The invention relates to a method and a device for producing sound from a first input audio signal using a plurality of first loudspeakers and producing a target binaural impression to a listener within a listening area.
The reproduction of a specific binaural impression to a listener using loudspeakers is usually referred to as transaural sound reproduction. For such technique, recorded or synthesized binaural signals are generally used as input signals. The binaural impression they convey is to be transmitted directly at the ears of a human listener. This may be simply achieved by using headphones. However, in loudspeaker-based reproduction, signals emitted by each loudspeaker are transmitted to both ears of the listener. This general problem is referred to as crosstalk. Cancellation of crosstalk is thus one of the main objectives of transaural sound reproduction. It may allow one to transmit one of the binaural signals directly to the dedicated ear of the listener as described in U.S. Pat. No. 3,236,949.
Crosstalk cancellation is made possible by the fact that the signal emitted by a given loudspeaker is perceived differently at both ears. This is due to the ears' physical separation (propagation delay) and the shadowing of the head that modifies the spectral content of the contralateral ear compared to the ipsilateral ear. This relates to so-called HRTFs (Head-Related Transfer Functions) that describe such modification for a given position (angle, possibly distance) of the incoming source. They provide cues to the auditory system that are used to localize a sound event at a given position in space as described by J. Blauert in “Spatial Hearing, the psychophysics of human sound interaction”, MIT Press, 1999.
In this basic form of crosstalk canceller, the left loudspeaker 4a is dedicated to the delivery of the input signal 1 to the left ear 7a whereas the right loudspeaker 4b is meant for the cancellation of the crosstalk path of the left loudspeaker 4a to the right ear 7b.
The loudspeaker/listener system can be described as Multi-input Multi-Output (MIMO) system by measuring or modelling the transfer functions Ci,j(z) from loudspeaker i to ear j of the listener. Measured transfer functions can be arranged in a matrix C(z) of the following form:
Filters Hi(z) can be inserted to modify the loudspeakers driving signals. For convenience, they are arranged in a matrix:
Desired outputs signals dj(z) at ear j are arranged in a matrix:
Therefore, filters H(z) may be designed to synthesize desired signals d(z) at the ears of the listener as:
H(z)=C−1(z)d(z)
Therefore, transaural filters HCT,1 and HCT,2 that target crosstalk cancellation for ear a and ear b can be designed by considering:
It may also be possible to synthesize filters that would target another binaural impression. They may, for example, provide the listener with binaural signals that target the localization of a virtual sound source at a given position in space other than the position of the real loudspeakers as described in U.S. Pat. No. 5,799,094. In that case, desired ear signals d(z) are HRTFs corresponding to the desired virtual source position.
Sensitivity of transaural reproduction to listener's movements in the listening area is a serious drawback in known solutions. It is described in the case of crosstalk cancellation by T. Takeuchi, P. A. Nelson, and H. Hamada in “Robustness to head misalignment of virtual sound imaging systems”, J. Acoust. Soc. Am. 109 (3), March 2001. These are due to modifications of the acoustical paths 5 from each loudspeaker 4 to the ears 7 of the listener 6. For example, if the listener gets closer to loudspeaker 4a, its contributions arrive earlier and with a higher level than those of loudspeaker 4b. Therefore, the crosstalk cancellation is reduced because contributions from loudspeakers 4a and 4b don't cancel each other anymore at listener's right ear 7b since they are no longer out of phase nor at similar level.
Other possible causes of crosstalk cancellation limitations are due to modifications of the apparent angular position of the loudspeakers toward the listener's head. It is well known that HRTFs are subject to modifications for different position (angle, distance) of the sound source that radiates the incoming sound field. The latter depends on the local curvature of the sound field.
Known solutions to reduce the sensibility of crosstalk cancellation to head movements consists in using closely spaced (10-20 degrees) loudspeakers usually referred to as “stereo dipole” as described by O. Kirkeby, P. A. Nelson, and H. Hamada in “Local sound field reproduction using two closely spaced Loudspeakers”, J. Acoust. Soc. Am. 104 (4), October 1998. This loudspeaker arrangement increases the robustness of the crosstalk canceller to small lateral movements of the listener compared to wider angles (ex: 60 degrees). This configuration particularly minimizes the temporal modifications of both loudspeakers' contributions to head movements.
The known limitation of this configuration is the design of an efficient crosstalk canceller at low frequencies (typically, below 300/400 Hz), which appears as an ill-conditioned problem. The obtained filters have large levels at these low frequencies. This possibly limits the dynamic of the system and may damage the loudspeakers as described by Takashi Takeuchi, Philip A. Nelson in “Optimal source distribution for binaural synthesis over loudspeakers”, Acoustics Research Letters Online 2(1), January 2001. A possible solution consists in splitting the rendering of the audio signal into frequency bands. Low frequencies are reproduced using widely spaced loudspeakers (typically 60 degrees spacing) whereas higher frequencies are synthesized using closely spaced loudspeakers (typically 10-20 degrees). This solution is based on the fact that the conditioning of the matrix to be inverted in the crosstalk filter design problem is better for wider loudspeaker arrangements than it is for closely spaced loudspeakers. Moreover, crosstalk cancellation is less sensible to temporal changes due to head movements of loudspeakers' contributions at low frequencies than it is at higher frequencies. A solution using a two way approach is proposed in U.S. Pat. No. 6,633,648. A more general approach is provided in U.S. Pat. No. 6,950,524.
The stereo dipole configuration has also the advantage that the crosstalk canceller is relatively insensible to front-back head movements if the listener is relatively far from the loudspeakers. The relative level, time of arrival, and angular position of both loudspeakers are fairly similar during this type of movement of the listener.
However, this is the case neither for widely spaced loudspeakers, nor for lateral movements, nor in the case when the listener is close to the loudspeakers where the relative angle of the loudspeakers varies more significantly. However, the latter is a known preferred situation to avoid that the acoustics of the listening environment may degrade the performance of the crosstalk canceller. Such results are presented by T. Takeuchi, P. A. Nelson, O. Kirkeby and H. Hamada in “The Effects of Reflections on the Performance of Virtual Acoustic Imaging Systems”, pages 955-966, Proceedings of the Active 97, Budapest, Hungary, Aug. 21-23, (1997).
Rotation movements of the head of the listener have not been considered yet. However, they severely degrade the crosstalk cancellation efficiency as described by Takashi Takeuchi, Philip A. Nelson, and Hareo Hamada, in “Robustness to head misalignment of virtual sound imaging systems”, J. Acoust. Soc. Am. 109 (3), March 2001. Known solutions consist in tracking listeners' movements and update crosstalk filters accordingly as described in U.S. Pat. No. 6,243,476.
Crosstalk cancellation filters should then be calculated considering several orientations, and also locations of the listener's head and stored in a database. The filters should then be dynamically loaded depending on listener's head location/orientation to achieve sensible crosstalk-cancellation. The main drawback of this approach is the high number of filters to be calculated and stored if one has to account for any location of a listening area.
In most of prior art, only two physical loudspeakers, at least in a given frequency band, are used simultaneously to achieve crosstalk cancellation for a given input signal. Only in a few cases, more loudspeakers are used. There are different goals to these approaches such as:
The problem is simply expended to P loudspeakers and Q/2 head positions, leading to Q ear signals. Measured transfer functions are arranged in an extended matrix C(z) of the following form:
Filters H(z) may be designed to synthesize extended desired signals d(z) at the ears of the listener as:
H(z)=C−1(z)d(z)
In all cases the higher number of loudspeakers is considered as additional degrees of freedom for the design of the crosstalk canceller filters.
A first aim of the proposed invention is to decrease the sensibility of the reproduction of sound to the environment acoustics. It is another aim of the invention to simplify the adaptation of the reproduced sound to the listener's head orientation and position.
The invention consists in synthesizing a wave field as emanating from remote virtual loudspeakers and to use the virtual loudspeakers as acoustical sources for transaural reproduction, the remote virtual loudspeakers being synthesized using a plurality of real loudspeakers and filtering and synthesis devices, whereas the real loudspeakers are closer to the listening area than the virtual loudspeakers. The invention therefore combines advantages of both close and far loudspeaker positioning namely permits:
In other words, there is presented a method and device for reproducing sound from a first input audio signal using a plurality of first loudspeakers and producing a target binaural impression to a listener within a listening area. This obtained by the following steps
According to the invention, the virtual loudspeakers are located outside of the listening area and preferably located at a large distance from the listening area such that the wave fronts they emit are “substantially planar” wave fronts, ideally plane waves, within the entire listening area. The synthesis of a virtual loudspeaker at a given position using a plurality of real loudspeakers may be realized with known physical based sound reproduction techniques such as Wave Field Synthesis (WFS), High Order Ambisonics (HOA), or any kind of beam-forming techniques using loudspeaker arrays. Such techniques enable to synthesize wave fronts in an extended area as if emanating from a virtual loudspeaker at a given position.
None of the above mentioned sound reproduction techniques is actually capable of reproducing an exact plane wave. Substantially planar wave fronts are wave fronts that propagate in the same direction within a given listening area and in a certain frequency band. For example, Wave Field Synthesis is based on the use of horizontal linear regularly spaced loudspeaker arrays. It enables to synthesize “substantially planar” wave fronts in an extended listening area of the horizontal plane below a certain frequency referred to as aliasing frequency. The aliasing frequency depends on several factors such as the spacing of the loudspeakers, the extent of the loudspeaker array and the listening position as described by E. Corteel in “Caractérisation et extensions de la Wave Field Synthesis en conditions réelles”, Université Paris 6, PhD thesis, Paris, 2004, available at http://mediatheque.ircam.fr/articles/textes/Corteel04a/.
The main difference between an exact plane wave and a “substantially planar” wave front synthesized by a loudspeaker array is that the latter attenuates during propagation. However, considering Wave Field Synthesis the attenuation may only depend on the distance to the loudspeaker array and not on the direction of propagation of the “substantially planar” wave front. This means that “substantially planar” wave fronts propagating in different directions have similar attenuation characteristics, thus similar levels, at any position within the listening area.
Therefore, the only significant changes of the acoustical paths between the virtual loudspeakers and the listener's ears due to listener's movements compared to a reference listening position are:
Therefore, according to the invention, the adaptation of transaural filtering to the listener position within a listening area can be simply achieved in a two-step approach:
The invention therefore enables to extensively simplify the amount of transaural filters to be calculated in order to consider any listener position and listener orientation.
The synthesis of planar wave fronts using a loudspeaker array generally corresponds to increasing the directivity index of the loudspeaker array. It thus enables to limit the interaction of the loudspeaker array with the listening environment and improve the efficiency of crosstalk cancellation. For example, in the case of Wave Field Synthesis, the synthesis of a planar wave front is a special case of beam forming that creates a loudspeaker having an increased directivity in the direction of propagation of the planar wave front. Such results have been published by E. Corteel in “Caractérisation et extensions de la Wave Field Synthesis en conditions réelles”, Université Paris 6, PhD thesis, Paris, 2004, available at http://mediatheque.ircam.fr/articles/textes/Corteel04a/.
The invention will be described with more detail hereinafter with the aid of an example and with reference to the attached drawings, in which
In an exemplary form of this device, the loudspeakers may be arranged in a linear array. The wave front computation device 31 may be realized as a matrix filtering device 36 (
In an exemplary form of this device, the loudspeakers may be arranged in a linear array. The wave front computation device 31 may be realized as a matrix filtering device 36 (
Number | Date | Country | Kind |
---|---|---|---|
06010125 | May 2006 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
5136651 | Cooper et al. | Aug 1992 | A |
5579396 | Iida et al. | Nov 1996 | A |
5687239 | Inanaga et al. | Nov 1997 | A |
5862227 | Orduna-Bustamante et al. | Jan 1999 | A |
6760447 | Nelson et al. | Jul 2004 | B1 |
20050053249 | Wu et al. | Mar 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20080025534 A1 | Jan 2008 | US |