This invention relates to a method and system for electronically routing billing information to customers over a communications network using an open financial exchange communication protocol and more particularly to a method for enabling, in a bill payment and presentment system, mainframe application files to be reformatted into Internet streams and transmitted over an open communications network such as the Internet.
As evident by the prior art, there are different types of bill presentment and payment systems. For instance, U.S. Pat. No. 5,832,460 to International Business Machines Corporation (the “IBM patent”) discloses a system and method for electronically creating, presenting, paying and reconciling bills. More specifically, the IBM patent discloses a system involving a bill originator or service provider (such as gas, electric or telephone company), the bill payers or customers, and their respective banks, as well as an electronic bill presenter which is in electronic communication with all of these parties. The bill presenter sorts the bills from various originators and presents the bills for a selected customer to that customer who then in turn indicates to the bill presenter the bills that he or she wishes to pay and the amounts of payment. The bill presenter notifies the bill payer's bank and the bill originator of the desired payment. The bill payer's bank sends a message of payment to the bill originator's bank who informs the originator.
U.S. Pat. No. 5,699,528 to MasterCard International Incorporated (the “MasterCard patent”) discloses a bill delivery and payment system over a communications network. The MasterCard patent discloses a system comprising a plurality of payee computers which feed billing information into a bill capture device and server for formatting billing data into subscriber specific bill images over the Internet. In this manner, subscribers may obtain their respective billing information by using a web browser to access the server computer to view the images and pay his or her bills.
As disclosed in the MasterCard patent, an electric bill service company oversees the service and controls the server computer (and the bill capture device) and the communications capabilities which include affording Internet access and receiving the billing information from the payee computers pursuant to an agreed-upon protocol.
As can be appreciated by those skilled in the art, because of the different bill presentment and payment systems being developed and utilized and the desire to create an open and uniform but secure exchange of messages and information over the Internet which would facilitate and expand the use of electronic bill presentment and payment, as well as other financial transactions, such as stock transactions and trading, CheckFree Corporation, Intuit Inc. and Microsoft Corp. jointly designed the Open Financial Exchange (“OFX”) format which has itself evolved over time, providing an original release 1.02, and additional Releases 1.5.1, 1.6 and 2.0. The OFX is a completely open format designed for use on client/server systems utilizing the Internet. OFX is syntactically similar to HyperText Markup Language (HTML), featuring tags to identify and delimit the data, which allows it to evolve over time. Familiarity with the OFX format as disclosed in “Open Financial Exchange Specification,” Edition 1.5.1. Nov. 23, 1998, is assumed.
Even with the use of the OFX format there is still inefficiency and lack of uniformity in the market. In the current electronic bill payment and presentation (EBPP) environment, there are customer service providers or CSPs (also referred to as the “originators”) and biller service providers (BSPs) (also referred to as the “concentrators”). The CSP is a financial institution or a sponsor bank that initiates payment on behalf of its customers, such as financial institutions that offer telephone or bill payment services, or sponsor banks and credit counseling agencies that offer consumer debt management plans and payment services. The BSP is an institution that owns the business relationship with the billers or creditors being paid by the originator's customers. The BSP is responsible for reformatting the transaction details to meet the biller's accounts receivable requirements and to settle with the billers.
In the past, participants have connected via a point-to-point method via the Internet and since each CSP and BSP needs to connect with each other, they have set up different agreements with each partner. This, however, became extremely cumbersome for both BSPs and CSPs as new participants came into the market.
Seemingly in response to the need for a centralized switching facility, Chase Manhattan Bank, First Union National Bank and Wells Fargo Bank founded a company named Spectrum EBP, LLC, which is a bank-owned payment system utility that routes electronic bills and payments between billers and consumers. The Spectrum switch operates between biller service providers, which convert billing data into electronic form on behalf of billers, and consumer service providers, which deliver electronic bills to consumers. In the Spectrum system, the BSPs aggregate the billing files from billers and format them into industry standard OFX messages and transmit the files to Spectrum, which then validates the transactions and routes the bill to the appropriate CSP for posting on the consumers' computer screens. The consumers' electronic payment messages are transmitted from their CSPs and routed to Spectrum for clearing and settlement to the member financial institution.
Even with the Spectrum switching system, in today's OFX environment. electronic bill payment and presentation is typically conducted solely over the Internet through public communication lines using Internet security protocols. The present systems are still flawed due to their inability to utilize all information available and in particular mainframe application files in batch mode. There is therefore a need to provide for a network application which utilizes the OFX format and facilitates in an open environment the exchange or switching of electronic bill presentment summary information among CSPs and BSPs in an efficient, effective and functionally enhanced manner, but which also allows for both the utilization of mainframe application files and data, and the interexchange of such related information over both public and private lines.
According to the present invention, a method for electronically routing billing information over a communications network using an open financial exchange communication protocol is provided, which includes the following steps: enrolling billers and customers to participate in an electronic bill payment and presentment system having a centrally located mainframe system; providing customer service providers to interface with the customers; providing biller service providers to interface with, and collect billing information from, the billers; providing a centrally located switching system coupled to the bill payment and presentment system for coordinating the transfer of messages between the customer service providers and the biller service providers; generating at the customer service provider or at the biller service provider mainframe application files comprising the bill presentment related messages from the customers and billers, respectively; forwarding the mainframe application files in batch mode to the centrally located mainframe system; and converting at the switching system the mainframe application files into Internet accessible addresses for delivery of the messages over the Internet to one or more intended recipients.
Preferably, a file distribution agent is provided for appending to the mainframe application files a HTTP header; and a look-up table is used to determine the Internet accessible addresses. Functionality is further enchanced by the provision of pushing and bursting techniques which allow for the efficient transmission of message requests and responses.
In this manner a method is provided which allows participants multiple connectivity options using present open financial exchange protocols and more specifically allows participating banks with mainframe application files to nonetheless participate in a bill payment and presentation system by forwarding such applications in batch to a centralized mainframe computer which in conjunction with a file distribution agent and server configuration converts such files for Internet transmission and vice versa.
Further objects, features and advantages of the invention will become apparent from the following detailed description taken in conjunction with the accompanying figures showing a preferred embodiment of the invention, in which:
Throughout the figures, the same reference numerals and characters. unless otherwise stated, are used to denote like features, elements, components or portions of the illustrated embodiments. Moreover, while the subject invention will now be described in detail with reference to the figures, it is done so in connection with the illustrative embodiments. It is intended that changes and modifications can be made to the described embodiments without departing from the true scope and spirit of the subject invention as defined by the appended claims.
In the current environment, depicted in
Preferably, as mentioned, the RPPS will be a pass-through thin consolidator, meaning that RPPS will not store any data for either the BSP or CSP, but rather, will offer a means of enhanced communication for both. When a message is received by RPPS, it parses the message and preferably performs standard validations, captures routing information and pertinent log data, rebundles the message, and delivers it to the intended recipient over secure lines. RPPS also preferably provides various reporting functions for participants, as well as offering advanced functionality, all described below.
As shown in
Further in accordance with the present invention, various connectivity options are provided which allows for enhanced communication with the RPPS, particularly with those participants who choose not to communicate over open public communication lines. As shown in
As mentioned above, there are various methods of communicating or connecting with the RPPS 20 which is preferably comprised of a financial processing company mainframe computer, such as MasterCard's mainframe computer 22, and server configuration or switching system 10. Unlike prior art switching systems, the present invention allows for server to server, file to server, server to file and file to file connectivity, made possible in part through an interface file distribution agent (FDA) 24a, 24b, 24c, preferably residing at three different locations, one within the RPPS 20 itself (24a), one on a BSP site (24b), and one on a CSP site (24c). In this manner, a mainframe-file based participant (e.g., a CSP) can communicate through the switching system with an Internet-based or other mainframe-file based participant (e.g., a BSP).
All three FDAs have similar functionality, that of starting the conversion process, a flat-file (or a mainframe application file) into an HTTP-based message, and vice-versa. More specifically, the FDA appends an HTTP header to the OFX formatted mainframe application file message, and sends that entire message to the distribution server which, based on a capture of the routing information and the file look up table, determines where to send the message.
With this preferred capability, the FDAs allow the RPPS to handle all file delivery between the file-based CSPs and the file-based BSPs. The CSP only needs one connection (to the RPPS system) to reach all the BSPs. The RPPS will determine the endpoint via the included routing information, whether it is a file-based or an Internet-based participant, and the protocols necessary to communicate with that participant.
The different connectivity options will now be described in connection with
The CSP for customer 1 and BSP for biller 1 are both shown as utilizing a complex-to-complex (CTC) communication connection which includes a software communication package which enables the transfer of data or files into the central financial processor mainframe (FPM) by dial-up or by leased line communication, for instance the Virtual Private Network (VPN), which is a secured extranet of leased lines that creates a private and secured transmission method.
Participants (CSPs and BSPs) may also use (as shown by Banks B in
Another type of connection to the RPPS can be made by the CSPs and BSPs with use of desktop software 30, shown in use by Bank C in
Access to the FPM is obtained through server 26 which is accessed itself preferably through one of several options: analog dial-up; Internet access; VPN access; or digital dial-up, now briefly described.
Internet access is typical—using a modem or corporate local area network (LAN) to an Internet Service Provider (ISP), the connection can be made to the server 26. The speed may vary depending on Internet routing. Each client/bank workstation maintains a unique Internet Protocol (IP) address. The virtual private network (VPN) enables participants to use a telecommunications carrier's network as if it were their own private line connections. As explained above, VPN is an extranet of leased lines, but can simulate an Internet-based URL or uniform resource locator, the address for a particular home page, web site or server. Lastly, digital dial-up through AT&T Global Network Services-AGNS, provides faster communications than analog connections and Integrated Services Digital Network (ISDN) phone lines with an ISDN modern, which will dial into the server 26.
Connection to server 26 can be made with use at the participant's site of a bill payment and presentment server 28 (PS) or without use of such a designated server. To accomplish connection without use of server 28 (as shown in connection with Bank C in
The connection to server 26 with use at the participant's site of PS server 28 requires the use of an FDA. As shown in
There are several advantages to this connectivity method, such as an internal server (thereby dispensing with the need for digital certificates as known by those skilled in the trade), and a reliable, secure connectivity with the RPPS system. The FDA will establish an “In” and “Out” folder, and the FDA will use these folders to process files into HTTP posts or streams (and vice-versa).
Preferably, all files from the IN folder that the FDA streams to a web server will then be archived and moved to a “Processed” folder. This folder will serve as an archive of files that have been posted to their web server. The corresponding HTTP stream from the web server will then be converted to a flat file in the appropriate upload directory. Once the file has been uploaded successfully the file will preferably be moved to a “Sent” folder. Preferably, all RPPS files received or sent using server 26 will be archived.
As discussed above, the interface FDA plays a key role in the RPPS process since its function allows the RPPS switch to process both mainframe files and Internet-based HTTP files by converting flat-files (or those sent via private or dedicated lines) into HTTP Posts (those capable of transmission over the Internet) and vice-versa. For instance, a CSP participant in accordance with the preferred embodiment of the invention, is capable of sending mainframe files in batch to the RPPS which in turn converts these files to HTTP format for Internet transmission.
More particularly, mainframe application files in OFX format are sent to the FPM in batch form. The RPPS FDA 24a receives the files through an “In” folder and appends an HTTP header or, in other words, processes a file to an HTTP post so as to make the mainframe file Internet accessible. The aggregate message (with HTTP header) is forwarded to the server configuration which determines, based on a capture of the routing information and on a file look-up table (not shown), the address of the intended recipient(s)—where the message should be sent. After processing the file, it is preferably moved to a “Sent” folder and archived.
If the look-up table does not have an Internet address for the “end-point” (i.e., the BSP or CSP) then an “error” message is available. If the end point is not otherwise Internet accessible, then the message is placed in an “Out” folder and routed back to the mainframe for mainframe processing and delivered via the GFT to the appropriate end point.
The FDA 24b for the BSP and the FDA 24c for the CSP either create an HTTP post from a flat file or process it back to a flat file. Normally, the FDA 24b for the BSP preferably creates and sends an HTTP post to the BSP, waits for a response and processes it to a flat file for the RPPS. Similarly, the FDA 24c for the CSP normally accepts an HTTP post from the CSP and processes it to a flat file for the RPPS.
Alternatively, for a bill push response, described below, the FDA 24b accepts an HTTP post and converts that to a flat file for the RPPS. The FDA 24c, for bill push, creates an HTTP post to the CSP's web server 30.
There are additional preferred optional functionalities of the invention, which will now be described.
The first is called latency handling. It is possible in an electronic communication system such as described here that a situation arises where a response to a request (for example a CSP request) is taking an inordinate amount of time (due to, for instance, the voluminous amount of requests being made or because certain lines are down), and the CSP would rather come back at another time for the response. In this case, it is preferable that the RPPS not keep an open connection between the CSP and RPPS over an extended period of time. RPPS will then preferably send an HTTP status code to the CSP, informing the CSP that they need to re-request the message at a later time.
Alternatively, if the CSP is message “push” enabled, the CSP need not re-request a transmission through this method. They can send a request, and then wait for the RPPS system to push the response back to them. In the meantime, the RPPS system can deliver an immediate message to the CSP that it will respond when it can.
More particularly, the message bill “push” is a transmission where a BSP wishes to send a transmission to a CSP (namely bill presentment) without the CSP requesting this information. This not only reduces the system load for both the CSP and BSP, but also gives the information when it is available (CSP does not have to ask multiple times when the information is not there yet).
Another enhanced functionality employs a message “burst” or a means by which a CSP can communicate with multiple BSPs in one transmission. (This can be employed by Internet-based participants who can send burst messages directly to the switching system without communicating with the FPM or FDA.) For instance, one CSP can communicate with the RPPS and collect billing information from several billers or BSPs. This enables the CSP to combine multiple transmissions inside one transmission container, which allows them to send these transmissions with one connection. RPPS will sever the connection with the CSP upon receipt. and the CSP has two options available to it for retrieving the responses. The CSP can either be latency enabled, or message push enabled.
At step 46, the BSP responds by providing bill information and returns the message with such information back to RPPS for eventual presentment to the customer. The customer then has the option to pay the presented bills through the FPM which triggers the typical settlement process (see
The foregoing merely illustrates the principles of the invention. It will thus be appreciated that those skilled in the art will be able to devise numerous systems and methods which, although not explicitly shown or described herein, embody the principles of the invention and thus within the spirit and scope of the invention
This application is a continuation of U.S. patent application Ser. No. 12/796,140 filed Jun. 8, 2010 entitled “METHOD AND SYSTEM FOR PROCESSING MESSAGES IN A BILL PAYMENT AND PRESENTMENT SYSTEM OVER A COMMUNICATIONS NETWORK,” which is in turn a continuation of U.S. patent application Ser. No. 09/821,263 filed Mar. 29, 2001, now U.S. Pat. No. 7,756,786, which in turn claims the benefit of U.S. Provisional Application No. 60/192,828 filed Mar. 29, 2000 entitled “System and Method for Providing a Switch for Routing Electronic Transactions” and to U.S. Provisional Application No. 60/211,813 filed on Jun. 14, 2000, and entitled “Remote Payment and Presentment Services RPPS.” The complete disclosures of the aforesaid application Ser. Nos. 12/796,140; 09/821,263, now U.S. Pat. No. 7,756,786; 60/192,828; and 60/211,813 are expressly incorporated herein by reference in their entireties for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
5326959 | Perazza | Jul 1994 | A |
5383113 | Kight et al. | Jan 1995 | A |
5465206 | Hilt et al. | Nov 1995 | A |
5483445 | Pickering | Jan 1996 | A |
5659165 | Jennings et al. | Aug 1997 | A |
5684965 | Pickering | Nov 1997 | A |
5699528 | Hogan | Dec 1997 | A |
5774553 | Rosen | Jun 1998 | A |
5787402 | Potter | Jul 1998 | A |
5832460 | Bednar et al. | Nov 1998 | A |
5850446 | Berger et al. | Dec 1998 | A |
5873072 | Kight et al. | Feb 1999 | A |
5897621 | Boesch et al. | Apr 1999 | A |
5920847 | Kolling et al. | Jul 1999 | A |
5943656 | Crooks et al. | Aug 1999 | A |
5963647 | Downing | Oct 1999 | A |
5978485 | Rosen | Nov 1999 | A |
5978780 | Watson | Nov 1999 | A |
6019282 | Thompson et al. | Feb 2000 | A |
6032133 | Hilt et al. | Feb 2000 | A |
6035285 | Schlect | Mar 2000 | A |
6052671 | Crooks et al. | Apr 2000 | A |
6070150 | Remington et al. | May 2000 | A |
6072870 | Nguyen et al. | Jun 2000 | A |
6119106 | Mersky et al. | Sep 2000 | A |
6138107 | Elgamal | Oct 2000 | A |
6173272 | Thomas et al. | Jan 2001 | B1 |
6205433 | Boesch et al. | Mar 2001 | B1 |
6223168 | McGurl et al. | Apr 2001 | B1 |
6269345 | Riboud | Jul 2001 | B1 |
6289322 | Kitchen et al. | Sep 2001 | B1 |
6292789 | Schutzer | Sep 2001 | B1 |
6304915 | Nguyen et al. | Oct 2001 | B1 |
6311170 | Embrey | Oct 2001 | B1 |
6317745 | Thomas et al. | Nov 2001 | B1 |
6363362 | Burfield et al. | Mar 2002 | B1 |
6366893 | Hannula et al. | Apr 2002 | B2 |
6385595 | Kolling et al. | May 2002 | B1 |
6438528 | Jensen et al. | Aug 2002 | B1 |
6510451 | Wu et al. | Jan 2003 | B2 |
6578015 | Haseltine et al. | Jun 2003 | B1 |
6606606 | Starr | Aug 2003 | B2 |
6807410 | Pailles et al. | Oct 2004 | B1 |
6856974 | Ganesan et al. | Feb 2005 | B1 |
6892184 | Komem | May 2005 | B1 |
6944595 | Graser et al. | Sep 2005 | B1 |
6983261 | Francisco | Jan 2006 | B1 |
7076465 | Holm-Blagg | Jul 2006 | B1 |
7107244 | Kight et al. | Sep 2006 | B2 |
7200551 | Senez | Apr 2007 | B1 |
7240031 | Kight et al. | Jul 2007 | B1 |
7366696 | Ganesan et al. | Apr 2008 | B1 |
7370014 | Vasavada et al. | May 2008 | B1 |
7383226 | Kight et al. | Jun 2008 | B2 |
7395243 | Zielke et al. | Jul 2008 | B1 |
7398253 | Pinnell | Jul 2008 | B1 |
7478066 | Remington et al. | Jan 2009 | B2 |
7510113 | Igarashi et al. | Mar 2009 | B2 |
7523068 | Britney et al. | Apr 2009 | B2 |
7526448 | Zielke et al. | Apr 2009 | B2 |
7536354 | deGroeve et al. | May 2009 | B1 |
7542943 | Caplan et al. | Jun 2009 | B2 |
7587364 | Crumbach et al. | Sep 2009 | B2 |
7606766 | Anderson et al. | Oct 2009 | B2 |
7606770 | Pinnell | Oct 2009 | B2 |
7756786 | Trende et al. | Jul 2010 | B2 |
20010025265 | Takayasu | Sep 2001 | A1 |
20010056390 | Varadarajan et al. | Dec 2001 | A1 |
20020002536 | Braco | Jan 2002 | A1 |
20020002537 | Bastiansen | Jan 2002 | A1 |
20020010677 | Kitchen et al. | Jan 2002 | A1 |
20020023053 | Szoc et al. | Feb 2002 | A1 |
20020032651 | Embrey | Mar 2002 | A1 |
20020046165 | Kitchen et al. | Apr 2002 | A1 |
20020046168 | Kitchen et al. | Apr 2002 | A1 |
20020049671 | Trende | Apr 2002 | A1 |
20020055907 | Pater et al. | May 2002 | A1 |
20020059114 | Cockrill | May 2002 | A1 |
20020077977 | Neely | Jun 2002 | A1 |
20020099656 | Poh Wong | Jul 2002 | A1 |
20020103752 | Berger et al. | Aug 2002 | A1 |
20020184144 | Byrd et al. | Dec 2002 | A1 |
20020198835 | Watson | Dec 2002 | A1 |
20030105710 | Barbara | Jun 2003 | A1 |
20030187789 | Karas | Oct 2003 | A1 |
20030187792 | Hansen | Oct 2003 | A1 |
20030204457 | Arias | Oct 2003 | A1 |
20030208440 | Harada | Nov 2003 | A1 |
20030208442 | Cockrill et al. | Nov 2003 | A1 |
20030216990 | Star | Nov 2003 | A1 |
20040039699 | Egendorf | Feb 2004 | A1 |
20040064407 | Kight et al. | Apr 2004 | A1 |
20040064408 | Kight et al. | Apr 2004 | A1 |
20040083167 | Kight et al. | Apr 2004 | A1 |
20040083171 | Kight et al. | Apr 2004 | A1 |
20040093269 | Rubin et al. | May 2004 | A1 |
20040128240 | Yusin | Jul 2004 | A1 |
20040128255 | Jung | Jul 2004 | A1 |
20040143552 | Weichert | Jul 2004 | A1 |
20040158522 | Brown et al. | Aug 2004 | A1 |
20040167853 | Sharma | Aug 2004 | A1 |
20040210520 | Fitzgerald et al. | Oct 2004 | A1 |
20040215560 | Amalraj et al. | Oct 2004 | A1 |
20040225609 | Greene | Nov 2004 | A1 |
20040230526 | Praisner | Nov 2004 | A1 |
20040236646 | Wu et al. | Nov 2004 | A1 |
20050010523 | Myklebust et al. | Jan 2005 | A1 |
20050015338 | Lee | Jan 2005 | A1 |
20050021454 | Karpovich | Jan 2005 | A1 |
20050021455 | Webster | Jan 2005 | A1 |
20050049963 | Barry | Mar 2005 | A1 |
20050065882 | Remington et al. | Mar 2005 | A1 |
20050075960 | Leavitt et al. | Apr 2005 | A1 |
20050097040 | Chen et al. | May 2005 | A1 |
20050137952 | Yamamoto | Jun 2005 | A1 |
20050137978 | Ganesan et al. | Jun 2005 | A1 |
20050154674 | Nicholls | Jul 2005 | A1 |
20050167481 | Hansen | Aug 2005 | A1 |
20050197957 | Keith et al. | Sep 2005 | A1 |
20050209965 | Ganesan | Sep 2005 | A1 |
20060015452 | Kulasooriya et al. | Jan 2006 | A1 |
20060015453 | Kulasooriya et al. | Jan 2006 | A1 |
20060036543 | Blagg | Feb 2006 | A1 |
20060064377 | Ganesan et al. | Mar 2006 | A1 |
20060173779 | Bennett et al. | Aug 2006 | A1 |
20060184451 | Ganesan et al. | Aug 2006 | A1 |
20060195395 | Ganesan et al. | Aug 2006 | A1 |
20060195397 | Ganesan et al. | Aug 2006 | A1 |
20080046363 | Ali et al. | Feb 2008 | A1 |
20080288376 | Panthaki et al. | Nov 2008 | A1 |
20080288400 | Panthaki et al. | Nov 2008 | A1 |
20090089193 | Paintin | Apr 2009 | A1 |
20090132414 | Philliou | May 2009 | A1 |
20090244600 | Haycock et al. | Oct 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20110251953 A1 | Oct 2011 | US |
Number | Date | Country | |
---|---|---|---|
60192828 | Mar 2000 | US | |
60211813 | Jun 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12796140 | Jun 2010 | US |
Child | 13164753 | US | |
Parent | 09821263 | Mar 2001 | US |
Child | 12796140 | US |