of the present invention.





FIG. 10

is another schematic illustration of the positioning system application of the present invention.





FIG. 11

is another schematic illustration of the positioning system application of the present invention.





FIG. 12

is another schematic illustration of the positioning system application of the present invention.





FIG. 13

is another schematic illustration of the positioning system application of the present invention.





FIG. 14

is another schematic illustration of the positioning system application of the present invention.





FIG. 15

is another schematic illustration of the positioning system application of the present invention.





FIG. 16

is another schematic illustration of the positioning system application of the present invention.





FIG. 17

is another schematic illustration of the positioning system application of the present invention.





FIG. 18

is a schematic illustration of a user device for the positioning system of FIG.


9


.





FIG. 19

is a process flow diagram illustrating exemplary process steps for the positioning system of FIG.


9


.











DETAILED DESCRIPTION




Hearing Aid System:




Reference will now be made to the accompanying drawings, which at least assist in illustrating the various pertinent features of the present invention. Although the present invention will now be described primarily in conjunction with semi-implantable hearing aid systems, it should be expressly understood that the present invention is not limited to this application, but rather, only to applications where positioning and assessment of an implantable device within a patient is required.





FIGS. 1 and 2

illustrate one application of the present invention. The illustrated application comprises a semi-implantable hearing aid system having implanted components shown in

FIG. 1

, and external components shown in

FIG. 2

As will be appreciated, the present invention may also be employed in conjunction with fully implantable systems, wherein all components of a hearing aid system are located subcutaneously.




In the illustrated system, an implanted biocompatible housing


100


is located subcutaneously on a patient's skull. The housing


100


includes an RF signal receiver


118


(e.g. comprising a coil element) and a signal processor


104


(e.g. comprising processing circuitry and/or a microprocessor). The signal processor


104


is electrically interconnected via wire


106


to an electromechanical transducer


108


. As will become apparent from the following description various processing logic and/or circuitry may also be included in the housing


100


according to the different embodiments of the present invention.




The transducer


108


is supportably connected to a transducer positioning system


110


, which in turn, is connected to a bone anchor


116


mounted within a patient's mastoid process (e.g. via a hole drilled through the skull). The electromechanical transducer


108


includes a vibratory member


112


for transmitting axial vibrations to a member of the ossicular chain of a patient (e.g. the incus).




Referring to

FIG. 2

, the semi-implantable system further includes an external housing


200


comprising a microphone


208


and speech signal processing (SSP) unit


318


shown in FIG.


3


. The SSP unit


318


is electrically interconnected via wire


202


to an RF signal transmitter


204


(e.g. comprising a coil element). The external housing


200


is configured for disposition around the rearward aspect of a patient's ear. The external transmitter


204


and implanted receiver


118


each include magnets,


206


and


102


respectively, to facilitate retentive juxtaposed positioning.




During normal operation, acoustic signals are received at the microphone


208


and processed by the SSP unit


318


within external housing


200


. As will be appreciated, the SSP unit


318


may utilize digital processing to provide frequency shaping, amplification, compression, and other signal conditioning, including conditioning based on patient-specific fitting parameters. In turn, the SSP unit


318


via wire


202


provides RF signals to the transmitter


204


. Such RF signals may comprise carrier and processed acoustic drive signal portions. The RF signals are transcutaneously transmitted by the external transmitter


204


to the implanted receiver


118


. As noted, the external transmitter


204


and implanted receiver


118


may each comprise coils for inductive coupling signals therebetween.




Upon receipt of the RF signal, the implanted signal processor


104


processes the signals (e.g. via envelope detection circuitry) to provide a processed drive signal via wire


106


to the electromechanical transducer


108


. The drive signals cause the vibratory member


112


to axially vibrate at acoustic frequencies to effect the desired sound sensation via mechanical stimulation of the ossicular chain of a patient.




More particularly, the drive signals may be provided to a coil positioned about a cantilevered, conductive leaf member within the electromechanical transducer


108


, wherein such leaf member is physically interconnected to the vibratory member


112


. The modulating drive signals yield a changing magnetic field at transducer


108


, thereby effecting movement of the leaf member and axial movement or vibration of the vibratory member


112


. As will also be appreciated, the axial vibrations can only be effectively communicated to the ossicular chain when an appropriate interface exists (e.g. preferably a no-load interface), between the vibratory member


112


and the ossicular chain (e.g. via the incus bone). That is, if a desirable mechanical interface has been established (e.g. a no-load physical engagement with a fibrous union), the vibratory member


112


will readily communicate axial vibrations to the ossicular chain of a patient. On the other hand, if the vibratory member


112


is “underloaded” (no interconnection has been established), axial vibrations may not be communicated. Further, if the vibratory member


112


is “overloaded” against the ossicular chain, axial vibration transmission may be adversely effected.




Device and Method for External Assessment of an Implanted Hearing Aid Actuator:




Referring now to

FIG. 3

, to allow for external assessment of the performance of implanted hearing aid actuators and interconnected componentry, one embodiment of the present invention provides for the use of an externally positioned measurement device


300


that measures the strength of the magnetic field produced by the implanted electromechanical transducer


108


. The magnetic field strength, in turn, is directly related to the amount of current passing through the implanted electromechanical transducer


108


, which is inversely related to the electrical impedance present at the transducer


108


. Such electrical impedance is in turn directly related to the mechanical impedance present at the interface between the transducer


108


and middle ear of a patient. As such, the resultant magnetic field measures may be utilized to assess whether the transducer


108


is operative and whether a desired interface between the transducer


108


and the middle ear of patient (e.g. the ossicular chain) is present.




The output of the measurement device


300


is provided to a test measurement device


328


, which uses predeterminable thresholds and ranges for test measure comparisons and generation of data indicative of the assessment results for an audiologist or other user. Alternatively, it will be appreciated that the measurement device


300


could be incorporated into the test measurement device


328


so that a single device is provided to measure and process the outputted measurements for the user.




The measurement device


300


may comprise a pair of inductive coils,


302


and


304


, which are of common size and configuration, and which are coaxially disposed. Further, coils


302


and


304


, may be electrically interconnected as illustrated. Such an arrangement provides for effective removal (e.g. via signal cancellation) of any electromagnetic interference that may be present in the ambient environment.




As noted, the measurement device


300


provides an output signal indicative of the strength of the magnetic field generated by the implanted electromechanical transducer


108


. During use, the measurement device


300


may be manipulated until the amplitude of the output signal provided thereby indicates that the measurement device


300


is in an aligned orientation with the implanted electromechanical transducer


108


. Such aligned orientation facilitates the utilization of predetermined thresholds and test ranges as will be further described.




On

FIG. 3

, alternate applications for utilizing measurement device


300


and test measurement device


328


are illustrated. Such applications correspond with the use of the devices,


300


and


328


, for assessing performance in semi-implantable and fully implantable hearing aid systems. The illustrated embodiment includes an oscillator


306


, a reference transmitter


308


, a signal processing unit


310


, a test control processor


312


, and a user interface


314


. The test control processor


312


, oscillator


306


, and reference transmitter


308


, cooperate to provide one or more test signals for assessing the performance of the implanted hearing aid system componentry, including the implanted electromechanical transducer


108


.




More particularly, the test control processor


312


may provide signals for setting oscillator


306


to output a reference signal at a predetermined frequency. The outputted reference signals are provided to the reference transmitter


308


, which in turn outputs an RF test signal for the hearing aid system and the signal processing unit


310


. The signal processing system


310


stores the reference signal characteristics for assessing the performance of the hearing aid system, as will be further discussed below. In this regard, the test control processor


312


may also provide signals for setting oscillator


306


to output a reference signal that may be swept across a predetermined frequency range for purposes discussed further below.




When employed in conjunction with a semi-implantable system, the RF test signal from the reference transmitter


308


may be provided to the external transmitter


204


(e.g. via an input port which would normally receive a jack at the end of wire


202


for acoustic signal input from the microphone


208


and SSP


318


). In turn, the external transmitter


204


inductively couples the RF test signal to the implanted receiver


118


, which provides the RF test signal to the signal processor


104


. The signal processor


104


extracts and conditions the test signal and supplies the test signal to the transducer


108


.




In the fully-implantable system embodiment, the RF test signal from the reference transmitter


308


may be provided to a speaker


320


for outputting an acoustic test signal. In turn, an implanted microphone


322


utilized in the fully implantable system subcutaneously receives the acoustic test signal and provides the test signal to the signal processor


104


. The implanted signal processor


104


may comprise signal processing capabilities analogous to those of SSP processor


318


. In any case, test signals are provided by the implanted signal processor


104


to drive the implanted electromechanical transducer


108


. If the implanted componentry of the semi or fully-implantable hearing aid system is operational and properly interconnected, the test signal provided to the implanted electromechanical transducer


108


will result in the generation of a magnetic field thereabout.




The measurement device


300


may be positioned to measure the strength of the magnetic field generated by the implanted electromechanical transducer


108


. More particularly, the measurement device


300


is externally positioned adjacent to the transducer


108


to measure the magnetic flux passing through the coils


302


and


304


. The measurement device


300


provides an output signal in relation thereto to the signal processing unit


310


. In this regard, the signal processing unit


310


may include indicator logic


324


to facilitate the positioning and alignment of the measurement device


300


with the implanted electromechanical transducer


108


. In one example, the indicator logic


324


could be in the form of an audio indicator that generates a signal for the user interface


314


that causes a series of tones to be generated during alignment of the measurement device


300


. The tones facilitate alignment by indicating when a maximum measure of the magnetic flux is received and thereby proper alignment with the transducer


108


is achieved. In another example, the indicator logic


324


could generate a signal for the user interface


314


and more particularly for the display portion


326


that indicates via graphical or other representation to a user when the measurement device


300


is in proper alignment with the transducer


108


(e.g. a maximum measure of the magnetic flux is received in the signal processing unit


310


). It will be appreciated that other methods of alignment indication could be utilized as a matter of design choice and that what is important is that an indication is given that indicates proper alignment of the measurement device


300


with the transducer


108


.




Once positioned, the measurement device


300


measures the magnetic flux passing through the coils,


302


and


304


, in response to test signals provided to the hearing aid system and provides an output signal in relation thereto. The output signal from the measurement device


300


may be provided to the signal processing unit


310


for processing. The processing could be any processing representative of generating an output indicative, or that may be used, to assess the performance of the implanted componentry of the semi-implantable, or fully-implantable system. In one example, the signal processing unit


310


could detect the amplitude of the signal from the measuring device


300


that is synchronous with the amplitude of the original test signal provided to the signal processing unit


310


by the oscillator


306


. The output of the signal processing unit


310


is provided to the user interface


314


and more particularly to the display


326


as further described in reference to FIG.


4


.





FIG. 4

illustrates a process flow diagram corresponding with an exemplary performance testing use of the above-described embodiment of the present invention. As indicated, at the start of a test procedure, the measurement device


300


may be externally positioned relative to an implanted electromechanical transducer


108


. Preferably, the measurement device


300


will be located to maximize the amount of magnetic field flux generated by the implanted electromechanical transducer


108


passing through the coils


302


and


304


of the measurement device


300


.




In this regard, a test signal of known characteristics may be provided, e.g. via cooperation of the test control processor


312


, oscillator


306


, and reference transmitter


308


. In turn, the measurement device


300


may be utilized to measure the magnetic field strength generated by the implanted electromechanical transducer


108


in response to the applied test signal. The signal processing unit


310


may utilize the measured field strength to facilitate optimal positioning of the measurement device


300


using the indicator logic


324


. By way of example, the test control processor


312


may be preprogrammed so that a series of magnetic field measurements are obtained as a user manually moves the measurement device


300


relative to the implanted electromechanical transducer


108


. When optimal positioning has been achieved, the signal processing unit


310


via the indicator logic


324


may provide an output signal to the user interface


314


(e.g. an audible and/or visual output).




Further, in this regard the test control processor


312


may be provided with predetermined information sets to facilitate the positioning of measurement device


300


. By way of example, for an implanted electromechanical transducer


108


of known characteristics, an information set may be provided that reflects the anticipated magnetic field strength that should be generated by the implanted transducer


108


when driven by a predetermined test signal and located at a given predetermined distance relative to measurement device


300


. Further, the signal processing unit


310


and user interface


314


may be used as discussed above to prompt and otherwise instruct a user during positioning of the measurement device


300


. As will be appreciated, the various positioning techniques noted above may all entail iterative comparison of the measured magnetic field strength measures with one or more predetermined field strength measures to achieve proper positioning.




Further in this regard, the field strength measure(s) may also be utilized in a preliminary assessment of the performance of the implanted componentry of the given semi-implantable or fully implantable hearing aid system. More particularly, and referring also to

FIG. 5

, if a predetermined magnetic field strength (M


1


) is not measured, e.g. after positioning/repositioning of measurement device


300


, signal processing unit


310


may determine that one or more connections or one or more implanted components of the given hearing aid system is faulty. In turn, an appropriate output indicating the same may be provided at user interface


314


. In the event that the preliminary assessment indicates that the implanted componentry and interconnections appear operational, the process may continue to further assess the performance of the implanted electromechanical transducer interface with the middle ear of a patient.




Specifically, the test control processor


312


, oscillator


306


, and reference transmitter


308


, may cooperate to provide further test signals of predetermined frequency to drive the electromechanical transducer


108


. In turn, the measurement device


300


measures the magnetic field generated by the transducer


108


, and the measurement is used to determine whether the desired transducer/middle ear interface is present. By way of example, where the resonant frequency (fr) of the given implanted electromechanical transducer


108


is known, a test signal may be provided at such frequency or within a predetermined range thereof (f


1


to f


2


), and the resultant measured field strength compared to a predetermined range (e.g. >M


3


) wherein a measurement within such range indicates that a physical transducer/ossicular chain interface is present.




In this regard, it will be appreciated that a minimum field strength (M


2


) is predeterminable for an operable transducer


108


driven at its resonant frequency fr when the transducer


108


is “underloaded” (no physical interface with an ossicular chain is present). Also in this regard, when a proper physical interface is present, an increased magnetic field strength M


3


for an operable transducer


108


driven at its resonant frequency fr is predeterminable. Finally, when an “overloaded” physical interface is present, a further increased magnetic field strength (e.g. >M


5


) for an operable transducer


108


driven at its resonant frequency fr is predeterminable. Thus, a predeterminable measured field strength range (e.g. M


3


to M


5


) may be employed to assess the transducer interface.




In a further approach, a plurality of magnetic field strength measurements may be made in corresponding relation to the setting of the test signal at a corresponding plurality of different frequencies. Such sweeping of the test signal frequency yields a plurality of magnetic field measurements from which a minimum value may be identified. Such minimum value will correspond with the resonant frequency of the given implanted electromechanical transducer


108


. In turn, performance assessment may be completed utilizing ranges analogous to those indicated above.




In this regard, those skilled in the art will recognize various different frequencies that could be used, and therefore the following examples are provided for the purpose of illustration and not limitation. Preferably, the range of frequencies chosen are narrow enough so that sweeping of the test signal frequency can be performed in a timely manner, but broad enough to provide useful information relating to the performance of the implanted transducer


108


. For example, using the frequency range from substantially 1 kHz to 5 kHz will provide information relating to the biological aspects of the interface, e.g. resonance associated with the ossicular chain and resonance associated with the ear canal resonance. On the other hand, while taking longer to perform the sweeping function, using the frequency range from substantially 100 Hz to 10 kHz will provide information on the biological aspects as well as the electrical aspects of the transducer


108


, e.g. resonance of transducer


108


, etc.




Device and Method for External Assessment of an Implanted Hearing Aid Actuator:




Referring now to

FIG. 6

, to allow for external assessment of the performance of implanted hearing aid actuators and interconnected componentry, another embodiment of the present invention provides for the use of an externally positioned test measurement device


608


to obtain measurements of the voltage and current, and thus the electrical impedance (electrical impedance=voltage/current), of an electrical signal passing through the transducer


108


. Such electrical impedance is directly related to the mechanical impedance present at the interface between the implanted transducer and middle ear of a patient. As such, the resultant electrical impedance measures may be utilized to assess whether the transducer


108


is operative and whether a desired interface between the transducer


108


and the middle ear of patient (e.g. the ossicular chain) is present. The impedance measurements are made in response to the input of the above-described test signals. The test measurement device


608


, in turn, uses predeterminable thresholds and ranges for test measure comparisons and generation of data indicative of the test results for an audiologist or other user.




As with the above embodiment, this embodiment uses the electrical impedance to determine the operability of the implanted transducer


108


and the interface established between the transducer


108


and the ossicular chain of a patient. In this embodiment, however, the impedance is directly measured (e.g. via measurements of voltage and current) and provided to the test measurement device


608


for comparison and generation of data indicative of the assessment results.




On

FIG. 6

, alternate applications for utilizing measurement device


608


are illustrated. Again, such applications correspond with the use of the device


608


for assessing performance of semi-implantable and fully implantable hearing aid systems. The illustrated embodiment includes the oscillator


306


, a reference transceiver


614


, a signal processing unit


610


, the test control processor


312


, the user interface


314


, and a receiver


606


. As with the above embodiment, the test control processor


312


, oscillator


306


, and reference transmitter


308


cooperate to provide one or more test signals for assessing the performance of the implanted hearing aid system componentry, including the implanted electromechanical transducer


108


. More particularly, the test control processor


312


may provide the signals for setting oscillator


306


to output a reference signal at a predetermined frequency to the reference transmitter


308


and signal processing unit


610


. As with the above embodiment, the test control processor


312


may also provide signals for setting oscillator


306


to output a reference signal that may be swept across a predetermined frequency range. In turn, the reference transmitter


308


outputs the RF test signal.




In this case, however, for the semi-implantable hearing aid embodiment, the external transmitter


204


and implanted receiver


118


are replaced by the transceiver


614


and transceiver


604


. The transceiver


614


is included to inductively couple the reference signals to the transceiver


604


. The transceiver


614


also receives the voltage and current measurements from transceiver


604


and provides the voltage and current measurements to the signal processor


610


via the path


612


. The transceiver


604


on the other hand receives the reference signals for the implanted signal processor


616


and provides the voltage and current measurements to the transceiver


614


. The voltage and current measurements are provided to the transceiver


604


by voltage and current (V/I) measurement logic


602


as will be discussed below. The implanted signal processor


616


extracts and conditions the reference signal and supplies the reference signal to the implanted electromechanical transducer


108


.




In the fully implantable system embodiment, the RF test signal output by reference transmitter


308


may be provided to the speaker


320


for outputting an acoustic test signal. In turn, the microphone


322


, utilized in the fully implantable system, subcutaneously receives the acoustic test signal and provides the test signal to the signal processor


616


. As with the above embodiment, the implanted signal processor


616


may comprise signal processing capabilities analogous to those of SSP processor


318


. In any case, the implanted signal processor


616


provides test signals to drive the implanted electromechanical transducer


108


.




The signal processor


616


also includes voltage and current (V/I) measuring logic


602


. The V/I measuring logic


602


measures the voltage and current of the test signals provided to the transducer


108


. Further, in the case of a fully implantable hearing aid embodiment, the signal processor


616


also includes a transmitter


600


to provide the voltage and current measurements to the receiver


606


in the test measurement device


608


. In other words, in the semi-implantable embodiment, the V/I measuring logic


602


provides the voltage and current measurements to the transceiver


604


, while in the fully implantable embodiment, the V/I measuring logic


602


provides the voltage and current measurements to the transmitter


600


. The transceiver


604


in turn provides the voltage and current measurements to the signal processor


610


via the transceiver


614


while the transmitter


600


provides the voltage and current measurements to the signal processing system


610


via the receiver


606


.




The transmitter


600


and receiver


606


could be any device capable of transcutaneously exchanging signals indicative of the measured voltage and current. In one example, the transmitter


600


and receiver


606


could be an infrared transmitter and receiver. In another example, the transmitter


600


and receiver


606


could be a pair of coils that inductively couple signals therebetween, similar to the transmitter


204


and receiver


118


. It will be appreciated that in this case, however, the receiver


606


may be included in a separate housing and may provide the inductively coupled information to the processing unit


610


via a wireless or wireline connection.




The voltage and current measurements from the V/I logic


602


are processed by the signal processing unit


610


. The processing could be any processing representative of generating an output indicative, or that may be used, to assess the performance of the implanted componentry of semi-implantable or fully-implantable hearing aids. In one example, the signal processing unit


610


may compute the impedance of the transducer


108


and compare the computed impedance to the frequency of the original test signal provided to the signal processing unit


610


by the oscillator


306


. The output of the signal processing unit


310


is provided to the user interface


314


and more particularly to the display


326


, as further described in reference to FIG.


7


.





FIG. 7

illustrates a process flow diagram corresponding with an exemplary performance testing using the above-described embodiment of the present invention. On

FIG. 7

, the measurement device


608


is positioned proximate to the patient so that the receiver


606


may receive the V/I measurements from the V/I logic


602


. A test signal of known characteristics is then provided, e.g. via cooperation of the test control processor


312


, oscillator


306


, and reference transmitter


308


. In turn, the measurement device


608


is utilized to receive voltage and current measurements from the V/I logic


602


in response to the applied test signal.




Further in this regard, the voltage and current measurement(s) may be utilized in a preliminary assessment of the performance of the implanted componentry of the given semi or fully-implantable hearing aid system. For instance, if a voltage and current is not measured, signal processing unit


610


may determine that one or more connections or one or more implanted components of a given implanted hearing aid system is faulty. In turn, an appropriate output indicating the same may be provided at user interface


314


. In the event that the preliminary assessment indicates that the implanted componentry and interconnections appear operational, the process may continue to further assess the performance of the transducer interface with the middle ear of a patient.




Specifically, and referring to

FIG. 8

, the test control processor


312


, oscillator


306


, and reference transmitter


308


, may cooperate to provide a test signal of predetermined frequency to drive the transducer


108


. In turn, the voltage and current of the generated drive signal for transducer


108


may be measured by the V/I measurement logic


602


and the measurements used to determine whether the desired transducer/middle ear interface is present. By way of example, where the resonant frequency fr of the given implanted transducer


108


is known, the test signal may be provided at such frequency or within a predetermined range thereof (f


1


to f


2


), and the resultant impedance measurement (computed from the voltage and current measurements) compared to the known frequency of the test signal.




In this regard, it will be appreciated that a graphical comparison of the impedance versus the frequency is predeterminable for an operable transducer


108


driven at its resonant frequency fr when the transducer


108


is “underloaded” (no physical interface with an ossicular chain is present), as indicated by the plot


804


. Further, when a physical interface is present, a graphical comparison of the impedance versus the frequency for an operable transducer


108


driven at its resonant frequency fr is also predeterminable as indicated by the plots


800


and


802


. Still further, when a physical interface is present, and is also a desired interface, a graphical comparison of the impedance versus the frequency is predeterminable as indicated by the plot


802


. Still further yet, when an “overloaded” physical interface is present, a graphical comparison of the impedance versus the frequency is predeterminable for an operable transducer


108


driven at its resonant frequency fr, as indicated by the plot


800


. Thus, predeterminable comparisons of the impedance versus the known test signal frequency may be employed to assess whether an interface is present and if so whether the interface is a desirable interface (e.g. not “underloaded” or “overloaded”).




In a further approach, a plurality of voltage and current measurements may be made in corresponding relation to the setting of the test signal at a corresponding plurality of different frequencies. Such sweeping of the test signal frequency yields a plurality of impedance measurements from which a minimum value may be identified. Such minimum value will correspond with the resonant frequency of the given implanted electromechanical transducer


108


. In turn, performance assessment may be completed utilizing ranges analogous to those indicated above.




In this regard, those skilled in the art will recognize various pluralities of different frequencies that could be used, and therefore the following examples are provided for the purpose of illustration and not limitation. Preferably, the range of frequencies chosen are narrow enough so that sweeping of the test signal frequency can be performed in a timely manner, but broad enough to provide useful information relating to the performance of the implanted transducer


108


. For example, using the frequency range from substantially 1 kHz to 5 kHz will provide information relating to the biological aspects of the interface, e.g. resonance associated with the ossicular chain and resonance associated with the ear canal resonance. On the other hand, while taking longer to perform the sweeping function, using the frequency range from substantially 100 Hz to 10 kHz will provide information on the biological aspects as well as the electrical aspects of the transducer


108


, e.g. resonance of transducer


108


, etc.




Device and Method for Positioning an Actuator Relative to a Component of the Auditory System:




As can be appreciated, the axial vibrations of the vibratory member


112


can only be effectively communicated to the ossicular chain when an appropriate interface exists, e.g. preferably a no-load interface, between the vibratory member


112


and the ossicular chain. Advantageously, the above-described embodiments provide a method and system for externally assessing this interface to detect various conditions, e.g. “overloaded,” “underloaded,” as well as a proper interface.




Yet, another embodiment of the present invention, namely the positioning system


110


, provides a method and system for external finite adjustment of the physical interface. Advantageously, the present embodiment may be utilized during the initial implant procedure to precisely position an implantable transducer to achieve a desired interface with a component of the auditory system. Also advantageously, the present embodiment may be utilized in conjunction with the above methods, as well as other methods to the extent they exist or become known, to externally adjust the interface responsive to a determination that the interface is “underloaded” or “overloaded.”




Referring to

FIG. 9

, the positioning system


110


permits finite adjustment of the transducer


108


, and specifically the vibratory member


112


, relative to the ossicular chain. The positioning system


110


includes a driver


910


, a fixed member


908


, and a telescoping member


900


. The fixed member


908


is connected to the bone anchor


116


. The telescoping member


900


is connected to the transducer


108


and slidably interconnected to the fixed member


908


so that the telescoping member


900


is selectively positionable via longitudinal travel relative to the fixed member


908


to position the vibratory member


112


relative to the ossicular chain. The telescoping member


900


and fixed member


908


could be any members or devices that are selectively positionable relative to each other under the control of the driver


910


.




The driver


910


controls the selective positioning of the telescoping member


900


responsive to electrical inputs. The driver


910


could be any device or group of devices configured to automatically control the selective positioning of the telescoping member


900


relative to the fixed member


908


responsive to the input of electrical signals. Some examples of the driver


910


could include without limitation, a piezoelectric driver or an electric motor.




As will become apparent from the following description, the electrical input could originate from a variety of sources as a matter of design choice. For example, the electrical input could be provided via a wireline connection established between an external device and the implanted signal processing unit, e.g. units


104


and


616


, of a semi-implantable or fully implantable hearing aid. In another example, the electrical input could be provided via a wireless signal provided to an implanted signal processing unit or directly to the driver


910


. In yet another example, the electrical input could be inductively coupled to a signal processing unit or the driver


110


.




Referring to

FIGS. 10-18

, a preferred example of the-positioning system


110


is shown. In this case, the driver


910


is a piezoelectric driver. The piezoelectric driver includes piezoelectric elements


1002


-


1006


that selectively position and secure the telescoping member


900


relative to the fixed member


908


. The driver is preferably hermetically sealed within the members,


908


and


900


, to protect from exposure to bodily fluids. In that regard, the fixed member


908


and telescoping member


900


are preferably constructed from a biocompatible material, which could be a conventional type known in the art.




The desired positioning of the transducer


108


and vibratory member


112


relative to the ossicular chain is achieved through a series of finite inchworm movements initiated by an electrical input to the piezoelectric elements


1002


-


1006


. In the off position, no voltage is applied to the elements


1002


-


1006


and the elements


1002


and


1006


are expanded to clamp the telescoping member


900


in a fixed position relative to the fixed member


908


as illustrated by FIG.


10


. When a movement, such as a movement of the transducer


108


in the direction of the ossicular chain is desired, a voltage is applied to the element


1006


to unclamp the element


1006


from the telescoping member


900


. As illustrated in

FIG. 11

, the movement is then carried out by applying a voltage to the element


1004


that causes the element


1004


to expand against the clamped element


1002


and unclamped element


1006


, which is held in position by the fixed member


908


. Upon completion of the expansion of the element


1004


, voltage is applied to the element


1002


to unclamp the element


1002


. Voltage to element


1006


is then terminated so that the element


1006


returns to the clamped position on the telescoping member


900


. Once the element


1006


is clamped, the voltage to the element


1004


is terminated allowing the element


1004


to contract, taking with it the element


1002


, as illustrated in FIG.


12


. As illustrated in

FIG. 13

, upon completion of the contraction of the element


1004


, voltage to the element


1002


is terminated so that the element


1002


returns to the clamped position on the telescoping member


900


. In this regard, the elements


1002


-


1006


are again in the off position, where no voltage is applied, and the elements


1006


and


1002


are clamped to the telescoping member


900


thereby securing the telescoping member


900


and fixed member


908


together. In this case, however, the telescoping member


900


has been advanced a predetermined amount relative to the fixed member


908


to reposition the transducer


108


and vibratory member


112


in the direction of the ossicular chain.




The voltage to the center element


1004


is preferably applied in the form of a staircase waveform, which causes the element


1004


to expand or contract in incremental steps, with each step corresponding to a different step of the staircase waveform. As will be appreciated, the distance the element


1004


incrementally extends or contracts is a function of the amplitude of the step signal corresponding to one of the steps of the staircase waveform. Similarly, the frequency of the step signal determines the speed with which the element


1004


extends. By decreasing the amplitude of the voltage, the incremental extensions become smaller, thereby allowing very fine positional adjustments of the vibratory member


112


relative to the ossicular chain to be achieved. Conversely, by increasing the amplitudes, the incremental extensions may be increased. Advantageously, this permits course adjustment of the positioning system


110


initially following the implant, and subsequent fine-tuning on the order of approximately 0.0004 micrometers to achieve a no-load interface with the ossicular chain.




Referring to

FIGS. 14-17

, the direction of movement for the telescoping member


900


may be reversed using the ascending and descending sides of the staircase waveform and by changing the sequence of the clamping and unclamping of the elements,


1006


and


1002


. For example, when a movement of the transducer


108


in the direction away from the ossicular chain is desired, a voltage is applied to the element


1006


to unclamp the element


1006


from the telescoping member


900


. As illustrated in

FIG. 15

, the movement is carried out by applying voltage to the element


1004


that causes the element


1004


to contract bringing with it the clamped element


1002


and telescoping member


900


, which is held in position by the clamped member


1002


. Upon completion of the contraction of element


1004


, voltage is applied to the element


1002


to unclamp the element


1002


. Substantially simultaneously, voltage to element


1006


is terminated so that the element


1006


returns to the clamped position on the telescoping member


900


. Once the element


1006


is clamped, the voltage to the element


1004


is terminated allowing the element


1004


to expand, taking with it the unclamped element


1002


, as illustrated in FIG.


16


. When the element


1004


reaches the expanded position, voltage to element


1002


is terminated so that the element


1002


returns to the clamped position on the telescoping member


900


. In this regard, the elements


1002


-


1006


are again in the off position, where no voltage is applied, and the elements


1002


and


1006


are clamped to the telescoping member


900


thereby securing together the telescoping and fixed members


900


and


908


. In this case, however, the telescoping member


900


has been retracted a predetermined amount relative to the fixed member


908


to reposition the transducer


108


and vibratory member


112


. Advantageously, the telescoping member


900


may be stopped in any sequence and the clamping elements


1006


and


1002


clamped to fix the position of the vibratory member


112


relative to the ossicular chain.




Referring to

FIG. 18

, in one example of the invention, the positioning system


110


may be externally controlled by a user device


1800


. The user device


1800


may be any device capable of generating either a wireless or a wireline drive signal for the driver


910


. In this regard, the user device


1800


may include piezoelectric logic


1806


, a transmitter


1808


, and a user interface


1810


.




The user interface


1810


provides a means for controlling movements of the positioning system


110


via the piezoelectric logic


1806


. The piezoelectric logic


1806


, on the other hand, includes circuitry for generating the on/off voltages for the elements


1002


and


1006


, as well as the staircase waveform for driving the element


1004


. In this regard, the piezoelectric logic may include conventional circuitry such as a staircase generator, a timing generator and oscillator to control the speed and travel of the element


1004


responsive to inputs received at the user interface


1810


. The drive signals generated by the piezoelectric logic


1806


are provided to the transmitter


1808


for transmission to the driver


910


.




As will be appreciated, the transmitter


1808


may be a conventional wireless or wireline transmitter that may utilize a variety of wireless or wireline protocols as a matter of design choice, to provide the drive signals to the driver


910


. For example, when employed in conjunction with a semi-implantable system, the drive signals may be provided over a wire


1802


to the external transmitter


204


(e.g. via an input port which would normally receive a jack at the end of wire


202


for acoustic signal input from the microphone


208


and SSP


318


). In this case, the external transmitter inductively couples the drive signals to the receiver


118


, which provides the signals to the driver


910


via the signal processor


1812


. On the other hand, when the user device


1800


is employed in conjunction with a fully implantable device, the drive signals may be provided via a wireless signal to a receiver


1802


included in the signal processing unit


1804


. It should be noted, however, that with the exception of the receiver


1802


for receiving the wireless drive signals form the user device


1800


, the signal processing unit


1812


may be substantially similar to either of the signal processing units


104


and


616


.





FIG. 19

illustrates a process flow diagram corresponding with an exemplary performance testing and adjustment of the transducer interface using the positioning system


110


. It should be noted that while the protocol of

FIG. 19

is directed to testing and adjustment of the interface at some time subsequent to the initial implant, the positioning system


110


and test measurement devices


328


and


608


could be utilized at the time of implant to achieve the initial desired interface between the transducer


108


and the ossicular chain. Furthermore as described in conjunction with

FIG. 19

, the positioning system


110


may thereafter be utilized with one of the test measurement devices


328


and


608


to externally adjust the interface without surgical procedure.




As indicated on

FIG. 19

, according to the present protocol, one of the devices,


328


and


608


, may be utilized to provide a test signal of known characteristics to the hearing aid. Thereafter, either a direct measure of the impedance via voltage and current measurements provided by V/I logic


602


or an inferred measure of the impedance via measured magnetic field strength from measurement device


300


is utilized to assess the performance characteristics of the transducer


108


.




In the event that the performance characteristics indicate that the transducer interface requires adjustment, the user device


1800


is utilized to generate and provide the requisite drive signals to the positioning system


110


to achieve the desired repositioning of the vibratory member


112


. In this regard, after repositioning of the vibratory member


112


, the device


328


or the device


600


may again be utilized to determine the performance characteristics of the transducer


108


and the user device


1800


again utilized to further adjust the position of the vibratory member


112


as necessary. In other words, one or more iterations of testing and repositioning may be performed until desired performance characteristics are achieved. Advantageously, however, no surgical procedure or anesthetizing of the patient is required during the above described testing and adjustment of the transducer interface.




The embodiment descriptions provided above are for exemplary purposes only and are not intended to limit the scope of the present invention. Various modifications and extensions of the described embodiments will be apparent to those skilled in the art and are intended to be within the scope of the invention as defined by the claims which follow.



Claims
  • 1. A positioning system for positioning an implantable actuator in a hearing aid relative to a component of an auditory system of a patient, comprising:an implantable fixed member for interconnection to a mounting device that is adapted to fixedly mount the system to a patient's skull; an implantable telescoping member supportably interconnected and movable relative to the fixed member; an implantable actuator supportably interconnected to a distal end of said telescoping member; and an implantable driver, supportably interconnected to at least one of said fixed member and said telescoping member, to selectively drive and thereby position the telescoping member relative to the fixed member in response to electrical inputs provided thereto.
  • 2. The system of claim 1, wherein the driver is a piezoelectric driver.
  • 3. The system of claim 2, wherein the actuator comprises:an electromechanical actuator having a vibratory member adapted to stimulate a component of an auditory system of a patient.
  • 4. The system of claim 2, wherein the piezoelectric driver comprises:a first piezoelectric element to selectively position the telescoping member relative to the fixed member responsive to a first drive signal.
  • 5. The system of claim 4, wherein the piezoelectric driver further comprises:a second piezoelectric element for biasing the telescoping member into clamped engagement with the fixed member and adapted to release the telescoping member from said clamped engagement with the fixed member responsive to a second drive signal.
  • 6. The system of claim 5, wherein the piezoelectric driver comprises:a third piezoelectric element for biasing the telescoping member into clamped engagement with the fixed member and adapted to release the telescoping member from said clamped engagement with the fixed member responsive to a third drive signal.
  • 7. The system of claim 1, further comprising:a user device, externally locatable relative to a patient, to selectively control the provision of the electrical inputs to the driver.
  • 8. The system of claim 7, further comprising: externally locatable transmitter that is responsive to the user device to transcutaneously provide wireless control signals to effect the provision of the electrical inputs to the driver.
  • 9. The system of claim 8, further comprising:an implantable receiver adapted to receive transcutaneously provided wireless signals from the transmitter and to effect said provision of electrical inputs to the driver.
  • 10. The system of claim 8, wherein the user device is adapted to provide control signals to the transmitter over a wire interconnected therebetween.
  • 11. A method for positioning an implantable actuator of a hearing aid relative to a component of an auditory system of a patient, the method comprising:determining a status of an interface between the implanted actuator and the component of the auditory system; and selectively providing electrical inputs to an implanted positioning system connected to the implanted actuator, based on said interface determination, wherein the implanted positioning system selectively positions the implanted actuator relative to the component of the auditory system to achieve a desired interface between the implanted actuator and the component of the auditory system in response to the electrical inputs.
  • 12. The method of claim 11, further comprising:providing the electrical inputs to the positioning system in response to a transcutaneously transmitted wireless signal.
  • 13. The method of claim 11, further comprising:inductively coupling the electrical inputs to the positioning system.
  • 14. The method of claim 11, further comprising:controlling the selective provision of electrical inputs to the positioning system from a user device externally located relative to the patient.
  • 15. The method of claim 11, wherein the step of selectively providing the electrical inputs includes:providing the electrical inputs to a piezoelectric driver of the positioning system, wherein the piezoelectric driver advances a telescoping member of the positioning system to selectively position the implanted actuator relative to the component of the auditory system.
  • 16. The method of claim 11, wherein the step of determining the status of the interface includes:obtaining at least one test measure of the actuator responsive to an electrical signal passing through the actuator; and employing the at least one test measure to determine the status of the interface between the actuator and the component of the auditory system.
  • 17. The method of claim 16, wherein the step of obtaining the at least one test measure includes:providing at least one predetermined test signal for use in generating the electrical signal passing through the actuator.
  • 18. The method of claim 17, wherein the step of obtaining the at least one test measures includes:providing a plurality of predetermined test signals for use in generating a corresponding plurality of electrical signals passing through the actuator, wherein the plurality of predetermined test signals have a corresponding plurality of different frequencies distributed across a predetermined frequency range.
  • 19. The method of claim 18, wherein the step of determining the status of the interface includes:obtaining a plurality of test measures indicative of the electrical signals passing through the actuator, the plurality of test measures being obtained in corresponding relation to the plurality of electrical signals; and employing the plurality of test measures to determine the status of the interface between the actuator and the component of the auditory system.
  • 20. The method of claim 18, wherein the step of obtaining the plurality of test measures includes:measuring magnetic fields generated by the implanted actuator in response to the plurality of electrical signals passing through the actuator.
  • 21. The method of claim 18, wherein the step of obtaining the plurality of test measures includes:measuring a voltage and current corresponding to the plurality of electrical signals passing through the actuator.
US Referenced Citations (40)
Number Name Date Kind
3902084 May, Jr. Aug 1975 A
3902085 Bizzigotti Aug 1975 A
4428377 Zollner et al. Jan 1984 A
4441210 Hochmair et al. Apr 1984 A
4944301 Widin et al. Jul 1990 A
4947844 McDermott Aug 1990 A
5024224 Engebretson Jun 1991 A
5061282 Jacobs Oct 1991 A
5069210 Jeutter et al. Dec 1991 A
5282858 Bisch et al. Feb 1994 A
5531774 Schulman et al. Jul 1996 A
5553152 Newton Sep 1996 A
5554096 Ball Sep 1996 A
5569307 Schulman et al. Oct 1996 A
5571148 Loeb et al. Nov 1996 A
5603726 Schulman et al. Feb 1997 A
5609616 Schulman et al. Mar 1997 A
5624376 Ball et al. Apr 1997 A
5702342 Metzler et al. Dec 1997 A
5707338 Adams et al. Jan 1998 A
5772575 Lesinski et al. Jun 1998 A
5776172 Schulman et al. Jul 1998 A
5842967 Kroll Dec 1998 A
5857958 Ball et al. Jan 1999 A
5876425 Gord et al. Mar 1999 A
5879283 Adams et al. Mar 1999 A
5899847 Adams et al. May 1999 A
5938691 Schulman et al. Aug 1999 A
5954628 Kennedy Sep 1999 A
5991663 Irlicht et al. Nov 1999 A
5993376 Kennedy Nov 1999 A
5997446 Stearns Dec 1999 A
5997466 Adams et al. Dec 1999 A
5999856 Kennedy Dec 1999 A
6001129 Bushek et al. Dec 1999 A
6005955 Kroll et al. Dec 1999 A
6077215 Leysieffer Jun 2000 A
6154023 Durand Nov 2000 A
6342035 Kroll et al. Jan 2002 B1
20020026091 Leysieffer Feb 2002 A1