Embodiments of the invention relate to gas preparation method and system, belong to field of new energy, in particular to a method and system for preparing fuel gas with high heat value and safety.
Nowadays, the world is still in the era of fossil energy economy dominated by oil, natural gas and coal. This era of fossil energy economy is bound to come to an end, and an unprecedented new energy revolution has begun. The new energy economy that replaces the fossil energy economy, or the new energy economy in the post-oil era will be “hydrogen economy”, “low-carbon economy” and new energy economy in which the modern utilization of diversified energy sources, such as nuclear energy, solar energy, wind energy, hydropower, biomass energy and geothermal energy, will complement each other.
Elemental hydrogen is usually composed of diatomic molecules of hydrogen, which is the lightest gas, weighing only 0.09 grams per liter of hydrogen at zero centigrade and one atmospheric pressure, which is equal to 1/14.5 of weight of same volume of air. Hydrogen is easily combustible and has the lowest flash point of all substances (flash point<−253° C., which can be considered as no flash point). Hydrogen has the lowest ignition energy, that is, 0.021 mJ=0.005 mcal, which is 1/14 of 0.30 mJ of gasoline ignition energy. Hydrogen has the widest combustible range in air, with a volume content of 4% to 75% (1.3% to 7.6% for gasoline). Hydrogen burns fastest in air at 250 cm/s (45 cm/s for gasoline). Boiling point of hydrogen is −252.9° C., and melting point thereof is −259.1° C., which is close to the thermodynamic temperature, −273° C. Mass calorific value (low caloric value) of water vapor synthesized from hydrogen and oxygen gasification is the highest of all combustible materials, which is 120 MJ/kg and 2.76 times that of gasoline low caloric value 43.5 MJ/kg. Hydrogen and oxygen have many special properties, are best optimal clean energy as energy fuel.
However, there are still many challenging problems, especially with regard to storage, transport and security, and there are still many technical obstacles.
Firstly, cost of producing hydrogen from electrolytic water is relatively high. Theoretical electricity consumed from preparing 1 kg hydrogen and 0.5 kg oxygen under the standard condition is 2390 Ah. Theoretical energy consumption is W=I*E=2390/1000*1.23=2.95 KWh (1.23V is water decomposing voltage). Actual power consumption and decomposition voltage of the electrolytic cell are both higher than theoretical values. According to the structure and operation of the electrolytic cell, actual operating voltage is generally 1.5-2 times of theoretical decomposition voltage. At present, the actual electric energy consumption for the production of 1 standard cubic meter of hydrogen and 0.5 standard cubic meter of oxygen by electrolytic water hydrogen production equipment is 5 KWhs, which is larger than theoretical value. It can be seen that the cost of using electrolytic water to produce hydrogen is relatively high, and there is no cost advantage compared with other fuels from the economic point of view.
Secondly, safety of hydrogen is poor. Because hydrogen is a kind of volatile, combustible and explosive material, unsafe factors are also the main problems limiting its application. Experiments show that: (1) combustion limit of hydrogen in air is very wide, in that when hydrogen content reaches 4 to 70% of volume ratio, it can burn, which is much wider range than gasoline combustion limit of 1.3% to 7.6%; (2) minimum energy required to ignite hydrogen is only 0.005 mcal, and since there in no color when hydrogen is burned, it is difficult to detect; (3) high pressure hydrogen and low temperature liquid hydrogen are likely to leak, and the storage requirements are strict.
It can be seen that there are still many problems in low-cost production, safe storage and transportation, and other technical problems for hydrogen energy, but hydrogen energy has outstanding advantages: first, it is clean and environmentally friendly; second, it has a wide range of raw materials for production, which is free of dependence on petrochemical energy. Therefore, how to prepare, store, transport and apply hydrogen energy safely and efficiently has become challenging problem to be solved in the world.
The technical problem to be solved by embodiments of the invention is the problems of high cost and low safety existing in the traditional hydro dissociation hydrogen and oxygen mixture gas generator. A purpose of embodiments of the invention is to provide a method and system for preparing fuel gas with high heat value and safety, with balance gas-liquid exchange, easy gas discharge, lower energy consumption, safety and reliability. Fuel gas with high heat value prepared by the method and the system has the advantages of good safety, easy storage, high calorific value and no pollution to the environment.
In order to solve the above problems, according to one aspect of embodiments of the present invention, a method for preparing fuel gas with high heat value and safety is provided.
Hydrogen and oxygen produced by electrolysis are molecularly bonded with water, through hydrogen bond resonance within molecule of the water, to form a molecular cluster, general formula of which is (H3O+-O2—OH−—H2)n, wherein 1≤n≤36.
Reforming liquid is used to reform the molecular cluster, and mixed type of fuel gas with high heat value including H2 and O2 is obtained.
Preferably, in the method for preparing fuel gas with high heat value and safety, the reforming is mixed reforming of interface of gas-liquid phases by contact mass transfer and chemical reaction.
Preferably, in the method for preparing fuel gas with high heat value and safety, the reforming liquid is such reforming liquid comprising hydrocarbon compound CxH2x+2 and/or carbon hydrogen oxide compound CxH2x+2O.
Preferably, in the method for preparing fuel gas with high heat value and safety, the reforming liquid also includes quantum carbon additives, wherein the quantum carbon is graphene fluid of 0.3 nm-1.0 nm, basic parameters of quantum carbon liquid are that: pH is 1.8-2.2; electromotive force ORP is 280 mv-380 mv; electrical conductivity is 1.2 ms/cm-5.0 ms/cm; solid content is 0.1%-0.8%.
Preferably, in the method for preparing fuel gas with high heat value and safety, natural frequency of vibration excitation device for vibration excitation follows the equation:
wherein f is natural frequency of the vibration excitation device; h is thickness of the vibration excitation device; L is the length of the vibration excitation device; E is the elastic modulus of the vibration excitation device; P is the density of the vibration excitation device.
Preferably, in the method for preparing fuel gas with high heat value and safety, the mixed type of fuel gas with high heat value includes: CnH2n+2 gas, wherein 15>n>0.
Preferably, in the method for preparing fuel gas with high heat value and safety, the fuel gas with high heat value includes the following volume components: H2: 20%˜60%; O2: 10%˜30%; CnH2n+2 (5>n≥1): 15%˜30%; CnH2n+(n≥6): 5%˜25%.
In order to solve the above problems, according to another aspect of this invention, it is provided a system for preparing fuel gas with high heat value and safety, including: a water ion electrolysis device with rotation electrode plate; a fuel gas reforming device connected with the water ion electrolysis device, including hydrocarbon compound reforming liquid, wherein a vibration excitation device is set on the rotation electrode plate.
Preferably, in the system for preparing fuel gas with high heat value and safety, natural frequency of the vibration excitation device follows the equation:
wherein f is natural frequency of the vibration excitation device; h is thickness of the vibration excitation device; L is the length of the vibration excitation device; E is the elastic modulus of the vibration excitation device; P is the density of the vibration excitation device.
Preferably, in the system for preparing fuel gas with high heat value and safety, the gas-liquid exchange layer is set in the fuel gas reforming device, and the gas-liquid exchange layer is located in the reforming liquid, and gas leading into the fuel gas reforming device is then exported through the gas-liquid exchange layer.
Therefore, compared with the existing technology, the present invention has the following advantages:
(1) good safety: through excitation principle, the monomolecular hydrogen and oxygen gas and the water molecule are recombined by hydrogen bond to reform new molecular clusters, combustion temperature is above 3500° C., and is deflagration combustion, which is safe and stable in a closed space, as compared to explosive combustion;
(2) easy storage: new molecular can be liquefied into liquid fuel at a temperature point between −90° C. and −190° C. at same time, which can withstand pressure above 200 kg/cm3 for a long time storage without any change of properties;
(3) more environmental protection: without sulfur S and nitrogen N, calorific value can reach 11000 to 51000 Kcal/m3; compared with conventional fuel, energy saving and economy can be improved by more than 50%, which has characteristics of clean, environmental-friendly, high calorific value and multi-purpose.
In the figures, reference numerals are as following: DC power generating device 1, housing 1-1, rotor magnet 1-2, stator metal plate 1-3, fixed part 1-4, insulation bracket 1-5, water ion electrolysis device 2, moving shaft 2-1, insulation disk 2-2, electrolytic device housing 2-3, rotation electrode plate 2-4, vibration excitation device 2-4-1, fixing bolt 2-4-2, heat dissipation tube 2-5, gas-liquid separation and control tank 2-6, low pressure limiting gauge 2-7, high pressure limiting gauge 2-8, safety valve 2-9, material adding inlet 2-10, gas outlet 2-11, electrolyte 2-12, system pipe 2-13, air-cooled blade fan 2-14, system circulating pump 2-15, insulation electroplate 2-16, positive and negative electrode plates 2-17, fuel gas compression device 3, pressure gauge system 3-1, storage tank 3-2; motor 4; fuel gas reforming device 5, gas reforming device tank 5-1, reforming liquid 5-2, gas-liquid exchange layer 5-3; combustion device 6.
The technical scheme of the invention is further explained with embodiments and the accompanying drawings.
1. Preparation Method
According to the method of an embodiment of the invention, in process from electrolytic water ionization to generation of hydrogen and oxygen gas, single-molecules of water, hydrogen and oxygen is bonded to form a new molecular cluster by molecular bonding, and the hydrogen molecule with high activity is bound in the molecular cluster. Therefore, proportion of hydrogen and oxygen molecules in the new molecular cluster is very stable, and will be reduced to water in combustion, which belongs to deflagration combustion. In a closed space, deflagration combustion is very safe relative to explosive combustion.
The combustion temperature of the new molecular cluster is above 3500° C., and it can be liquefied into liquid fuel, which can withstand pressure more than 200 kg/cm3, and there will be no nature change for long term storage.
In implementing this method, electrolyte can be KOH with concentration of 5% to 30%, and general formula of the molecular cluster from bond is (H3O+-O2—OH−—H2)n, wherein 1≤n≤36.
The reforming liquid is reforming liquid consisting of hydrocarbon CxH2x+2 and/or carbon hydrogen oxygen mixed compound CxH2x+2O. Quantum carbon can also be added as additive, wherein the quantum carbon is graphene liquid of 0.3 nm-1.0 nm, basic parameters of which are: pH is 1.8 to 2.2; electromotive force ORP is 280 mv to 380 mv; electrical conductivity is 1.2 ms/cm to 5.0 ms/cm; solid content is 0.1% to 0.8%.
In this method, natural frequency of vibration excitation device for vibration excitation follows the equation:
wherein f is (natural) frequency of the vibration excitation device; h is thickness of the vibration excitation device (mm); L is the length of the vibration excitation device (mm); E is the elastic modulus of the vibration excitation device; P is the density of the vibration excitation device; vibration excitation frequency can be adjusted among 10 to 3000 Hz.
An embodiment of this invention provides a system for preparing fuel gas with high heat value and safety. The detailed description is as follows.
As shown in
As shown in
As shown in
Multiple reformers 5 can be used for reforming. The reforming device tank 5-1 is provided with reforming liquid 5-2 and a gas-liquid exchange layer 5-3. The reforming liquid 5-2 is hydrocarbon compound. The gas-liquid exchange layer 5-3 is fiber body, such as felt, glass fiber, and heterotypic plastic particles. Steel ball can also be used as the gas-liquid exchange layer 5-3. The gas to the interior of the reforming device is then derived from the gas-liquid exchange layer. A gas inlet of the fuel gas reforming device tank 5-1 is under the gas-liquid exchange layer 5-3 via air pipe, and a gas outlet thereof is located above liquid surface of the reformer 5-2.
The reforming liquid 5-2 is reforming liquid consisting of hydrocarbon CxH2x+2 and/or carbon hydrogen oxygen mixed compound CxH2x+2O. Quantum carbon can also be added as additive, wherein the quantum carbon is graphene liquid of 0.3 nm-1.0 nm, basic parameters of which are: pH is 1.8 to 2.2; electromotive force ORP is 280 mv to 380 mv; electrical conductivity is 1.2 ms/cm to 5.0 ms/cm; solid content is 0.1% to 0.8%.
The fuel gas with high heat value prepared by the embodiment of the invention does not contain sulfur S or nitrogen N components, and heat value can reach 11000˜51000 Kcal/m3.
As shown in
The water ion electrolysis device is shown in
Opposite sides of the inner wall of the housing 2-3 of the electrolytic device is respectively provided with two insulating disks 2-2, on which the positive and negative electrode plates 2-17 are arranged respectively. The rotation electrode plate 2-4 is arranged in the middle of two positive and negative electrode plates 2-17 through the moving shaft 2-1.
Top part of the housing 2-3 of the electrolytic device is connected with the gas-liquid separation and control tank 2-6 through the heat dissipation tube 2-5, and liquid recovery outlet of the gas-liquid separation and control tank 2-6 is connected to inner part of the housing 2-3 of the electrolytic device through the system pipe 2-13; gas outlet 2-11 of the gas-liquid separation and control tank 2-6 is connected with the fuel gas compression device 3 and the fuel gas reforming device 5.
The gas-liquid separation and control tank 2-6 is provided with a low pressure limiting gauge 2-7, a high pressure limiting gauge 2-8, a safety valve 2-9, a material adding inlet 2-10. The heat dissipation tube 2-5 is preferably a corrugated tube, and side thereof is equipped with air-cooled blade fans 2-14 for heat dissipation therefor.
There should be at least one piece of the rotation electrode plate 2-4, which can also be a plurality of plates forming electrodes group, with interval of 1-10 mm each. Each rotation electrode plate 2-4 is provided several exciting devices 2-4-1 which can be fixed on the rotation electrode plate 2-4 by a fixed bolt 2-4-2.
The rotation electrode plate 2-4 rotates at a certain angular speed in electrolyte 2-12, and under function of electrode powers DC+ and DC− of positive and negative electrode plates 2-17, hydrogen and oxygen gas of water electrolysis is produced.
The rotation electrode plate 2-4 drives the exciting device 2-4-1 to excite vibration in rotation, and the natural frequency of the exciting device follows the equation:
wherein f is natural frequency of the vibration excitation device; h is thickness (mm) of the vibration excitation device; L is the length (mm) of the vibration excitation device; E is the elastic modulus (GPa) of the vibration excitation device; P is the density of the vibration excitation device; vibration excitation frequency can be adjusted among 10-3000 Hz. The exciting device 2-4-1 of the embodiment of the invention is an exciting plate. Under the function of exciting frequency, single-molecule hydrogen oxygen gas and water molecule produced from the positive and negative electrodes on the exciting plate are reassembled into a new molecular cluster through hydrogen bond.
The new molecular cluster and electrolytes pass through the heat dissipation tube 2-5 to the gas-liquid separation and control tank 2-6 for gas-liquid separation. The separated gas is exported through the outlet 2-11. The low pressure limiting gauge 2-7 and the high pressure limiting gauge 2-8 are responsible for keeping the pressure running between the 0.01-1.0 Mpa. Material adding inlet 2-10 is responsible for the addition of fluids and additives, safety valve 2-9 is controlled at 1.5-2.0 MPa, pipe 2-13 is system automatic circulation pipe, according to working conditions such as temperature control, the circulating pump 2-15 can be turned on.
The DC power generating device, shown in
The method for preparing fuel gas with high heat value according to embodiments of the invention relates to implosive combustion, which is relatively safer than explosive combustion in a closed space, and has property of safety and stability which is superior to that of other gas; new molecular clusters are liquefied into liquid fuels at a certain temperature point; combustion temperature is above 3500° C.; it can withstand pressure above 200 kg/cm3 and can be stored for a long time without any change in properties.
The fuel gas with high heat value prepared by the embodiments of the invention can be compared with other conventional fuels as follows:
Beneficial effects of the invention can be verified by several embodiments as below.
Electric ion of water: mixture substances of H3O++HO− proton hydrate ionized by H2O+H2OH3O++HO− and hydroxyl ion are combined and reformed with hydrocarbon alkanes.
The electrolyte 2-12 can be selected as KOH with concentration of 5% to 30%, preferably 15%. The reforming liquid 2-21 is composed of a mixture containing C1-C5 alcohols.
The molecular gas composition of the hydrocarbon structure prepared according to the method in the present embodiment 1 is detected and analyzed, chromatographic analysis result thereof is shown in
Electric ion of water: mixture substances of H3O++HO− proton hydrate ionized by H2O+H2OH3O++HO− and hydroxyl ion are combined and reformed with hydrocarbon alkane.
The electrolyte 2-12 can be selected as KOH with concentration of 5% to 30%, preferably 20%. The reforming liquid 2-21 is hydrocarbon compound which is selected as a mixture of C3-C8 alkane.
The molecular gas composition of the hydrocarbon structure before and after the reforming is shown in the table below. It can be seen from the table that, similarly, the hydrocarbon structure with multi components has a calorific value above 30000 Kcal/m3.
Electric ion of water: mixture substances of H3O++HO− proton hydrate ionized by H2O+H2OH3O++HO− and hydroxyl ion are combined and reformed with hydrocarbon alkanes.
The electrolyte 2-12 can be selected as KOH with concentration of 5% to 30%, preferably 30%. The reforming liquid 2-21 is hydrocarbon compound which is selected as a mixture of C5-C12 alkane. The calorific value of hydrocarbon structure with multi components obtained after reforming is above 50000 Kcal/m3.
The embodiments show that the safety and fuel gas with high heat value of embodiments of the invention is a clean energy source and has excellent energy saving and emission reduction effect compared with any existing conventional fuel. From the combustion performance, compared with conventional fuel, energy saving and economic saving can improved more than 50%; it can effectively control the emissions of NOX, SOX, CO2 and other harmful gases, combustion emissions can be reduced by more than 60%. The invention is not limited to the above examples and can be applied to all applications in the field of combustion, such as conventional commercial combustion, high-pressure fuel storage tanks, liquefied storage and transportation, and so on.
The above embodiments only describe the superior selected embodiments of the invention, not limit the scope of the invention, without deviating from the design spirit of the invention, all kinds of deformation and improvement made by ordinary technicians of the invention to the technical scheme of the invention should fall within the scope of protection determined by the claim of the invention.
The specific embodiments described herein are only illustrative of the spirit of the present invention. Technical personnel in the technical field of the invention may make various modifications or additions to the specific embodiments described or replace them in a similar manner. However, it will not deviate from the spirit of the present invention or go beyond the scope defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
201610639542.2 | Aug 2016 | CN | national |
201610639543.7 | Aug 2016 | CN | national |
201610639781.8 | Aug 2016 | CN | national |
201610639852.4 | Aug 2016 | CN | national |
201610639888.2 | Aug 2016 | CN | national |
201610639889.7 | Aug 2016 | CN | national |
201610639890.X | Aug 2016 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2016/094187 | 8/9/2016 | WO | 00 |