This invention relates generally to subterranean wells, and more particularly to a method and system for producing gas and liquid in a subterranean well.
Subterranean wells are used to produce various gases and liquids. For example, a subterranean well can be used to produce methane gas and liquid water from a coal seam. This type of subterranean well can include a well bore from the surface to the coal seam, a well casing cemented to the well bore, and a metal tubular within the well casing. The well can also include a submerged pump located within an under reamed cavity in the coal seam. During production from the well, water is pumped from the cavity, and through the tubular, to water production equipment at the surface. In addition, gas flows from the coal seam into the cavity, and through the annulus between the tubular and the well casing, to gas production equipment at the surface.
The methane gas can cause various problems with the submerged pump during production from the well. For example, the pump can experience vapor lock due to excessive gas flow through the pump. This vapor lock can create inefficient pump operation, and excessive duty time for the pump motor. In addition, motor cycling and gas moving through the pump can cause excessive motor heating, and premature failure of the pump and/or motor. Production of gas through the tubular is also a problem, as this gas is entrained with the water, rather than being produced to the gas production equipment at the surface.
One prior art approach to gas flow through the pump is the use of gas shrouds on the pump, which prevent gas from entering the pump inlet. U.S. Pat. No. 6,361,272 B1 to Bassett entitled “Centrifugal Submersible Pump”, discloses a submersible pump having this type of gas shroud. However, gas shrouds are not always effective in coal bed methane wells, or other pumping installations, which require the pump to be landed within the cavity in the coal seam, or above a producing zone of the well. In addition, gas can be driven downward and into the pump in a u-tubing manner, as heads of water fall back down the annulus, after they can no longer be lifted toward the surface by gas flowing up the annulus.
The liquid water can also cause various problems during production from the well. For example, water and/or wet gas flowing in the annulus of the well can enter the gas production equipment at the surface. This water can cause excess flowline pressures, lines filling with water, and metering errors in the gas production equipment. Water in the annulus, and water heads moving up and down the annulus, can also create harmful fluid column effects, such as unsteady production of water and/or gas from the well, due to the relative position and amount of fluid movement in the annulus.
One prior art approach to water accumulation in the gas production equipment is the use of drips and blowdown lines in low-lying areas of the gas production equipment, such as surface gas lines. These drips must be vented regularly to blow out the accumulated water. Typically, due to the low pressures in coal bed methane gas lines (e.g., less than 20 psig), the blowing of drips is manpower intensive, and inefficient in comparison to lines operating at higher pressures. It would be advantageous to eliminate water entirely from gas production equipment at the surface, and the need to blow drips from this equipment.
The present invention is directed to a novel method and system for producing gas and liquid in a subterranean well, in which gas flow through a submersible pump, and liquid flow through a well annulus to the surface, are substantially eliminated. In addition, the method and system can be adapted to different types of wells, including wells that employ formation pressures rather than pumps, to move the gas and the liquid.
In accordance with the present invention, a method and a system for producing a gas and a liquid in a subterranean well having an annulus are provided. The method, broadly stated, comprises directing the gas and the liquid in the annulus through at least one baffle plate in the annulus to separate at least some of the liquid from the gas. The separated liquid is directed downward towards a producing formation of the well, while the gas continues upward towards a surface of the well. The method can be performed in wells having a downhole pump for producing the liquid to the surface, and in wells that use formation pressures to produce the liquid to the surface.
In a first embodiment the system includes a set of baffle plates mounted in the well annulus proximate to a pump of the well, and a single baffle plate mounted in the well annulus proximate to the surface of the well. The set of baffle plates can comprise annular plates threadably attached to a metal tubular of the well, and having one or more through openings in a selected geometry and pattern. The set of baffle plates are configured to create a tortuous flow path through which any gas flow (or liquid flow) moving in either direction in the well annulus must pass. In addition to separating the liquid from the gas, the set of baffle plates maintains a wet gas phase above the set of baffle plates, and a liquid phase below the set of baffle plates. The single baffle plate is configured to further dehydrate the gas flowing to the gas production equipment at the surface.
The system prevents vapor lock in the pump, eliminates the need for a gas shroud on the pump, and improves the efficiency of the pump. The system also prevents liquid from surfacing and collecting in liquid production equipment, and reduces overall system back pressures caused by liquid low spots in the liquid production equipment. In addition, the system improves gas flow in the annulus, reduces gas loss through production with the liquid, and reduces effective formation backpressures caused by a higher density fluid in the annulus above the producing formation.
A second embodiment system includes a single baffle plate in the well annulus located proximate to the surface of the well. A third embodiment system includes a set of baffle plates in the well annulus located proximate to the pump of the well. A fourth embodiment system includes a set of baffle plates located proximate to an inlet of a tubular configured to produce gas and liquid by formation pressure. A fifth embodiment system includes a set of baffle plates located proximate to a perforated casing and a perforated tubular configured to produce gas and liquid by formation pressure. A sixth embodiment system includes a set of baffle plates located proximate to an inlet of a tubular located above a perforated section of casing configured to produce gas and liquid by formation pressure.
Referring to
The well 12 includes a well bore 16, and a well casing 14 within the well bore 16 surrounded by concrete 18. The well 12 extends from an earthen surface 20 through geological formations within the earth, which are represented as Zones A, B and C, with Zone C comprising a producing formation, such as a coal seam. The well casing 14 can comprise a plurality of cylindrical metal tubulars, such as lengths of metal pipe or tubing, attached to one another by collars (not shown), or weldments (not shown), configured to form a conduit for gas transmission therethrough.
The well 12 also includes a tubular 22 within the well casing 14, which can also comprise a plurality of cylindrical metal tubulars configured to form a conduit for liquid transmission through the inside diameter thereof. The tubular 22 has an outside diameter which is less than an inside diameter of the well casing 14, such that an annulus 24 is formed between the tubular 22 and the well casing 14 for the gas transmission. The annulus 24 is in flow communication with gas production equipment 30 at the surface 20. Similarly, the inside diameter of the tubular 22 is in flow communication with liquid production equipment 32 at the surface 20.
The well 12 also includes a cavity 34 in the producing formation (Zone C). The cavity 34 can comprise an uncased portion of the well bore 16 or a cased portion having flow openings in the well casing 14. The cavity 34 can also comprise an under reamed cavity having a size larger than the well bore 16 formed using techniques that are known in the art. In the illustrative embodiment, the well casing 14 includes a casing shoe 40 within the cavity 34 configured to direct gas flow from the cavity 34 into the annulus 24. Also in the illustrative embodiment, the gas comprises methane gas, which flows under a natural or externally generated pressure from the producing formation (Zone C) into the cavity 34. The paths of a gas flow 26 in the well 12 will be more fully described as the description proceeds.
The well 12 also includes a submersible pump 36 in the cavity 34 powered by an electric motor 38. The inlet of the pump 36 is in flow communication with any standing liquid accumulating within the cavity 34. In the illustrative embodiment, the liquid comprises water, which flows under a natural or externally generated pressure from producing formation (Zone C) into the cavity 34. The outlet of the pump 36 is in flow communication with the inside diameter of the tubular 22, and with the liquid production equipment 32. The pump 36 thus pumps the liquid from the cavity 34 through the inside diameter of the tubular 22 to the liquid production equipment 32. However, some of the liquid also flows into the annulus 24 in both an upward and a downward direction. The paths of a liquid flow 28 in the well 12 will be more fully described as the description proceeds.
The system 10 includes a set of baffle plates 42 attached to the tubular 22, and located at a selected depth in the well 12. Preferably the set of baffle plates 42 is located proximate to the producing formation (Zone C), the cavity 34, the pump 36 and the casing shoe 40. The set of baffle plates 42 includes a first baffle plate 46, a second baffle plate 48 and a third baffle plate 50. The baffle plates 46, 48, 50 are arranged in a stacked array with the first baffle plate 46 being furthest from the surface 20, the second baffle plate 48 being between the first baffle plate 46 and the third baffle plate 50, and the third baffle plate 50 being closest to the surface 20.
In the illustrative embodiment, the set of baffle plates 42 is located in close proximity to the cavity 34, the casing shoe 40 and the pump 36. By way of example, a distance D1 between the set of baffle plates 42 and the edge of the casing shoe 40 (with the casing shoe 40 and the pump 36 being located in the cavity 34 in close proximity to one another) can be from about one foot to thirty feet. The first baffle plate 46, the second baffle plate 48 and the third baffle plate 50 can also be separated from one another by a selected distance, with from one foot to three feet of separation between adjacent baffle plates 46, 48 or 50 being representative. However, it is to be understood that the number, placement and separation of the baffle plate 46, 48 and 50 are merely exemplary, and other arrangements with a fewer or greater number of baffle plates can be employed.
The set of baffle plates 42 is configured to create a tortuous path for the gas flow 26 and the liquid flow 28 moving mainly in an upward direction, but also in a downward direction in the annulus 24. In addition, the set of baffle plates 42 is configured to separate the liquid from the gas, and to maintain a line of separation in the annulus 24, above which a single phase wet gas is present, and below which a head of liquid is present. Further, gas flow into the pump 36 is substantially reduced because the set of baffle plates 42 maintains the head of liquid proximate to the pump 36. Still further, the set of baffle plates 42 prevents liquid columns from developing in the annulus 24 due to liquid entrained in the gas stream rising to a certain depth, and then falling back onto the pump 36 and the cavity 34. This liquid fallback can carry gas into the intake of the pump 36, which is detrimental to the performance of the pump 36.
As shown in
As shown in
The system 10 also includes a single baffle plate 44 located at a selected depth in the well 12 proximate to the surface 20. The single baffle plate 44 is configured to act as a final dehydration mechanism to remove as much liquid as possible from the gas flow 26 before it enters the gas production equipment 30. As shown in
The baffle plates 46, 48, 50 for the set of baffle plates 42, and the single baffle plate 44, can be made of a machineable material able to resist the corrosive gases and fluids encountered in the subterranean well 12. One suitable material comprises a plastic, such as “LEXAN” polycarbonate manufactured by the General Electric Company, Polymer Product Department, Pittsfield, Mass. Other suitable materials include stainless steel, steel and brass.
The set of baffle plates 42, and the single baffle plate 44 can be attached to the tubular 22 in any suitable manner. One suitable configuration for the set of baffle plates 42 is illustrated in
As shown in
The uppermost nipple 60 threadably engages a corresponding coupling or female threads on the tubular 22. Similarly, the lowermost nipple 60 threadably engages a corresponding coupling or female threads on the tubular 22 on the pump 36. The inside diameter of the tubular 22 is thus in flow communication with the inside diameter of the nipples 60 and the couplings 62.
However, it is to be understood that this arrangement is merely exemplary and other mechanisms, such as brackets or weldments, can be used to attach the set of baffle plates 42 to the tubular 22. The single baffle plate 44 can be similarly mounted to a nipple 60 and a coupling 62, and attached to the tubular 22.
Referring to
As shown in
System 10A With Single Baffle Plate 44
Referring to
System 10B With Set of Baffle Plate 42
Referring to
System 10C With Siphon String
Referring to
As indicated by gas flow 26 upward through the annulus 24, the well 12A produces gas through the annulus 24 to gas production equipment 30 at the surface 20. As indicated by gas and liquid flow 66 upward through the tubular 22, the well 12A produces liquid and gas through the tubular 22 to gas and liquid production equipment 68 at the surface 20. The tubular 22 includes an inlet 78 located within or proximate to the cavity 34 and the producing formation (Zone C), which directs the gas and liquid flow 66 from the cavity 34 upward through the tubular 22 to the gas and liquid production equipment 68. The gas and liquid flow 66 is generated by natural (or artificially generated) pressure in the producing formation (Zone C).
This type of well 12A is known in the art as a siphon string well, as the tubular 22 is used to siphon the liquid from the bottom of the well 12A using a portion of the gas flow for lift. In a conventional siphon string well, the momentum of the gas and liquid flow 66 rising vertically from below the tubular inlet 78 can cause a foam or liquid laden gas column to form just above the tubular inlet 78. This higher density column causes additional backpressure on the producing formation (Zone C), reducing the productivity of the well. The higher density column can also cause slugging of the gas and liquid flow 66 entering the tubular inlet 78, as it can no longer be supported by the gas velocity from below.
The system 10C includes the set of baffle plates 42 located about ten feet to thirty feet from the casing shoe 40 and the tubular inlet 78 of the well 12A. The set of baffle plates 42 creates a tortuous path for the gas flow 26 upward from the cavity 34 through the annulus 24. As indicated by the downward liquid flow 28 from the set of baffle plates 42, at least some of the liquid is separated from the gas. In addition, the set of baffle plates 42 functions to separate the gas and liquid phase below the tubular inlet 78 from a stable gas phase above the set of baffle plates 42. This substantially eliminates the additional backpressure and slugging described above.
System 10D With Dead String and Perforated Tubular
Referring to
The well 12B also includes a perforated section 70 having a plurality of perforations 72 through the casing 14 and the concrete 18 in flow communication with the producing formation (Zone C). The tubular 22 includes an inlet 78 within or proximate to the perforated section 70 of the casing 14, and a perforated section 74 proximate to the inlet 78 having a plurality of perforations 76 there through. The tubular 22 is thus also in flow communication with the producing formation (Zone C).
The system 10D includes the set of baffle plates 42 located about ten feet to thirty feet from the perforated section 70 of the well 12B. As indicated by the downward liquid flow 28, the set of baffle plates 42 prevents the formation of large liquid columns in the annulus 24. As with the system 10C (
System 10E With Conventional Flow
Referring to
The system 10E includes the set of baffle plates 42 located about ten feet to thirty feet from the inlet 78 of the tubular 22. As indicated by the downward liquid flow 28, the set of baffle plates 42 prevents the formation of large liquid columns in the annulus 24. As with the system 10C (
In
As indicated by
In
As indicated by
In
As indicated by
In
As indicated by
In
As indicated by
Thus the invention provides a method and a system for producing a gas and a liquid in a subterranean well. While the invention has been described with reference to certain preferred embodiments, as will be apparent to those skilled in the art, certain changes and modifications can be made without departing from the scope of the invention as defined by the following claims.