The present invention relates generally to the field of computer security and particularly to a method and system for preboot system authentication of a user.
With the advent of personal computer system use in every day personal and business affairs, the issue of computer security has become critical. To protect the information contained in the personal computer system, which in many cases may be highly sensitive and confidential, measures must be taken to ensure that a user attempting to use the computer system is an authorized user. These protective measures should be taken before the operating system (“OS”) boots because once the OS boots, files can be deleted, copied, or modified to help a rogue user gain access to the computer system.
Preboot security systems prevent the computer system from booting if a security breach is detected. So for instance, a user attempting to use the computer system may be required to enter a password before the computer system will boot. While this method is simple, it has its drawbacks. First, a rogue user can steal a password from an authorized user and enter the password to gain access. Second, an authorized user could forget the password and therefore be locked out of the computer system.
Currently, biometric data, such as a finger print, is being used to identify authorized users in a variety of applications. Using biometric data as a security check is advantageous because such data is unique to each individual and presumably no other person could replicate or steal such data. Moreover, biometric data is characteristic of the individual. The individual need not remember this data because it is an inherent part of his or her being.
Applications utilizing biometric authentication generally include some device or sensor that receives the biometric information. Thus, a sensor can be used to capture data corresponding to a thumbprint or fingerprint. This data is then transmitted to an application that creates a template that can be stored and used later when some type of authentication is required. In such a situation, a current biometric image is captured from the sensor and compared to the biometric template stored previously. If the image and template match, then the action requested will be granted. Otherwise, the request will be denied.
Biometric authentication at the computer system preboot stage is very desirable. Nevertheless, implementing such a security system is difficult. The OS preboot is typically controlled by the Basic Input and Output System (“BIOS”). The available memory and executable code in BIOS is very limited, and BIOS would not be able to accommodate the memory and code required to implement a biometric authentication system.
Accordingly, what is needed is a system and method for preboot OS authentication of a user using biometric information. The system and method should ensure that the biometric information stored is valid and that such information can be used by BIOS. The present invention addresses such needs.
The present invention provides a method and system for authenticating a user of a computer system using biometric information. The method and system of the present invention includes registering a biometric template in the computer system, thereafter, verifying the authenticity of the registered biometric template and then comparing the biometric template with a biometric image the user if the biometric template is authentic. If the user's biometric image matches the biometric template, the computer system will continue to boot.
The present invention offers multiple layers of security in that it verifies the authenticity of the biometric template before the template is used to authenticate the identity of the user attempting to log on to the computer system. In this manner, the computer system is protected from intruders. Moreover, because registration of the template is performed by an application program outside of BIOS, the limited resources available in BIOS are not depleted.
The present invention provides a method and system for authenticating a user of a computer using biometric information. The following description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the preferred embodiment and the generic principles and features described herein will be readily apparent to those skilled in the art. Thus, the present invention is not intended to be limited to the embodiment shown but is to be accorded the widest scope consistent with the principles and features described herein.
In a preferred embodiment of the present invention, a sensor for obtaining the biometric information is coupled to the computer system, which includes a processor. The processor runs an application which allows a system administrator to register the biometric information of an authorized user into the computer system. The registered biometric information is then stored in memory, preferably, nonvolatile memory. Thereafter, when a user tries to log on to the computer system, the user will be prompted to submit his or her biometric information, e.g., fingerprint, via the sensor prior to a system boot. The BIOS will retrieve the stored biometric template, verify its authenticity, and compare it to the submitted biometric information. If the biometric template is authentic and the submitted biometric information matches the biometric template, the system will boot. Otherwise, the system will not boot and the administrator will be notified.
As is shown, the computer system 20 includes a BIOS 70 and nonvolatile memory 60 accessible by the BIOS 70. The computer system 20 also includes an embedded security system 80, which is coupled to both the processor 50 and the BIOS 70.
To understand the preferred embodiment of the present invention, please refer first to
Next, in step 130, the application 55 hashes a copy of the biometric template to form a biometric template hash 132. By hashing the biometric template 122, i.e., applying a hash algorithm to the template, slight changes between the template 122 and another hashed template (not shown) can be easily detected, as is well known to those skilled in the art. The biometric template hash 132 is then encrypted in step 140 by the embedded security system 80′.
The embedded security system (“ESS”) 80′ is preferably a computer chip that performs a digital signature on the biometric template hash 132. In order to access the functionality of the ESS 80′, the user or administrator could be required to enter a valid password 82, which would be verified by the ESS 80′. Once the template hash 132 is encrypted, i.e. digitally signed, it is passed back to the application 55, which then links the encrypted template hash 142 to the biometric template 122, via step 150. The linked template and encrypted template hash pair 152 is then stored in memory 60′ in step 160. In the preferred embodiment of the present invention, the linked template/template hash 152 is written to a designated area in CMOS 60′, so that it can later be accessed by the BIOS 70.
After registering the authorized user's biometric template 122, the linked template/template hash 152 is now available for user authentication during the next system boot. Because the application program 55 performs the registration process outside of BIOS 70, it is more efficient and user friendly.
Next, BIOS verifies that the biometric template stored in memory is authentic, i.e., the biometric template is the one certified by the administrator. First, in step 240, BIOS retrieves the linked template/encrypted template hash 152′ from memory 60″ and separates the pair into the template 122′ and the encrypted template hash 142.′ In step 242, a hash of the template 122′ is calculated to form a first digest value 243. Next, in step 244, BIOS retrieves a public key 245 for the administrator from the ESS 80″ and uses it to decode the encrypted template hash 142.′ The result is a second digest value 247 representing the decoded template hash 142′. Finally, the first digest value 243 is compared to the second digest value 247 in step 246, and in step 248, it is determined whether the digest values 243, 247 match. If the digest values 243, 247 do not match, the boot sequence is terminated and the administrator notified via step 250. If the digest values 243, 247 match, BIOS 70 has verified that the template 122′ has not been altered since the administrator registered the template 122,′ and that the template 122′ can now be used to verify the identity of the user attempting to log onto the computer system.
Thus, once the template 122′ is authenticated, it is loaded into a matching engine 75 in BIOS 70, via step 260, along with the biometric image 232 provided by the user. There, the template 122′ and biometric image 232 are compared in step 270. One should note that an exact match between the template 122′ and biometric image 232 is not necessarily required because a user would not be expected to provide his or her biometric information in the exact same manner or location each and every time. For instance, the user providing a finger print (biometric information) might place his or her finger in a slightly different location on the sensor 30′ each time he or she is prompted to provide biometric information. Thus, in one embodiment of the present invention, a matching algorithm is used in the matching engine 75 to compare “points” from the biometric image 232 and the template 122′. Other methods and algorithms to compare the image 232 and the template 122′ would be readily apparent to those skilled in the art, and such methods would fall within the scope and spirit of the present invention.
In step 275, it is determined whether the biometric image 232 matches the template 122.′ If a match is determined, the user is the authorized user certified by the administrator, and BIOS 70 will continue to execute the boot sequence in step 280. If a match is not determined, the user is not authorized to operate the computer system and the boot sequence will terminate and the administrator notified, via step 250.
The preferred embodiment of the present invention, therefore, provides a system and method for performing user authentication during the initial boot sequence using biometric information. Through aspects of the present invention, an unauthorized user would be prevented from tampering with the stored template, i.e., replacing the registered template with an unauthorized template, because of the additional encryption steps provided by the ESS during the registration phase. Thus, the present invention offers multiple layers of security in that it verifies the authenticity of the stored template before the template is used to authenticate the identity of the user attempting to log onto the computer system. In this manner, the computer system is protected from intruders. Moreover, because registration of the template is performed by an application program outside of BIOS, the limited resources available in BIOS are not depleted.
Although the present invention has been described in accordance with the embodiments shown, one of ordinary skill in the art will readily recognize that there could be variations to the embodiments and those variations would be within the spirit and scope of the present invention. Accordingly, many modifications may be made by one of ordinary skill in the art without departing from the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4951249 | McClung et al. | Aug 1990 | A |
5050212 | Dyson | Sep 1991 | A |
5444850 | Chang | Aug 1995 | A |
5448045 | Clark | Sep 1995 | A |
5454000 | Dorfman | Sep 1995 | A |
5572590 | Chess | Nov 1996 | A |
5680547 | Chang | Oct 1997 | A |
5867802 | Borza | Feb 1999 | A |
5933498 | Schneck et al. | Aug 1999 | A |
5949882 | Angelo | Sep 1999 | A |
5956409 | Chan et al. | Sep 1999 | A |
6035398 | Bjorn | Mar 2000 | A |
6122738 | Millard | Sep 2000 | A |
6167517 | Gilchrist et al. | Dec 2000 | A |
6185316 | Buffam | Feb 2001 | B1 |
6256737 | Bianco et al. | Jul 2001 | B1 |
6272629 | Stewart | Aug 2001 | B1 |
6463537 | Tello | Oct 2002 | B1 |
6539101 | Black | Mar 2003 | B1 |
6560706 | Carbajal et al. | May 2003 | B1 |
6633981 | Davis | Oct 2003 | B1 |
20020087877 | Grawrock | Jul 2002 | A1 |
20020174353 | Lee | Nov 2002 | A1 |
20030061497 | Zimmer | Mar 2003 | A1 |
Number | Date | Country |
---|---|---|
WO 9850875 | Nov 1998 | WO |
WO 9965175 | Dec 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20030070079 A1 | Apr 2003 | US |