Method and system for protecting encrypted files transmitted over a network

Information

  • Patent Grant
  • 7512810
  • Patent Number
    7,512,810
  • Date Filed
    Wednesday, September 11, 2002
    22 years ago
  • Date Issued
    Tuesday, March 31, 2009
    15 years ago
Abstract
An improved system and approaches for protecting secured files when being used by an application (e.g., network browser) that potentially transmits the files over a network to unknown external locations are disclosed. According to one aspect, access to secured files is restricted so that unsecured versions of the secured files are not able to be transmitted over a network (e.g., the Internet) to unauthorized destinations. In one embodiment, in opening a file for use by a network browser, the network browser receives a secured (e.g., encrypted) version of the secured file when the destination location (e.g., destination address) for the network browser is not trusted, but receives an unsecured (e.g., unencrypted) version of the secured file when the destination location for the network browser is trusted. According to another aspect, processes operating on a computer system are monitored to determine destination locations, if any, of said processes, and then using such destination locations to determine whether to permit the processes to open files in a secure or unsecured manner.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is related to U.S. patent application Ser. No. 10/075,194, filed Feb. 12, 2002, and entitled “SYSTEM AND METHOD FOR PROVIDING MULTI-LOCATION ACCESS MANAGEMENT TO SECURED ITEMS,” which is hereby incorporated by reference for all purposes.


BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to security systems for data and, more particularly, to security systems that protect data in an inter/intra enterprise environment.


2. Description of Related Art


The Internet is the fastest growing telecommunications medium in history. This growth and the easy access it affords have significantly enhanced the opportunity to use advanced information technology for both the public and private sectors. It provides unprecedented opportunities for interaction and data sharing among businesses and individuals. However, the advantages provided by the Internet come with a significantly greater element of risk to the confidentiality and integrity of information. The Internet is an open, public and international network of interconnected computers and electronic devices. Without proper security measures, an unauthorized person or machine may intercept any information traveling across the Internet, and may even get access to proprietary information stored in computers that interconnect to the Internet but are otherwise generally inaccessible by the public.


There are many efforts in progress aimed at protecting proprietary information traveling across the Internet and controlling access to computers carrying the proprietary information. Cryptography allows people to carry over the confidence found in the physical world to the electronic world, thus allowing people to do business electronically without worries of deceit and deception. Every day hundreds of thousands of people interact electronically, whether it is through e-mail, e-commerce (business conducted over the Internet), ATM machines or cellular phones. The perpetual increase of information transmitted electronically has lead to an increased reliance on cryptography.


One of the ongoing efforts in protecting the proprietary information traveling across the Internet is to use one or more cryptographic techniques to secure a private communication session between two communicating computers on the Internet. Cryptographic techniques provide a way to transmit information across an unsecure communication channel without disclosing the contents of the information to anyone eavesdropping on the communication channel. An encryption process is a cryptographic technique whereby one party can protect the contents of data in transit from access by an unauthorized third party, yet the intended party can read the data using a corresponding decryption process.


Conventionally, network browsers (e.g., Internet or Windows browsers) are utilized to access content remotely located on the World Wide Web. In other words, with a network browser, a user can request a resource that is remotely located on a remote server coupled to the Internet. Alternatively, a network browser can be used to transmit a file to a remote server coupled to the Internet. Hence, network browsers are effective at allowing communications between network browsers and remote servers. Although network browsers greatly facilitate access to data, when network browsers are used on computing systems that utilize file security systems, network browsers present a security problem. More specifically, a network browser presents a security risk because it can transmit any of the files it accesses to a remote server (remote site). Hence, the security provided on secured files can be lost if unsecured versions of secured files are made available to network browsers. However, when the network browser merely desires access to the files for display or other non-transmission purposes, then the network browser does not present a security risk. Accordingly, if the network browser does intend to transmit a file to an unsecured remote server, then the security for the file as provided by the file security system is compromised.


Thus, there is an need for improved techniques to enable file security systems to permit the use of network browsers yet preserve the security on secured files.


SUMMARY OF THE INVENTION

The invention relates to improved approaches for protecting secured files when being used by an application (e.g., network browser) that is capable of transmitting the files over a network to unknown external locations.


One aspect of the invention pertains to restricting access to secured files so that unsecured versions of the secured files are not able to be transmitted over a network (e.g., the Internet) to unauthorized destinations. In one embodiment, in opening a file for use by a network browser, the network browser receives a secured (e.g., encrypted) version of the secured file when the destination location (e.g., destination address) for the network browser is not trusted, but receives an unsecured (e.g., unencrypted) version of the secured file when the destination location for the network browser is trusted. Another aspect of the invention pertains to monitoring processes operating on a computer system to determine destination locations, if any, of said processes, and then using such destination locations to determine whether to permit the processes to open files in a secure or unsecured manner.


The invention can be implemented in numerous ways, including as a method, system, device, and computer readable medium. Several embodiments of the invention are discussed below.


As a method for limiting access to a file stored in and secured by a file security system, one embodiment of the invention includes at least the acts of: receiving a request for access to a secured file, the request being initiated by a requestor and being associated with a process associated with a computer system; determining whether the process is trusted by the file security system; determining whether the requestor is permitted to access an unsecured version of the secured file; and unsecuring the secured file to produce an unsecured file, thereby permitting access to the unsecured file only when the process is determined to be trusted and the requestor is determined to be permitted to access an unsecured version of the unsecured file.


As a method for limiting access to a file secured by a file security system, another embodiment of the invention includes at least the acts of: receiving a file open request to open a secured file, the request being initiated by a requestor and being associated with a process associated with a computer system; determining whether the process is trusted by the file security system; determining whether the requestor has sufficient access privileges to open an unsecured version of the secured file; permitting the secured file to be opened for limited use by the requestor when the process is determined not to be trusted; and permitting the unsecured version of the secured file to be opened for use by the requestor when the process is trusted and the requestor has sufficient access privileges.


As a method for identifying a destination address being accessed by a window for a process operating on a computer system, one embodiment of the invention includes at least the acts of: determining a foreground window for the process, and examining a resource within the foreground window to determine a destination address that is being or is to be accessed by the process.


As a computer readable medium including at least computer program code for limiting access to a file secured by a file security system, one embodiment of the invention includes at least: computer program code for receiving a request for access to a secured file, the request being initiated by a requester and being associated with a process associated with a computer system; computer program code for determining whether the process is trusted by the file security system; computer program code for determining whether the requestor is permitted to access an unsecured version of the secured file; and computer program code for unsecuring the secured file to produce an unsecured file, thereby permitting access to the unsecured file only when the process is determined to be trusted and the requestor is determined to be permitted to access an unsecured version of the unsecured file.


As a computer system providing file security, one embodiment of the invention includes at least an access control system that limits access to stored files based on at least access rules and trusted criteria, a process operating on the computer system, and a destination monitor that monitors an external destination of the process. The access control system permits access to the stored, secured files only when the access rules are satisfied and the process as well as the external destination satisfy the trusted criteria.


Other objects, features, and advantages of the present invention will become apparent upon examining the following detailed description of an embodiment thereof, taken in conjunction with the attached drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:



FIG. 1 is a block diagram of a file security system according to one embodiment of the invention.



FIG. 2 is a flow diagram of file access processing according to one embodiment of the invention.



FIG. 3 is a flow diagram of file open processing according to one embodiment of the invention.



FIG. 4 is a flow diagram of trusted evaluation processing according to one embodiment of the invention.



FIG. 5 shows a basic security system in which the invention may be practiced in accordance with one embodiment thereof.



FIG. 6 shows an exemplary data structure of a secured file that may be used in one embodiment of the invention.





DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to improved approaches for protecting secured files when being used by an application (e.g., network browser) that is capable of transmitting the files over a network to unknown external locations.


One aspect of the invention pertains to restricting access to secured files so that unsecured versions of the secured files are not able to be transmitted over a network (e.g., the Internet) to unauthorized destinations. In one embodiment, in opening a file for use by a network browser, the network browser receives a secured (e.g., encrypted) version of the secured file when the destination location (e.g., destination address) for the network browser is not trusted, but receives an unsecured (e.g., unencrypted) version of the secured file when the destination location for the network browser is trusted.


Another aspect of the invention pertains to monitoring processes operating on a computer system to determine destination locations, if any, of said processes, and then using such destination locations to determine whether to permit the processes to open files in a secure or unsecured manner.


Using the invention, a file security system can enforce the policy that a network browser never sends unsecured versions of secured files (e.g., decrypted files) to web-based email sites which are external destination locations that are unapproved (e.g., untrusted). On the other hand, the file security system is still able to send unsecured versions of the secured files to approved document management sites.


Secured files are files that require one or more keys, passwords, access privileges, etc. to gain access to their content. The security is often provided through encryption and access rules. The files, for example, can pertain to documents, multimedia files, data, executable code, images and text. In general, a secured file can only be accessed by authenticated users with appropriate access rights or privileges as compared to the access rules for the secured file. In one embodiment, each secured file is provided with a header portion and a data portion, where the header portion contains, or points to, security information. The security information is used to determine whether access to associated data portions of secured files is permitted.


As used herein, a user may mean a person, a software agent, a group of users, a member of the group, a device and/or application. Besides a person who needs to access a secured document, a software application or agent sometimes needs to access secured files in order to proceed. Accordingly, unless specifically stated, the “user” as used herein does not necessarily pertain to a human being.


In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will become obvious to those skilled in the art that the present invention may be practiced without these specific details. The description and representation herein may rely on the common meanings used by those experienced or skilled in the art to most effectively convey the substance of their work to others skilled in the art. In other instances, well-known methods, procedures, components, and circuitry have not been described in detail to avoid unnecessarily obscuring aspects of the present invention.


Reference herein to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Further, the order of blocks in process flowcharts or diagrams representing one or more embodiments of the invention do not inherently indicate any particular order nor imply any limitations in the invention.


Embodiments of the present invention are discussed herein with reference to FIGS. 1-6. However, those skilled in the art will readily appreciate that the detailed description given herein with respect to these figures is for explanatory purposes as the invention extends beyond these limited embodiments.



FIG. 1 is a block diagram of a file security system 100 according to one embodiment of the invention. The file security system 100 includes an access control system 102 that controls access to files maintained by the file security system 100. The access control system 102 couples to a local file storage 104. The access control system 102 also couples to a remote file storage 106 over a network 108. The network 108 can be a local area network, a wide area network or the Internet, or some combination thereof. Typically, the files are maintained in an encrypted format and the access control system 102 operates to permit access to unencrypted versions of the files only to requestors that have been properly authenticated and have sufficient access privileges.


The file security system 100 can operate on a computing system. The computing system is typically a client machine, though it could also be coupled to and use resources of a server machine. An operating system of the computing device hosting at least a portion of the file security system 100 includes the access control system 102 and the local file storage 104 or an interface thereto in an operating system layer. The computing device also operates to execute one or more applications in an application layer. These applications execute one or more processes. As shown in FIG. 1, as a representative example, a browser process 110 and a non-browser process 112 are active within the application layer. The browser process 110 is produced by a network browser application, and the non-browser process 112 is produced by an application other than a network browser application. The browser process 110 produces a browser window A 114 and a browser window B 116. Typically, these browser windows 114 and 116 are displayed on a display device associated with the computing device. The browser window A 114 is deemed a foreground window as it is on top of and, in this case, overlaps a portion of the browser window 116. The non-browser process 112 produces a window A 118 and a window B 120. The window A 118 is deemed a foreground window as it is on top of and, in this example, overlaps a portion of the window B 120.


The browser process 110 and the non-browser process 112 can access secured files via the operating system. These secured files can be stored locally in the local file storage 104 or stored remotely in the remote file store 106. As such, the access control system 102 needs to limit access to the secured files such that a process operating in the application layer is not able to transmit unsecured versions of the secured files to unauthorized external locations.


The file security system 100 includes an address identifier monitor 122. In general, an address identifier identifies a destination address and may, for example, be a Universal Resource Identifier (URI) or Universal Resource Locator (URL). To facilitate the description of the invention, the address identifier monitor 122 is referred to herein as a URL monitor 122. The URL monitor 122 monitors each of the processes resident in the application layer, namely, in this example, the processes 110 and 112. The URL monitor 122 determines, for each process, a destination URL (i.e., an external destination) for the foreground window. For example, the URL monitor 122 would determine a destination URL for the browser window A 114 and would determine a destination URL for the window A 118. However, since the window A 118 is produced by the non-browser process 112, the URL monitoring performed by the URL monitor 122 would normally not identify a URL associated with the window A 118 because it is not associated with a network browser and thus would not be accessing a destination URL.


The access control system 102 can then determine whether or not to permit access to secured files by the processes operating on the application layer. For example, if the browser process 110 were to seek access to a secured file, the access control system 102 would determine not only whether the browser process 110 is permitted to gain access but also whether the URL associated with the browser window A 114 is a permissible destination. In one embodiment, the access control system 102 determines whether the browser process and its URL are both trusted. In one implementation, the access control system 102 can maintain a list or table of trusted processes and/or URLs. Then, the access control system 102 can compare the browser process 110 and the URL associated with the browser window A 114, as determined by the URL monitor 122, to determine whether the browser process 110 is trusted at this time for access to the secured files. Thus, access control to secured files being requested by a process can be dependent on the URL (i.e., destination URL) associated with the process.


Accordingly, a network browser is able to send files to many different external sites. The file security system 100 operates to enforce whether or not these external sites are given an encrypted version of the file or a decrypted version of the file. The file security system 100 has the ability to detect whether the requestor is sending the file requested to a network browser, and if so, limiting the extent to which decrypted versions of the files are made available to the network browser.


As previously noted, the URL monitor 122 monitors each of the processes resident in the application layer to determine a destination URL, if any, for each process. Such monitoring can be performed in an active or passive manner. In the case of active monitoring, the URL monitor can periodically locate windows provided by an operating system and search through such windows for certain heuristics or attributes that would specify a URL associated with the window. For example, in the case of a network browser window (e.g., Internet Explorer), an address bar would typically appear towards the top portion of the content being displayed in the window.


In the case of passive monitoring, in one embodiment, a browser helper object (BHO) can be registered with the browser application, such as Internet Explorer from Microsoft Corporation. The browser helper object would then notify the URL monitor 122 each time the browser application goes to a new URL.


According to one embodiment, the access control system 102 can associate a given network browser process identifier (ID) with the URL that is currently being browsed by the process by determining which window is currently in the foreground, and if it is a browser window, which URL is being displayed. Such determination of the URL being browsed can be done with Application Programming Interfaces (APIs) provided in an operating system (e.g., Microsoft Windows XP) or through an active monitoring and evaluation technique.



FIG. 2 is a flow diagram of file access processing 200 according to one embodiment of the invention. The file access processing 200 is, for example, performed by a file security system, such as the access control system 102 illustrated in FIG. 1.


The file access processing 200 monitors 202 URL access by processes. The URL specifies a network address for an external server. For example, if a process associated with a network browser is browsing a URL, the monitoring operates to identify the URL. Next, a decision 204 determines whether a file access request has been received. When the decision 204 determines that a file access request has not been received, the file access processing 200 awaits such a request and may continue to monitor URL access by the processes such that the monitoring remains current.


When the decision 204 determines that a file access request has been received, a decision 206 determines whether the requesting process and its URL (obtained via monitoring) are authorized to access the requested file. When the decision 206 determines that the requesting process and its URL are authorized, then a decision 208 determines whether the requested file can be accessed given the access privileges of the requestor. According to one embodiment, the secured file is in a form including embedded access rules that control restrictive access to the secured file. Accordingly, in such an embodiment, the access rules are evaluated against the access privileges of the user. When the decision 208 determines that access rules have been satisfied, then access to an unsecured version of the secured file is permitted 210.


On the other hand, when the decision 206 determines that the requesting process and its URL are not authorized, or when the decision 208 determines that the access rules are not satisfied, then access to an unsecured version of the secured file is denied 212. Following the operations 210 and 212, the file access processing 200 is complete and ends.



FIG. 3 is a flow diagram of file open processing 300 according to one embodiment of the invention. The file open processing 300 is, for example, performed by a file security system, such as the access control system 102 illustrated in FIG. 1.


The file open processing 300 begins with a decision 302 that determines whether a file open request has been received. The file open request is provided or initiated by a requester. The requestor can be a user. When the decision 302 determines that a file open request has not yet been received, the file open processing 300 awaits such a request.


Once the decision 302 determines that a file open request has been received, then a decision 304 determines whether the file is secured. Typically, the file is secured through access rules as well as encryption of some or all of the file. When the file to be accessed is not secured, then the file open is permitted 306 and the file open processing 300 is completed. In this case, the file open is permitted without restriction because the file to be opened is not secured.


On the other hand, when the decision 304 determines that the file to be accessed is secured, then a decision 308 determines whether the process requesting the file is trusted. A process can be deemed trusted if the process itself is deemed trusted and/or if an external destination (e.g., URL) of the process is trusted. When the decision 308 determines that the process requesting the file is not trusted, then the file open is permitted 310 but only with secured data. In other words, the file open is processed but the file is the secured file and thus the data remains secured (e.g., encrypted). After the file open has been permitted 310 with the secured data, the file open processing 300 is complete and ends.


Alternatively, when the decision 308 determines that the process requesting the file is trusted, then a decision 312 determines whether the requestor is permitted access to an unsecured version of the file. When the requester is permitted access to an unsecured version of the file, such as by satisfying access rules, an unsecured version of the file is produced 314. For example, when the file has been previously secured through encryption, the unsecured version of the file can be obtained by decryption of the file. Then, the file open is permitted 316 with the requestor receiving the unsecured version of the file. Following the operation 316, the file open processing 300 is complete and ends. On the other hand, when the decision 312 determines that the requester is not permitted to access an unsecured version of the file, the file open is denied 318 and the file open processing 300 is complete and ends.


In the above embodiment, a file open request is either denied, permitted with secured data, or permitted with unsecured data. However, to receive the unsecured data, the process requesting the file must be trusted and the requestor must satisfy the access rules. Consequently, processes that are not trusted are not able to open files to gain access to unsecured data in the files.


In general, trusted evaluation processing determines whether a process requesting a secured file is trusted. The trusted evaluation processing can maintain a list of process identifiers (IDs) with current URLs. When one of these processes attempts to open a secured file (e.g., an encrypted file), the trusted evaluation processing makes a decision whether or not the process and/or its current URL are trusted. Based on the trust determination, the secured file is made available to the process in its secured form if untrusted and in its unsecured form if trusted.



FIG. 4 is a flow diagram of trusted evaluation processing 400 according to one embodiment of the invention. The trusted evaluation processing 400 is, for example, processing that can be utilized to determine whether the process requesting the file is trusted. For example, the trusted evaluation processing 400 can represent one embodiment of processing associated with the decision 308 illustrated in FIG. 3.


The trusted evaluation processing 400 initially obtains 402 a process identifier for the process that is requesting access to a secured file. Then, using the process identifier, a process name and a current URL can be identified 404 for the process. In one embodiment, the process identifier is used to retrieve the associated process names and the current URL associated with the process, where the current URL was previously obtained by monitoring the process. A list of trusted processes and/or URLs can also be retrieved 406. The list of trusted processes and/or URLs can be predetermined, or determined in advance, of the operation 406. In one embodiment, a system administrator could have previously identified those processes and/or URLs that are considered to be trusted. For example, a system administrator can configure a list of trusted processes and URLs that are to be deemed trusted.


A decision 408 then determines whether the process name is trusted. Here, the process name of the process requesting access to the secured file can be checked against the trusted processes within the list of trusted processes and/or URLs. When the decision 408 determines that the process name is trusted, then a decision 410 can determine whether the URL is trusted. In performing the decision 410, the current URL associated with the process can be compared to the URLs within the list of trusted processes and/or URLs. When the decision 410 determines that the URL is trusted, then the process is deemed 412 trusted for the URL. Alternatively, when the decision 408 determines that the process name is not trusted or when the decision 410 determines that the URL is not trusted, then the process is deemed 414 untrusted for the URL. Following the operations 412 and 414, the trusted evaluation processing 400 is complete and ends.


Note that, in this embodiment, a process is trusted if its process name can be trusted and if specific URLs can be trusted. Hence, with respect to a particular access request, a process may or may not be deemed trusted depending upon the URL associated with the process. In other words, in order to be trusted, both the process and the specific URLs must be trusted.


Further, the list of trusted processes and/or URLs can be organized or arranged in a variety of different ways such that those processes and/or URLs to be trusted are designated in a positive or negative sense. For example, the list of trusted processes and/or URLs can contain those processes that are trusted or those processes that are untrusted. Likewise, the list can include those specific URLs that are untrusted or those specific URLs that are trusted.


In one embodiment, the processes being determined to be trusted or untrusted are network browsers. Note that the trusted evaluation processing 400 assumes (for security sake) that a network browser (or other process) is opening a file with the intent to transmit it to the site at the given URL; however, opening a file by a network browser does not necessitate its transmission to a remote site.



FIG. 5 shows a basic security system 500 in which the invention may be practiced in accordance with one embodiment thereof. The security system 500 may be employed in an enterprise or inter-enterprise environment. It includes a first server 502 (also referred to as a central server) providing centralized access management for the enterprise thus files secured in the security system 500 can be controlled for restrictive access. To provide the dependability, reliability and scalability of the system, one or more second servers 504 (also referred to as local servers of which one is shown) may be employed to provide backup or distributed access management for users or client machines serviced locally. For illustration purposes, there are two client machines 501 and 502 being serviced by a local server 504. Alternatively, one of the client machines 501 and 502 may be considered as a networked storage device.


Secured files may be stored in either one of the devices 501, 502, 504 and 506. It is assumed that the client machine 501 corresponds to a file security system 100 of FIG. 1. When a user of the client machine 501 attempts to send a secured file to a remote destination 512, one or more of the processing 200, 300 and 400 discussed above are activated to ensure that the requested secured file is delivered without compromising the security imposed on the secured file.



FIG. 6 shows an exemplary data structure 620 of a secured file that may be used in one embodiment of the invention. The data structure 620 includes two portions: a header (or header portion) 622 and encrypted data (or an encrypted data portion) 624. The header 622 can be generated in accordance with a security template associated with the store and thus provides restrictive access to the data portion 624 that is an encrypted version of a plain file. Optionally, the data structure 620 may also include an error-checking portion 625 that stores one or more error-checking codes, for example, a separate error-checking code for each block of encrypted data portion 624. These error-checking codes may also be associated with a Cyclical Redundancy Check (CRC) for the header 622 and/or the encrypted data portion 624. The header 622 includes a flag bit or signature 627 and security information 626 that is in accordance with the security template for the store. According to one embodiment, the security information 626 is encrypted and can be decrypted with a user key associated with an authenticated user (or requester).


The security information 626 can vary depending upon implementation. However, as shown in FIG. 6, the security information 626 includes a user identifier (ID) 628, access policy (access rules) 629, a file key 630 and other 631. Although multiple user identifiers may be used, a user identifier 628 is used to identify a user or a group that is permitted to access the secured file 620. The access rules 629 provide restrictive access to the encrypted data portion 624. The file key 630 is a cipher key that, once obtained, can be used to decrypt the encrypted data portion 624 and thus, in general, is protected. In one implementation of the structure 620, the file key 630 is encrypted in conjunction with the access rules 629. In another implementation of the structure 620, the file key 630 is double encrypted with a protection key and further protected by the access rules 629. The other 631 is an additional space for other information to be stored within the security information 626. For example, the other information 631 may be used to include other information facilitating secure access to the secured file, such as version number or author identifier.


The invention is preferably implemented by software or a combination of hardware and software, but can also be implemented in hardware. The invention can also be embodied as computer readable code on a computer readable medium. The computer readable medium is any data storage device that can store data which can thereafter be read by a computer system. Examples of the computer readable medium include tangible media such as read-only memory, random-access memory, CD-ROMs, DVDs, magnetic tape, and optical data storage devices. The computer readable medium can also be distributed over network-coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.


The various embodiments, implementations and features of the invention noted above can be combined in various ways or used separately. Those skilled in the art will understand from the description that the invention can be equally applied to or used in other various different settings with respect to various combinations, embodiments, implementations or features provided in the description herein.


The advantages of the invention are numerous. Different embodiments or implementations may yield one or more of the following advantages. One advantage of the invention is that file security systems are able to protect secured files (e.g., documents) even when network browsers seek access to secured files. Another advantage of the invention is that a file security system can enforce the policy that a network browser never sends unsecured versions of secured files (e.g., decrypted files) to unapproved sites. For example, the policy could prevent a network browser from sending unsecured versions of secured files to web-based email sites which are external destination locations that are unapproved (e.g., untrusted), yet the file security system would still be able to send unsecured versions of the secured files to approved sites that are permitted to access the secured files. The approved sites may, for example, be used by those temporary consultants or tele-commuters for an enterprise.


The foregoing description of embodiments is illustrative of various aspects/embodiments of the present invention. Various modifications to the present invention can be made to the preferred embodiments by those skilled in the art without departing from the true spirit and scope of the invention as defined by the appended claims. Accordingly, the scope of the present invention is defined by the appended claims rather than the foregoing description of embodiments.

Claims
  • 1. A method comprising: (a) receiving a request for access to a secured file, wherein the request is initiated by a requestor, and wherein the request is associated with a process associated with a computer system;(b) determining whether the process is a trusted process, wherein the determination is based on trust of the process and trust of an external destination of the process, wherein the external destination of the process is based on one or more of a destination address associated with the process and a current Universal Resource Locator (URL) associated with the process;(c) determining whether the requestor is permitted to access an unsecured version of the secured file; and(d) upon successful determination in steps (b) and (c), unsecuring the secured file to produce the unsecured version of the secured file, thereby permitting access to the unsecured version of the secured file.
  • 2. The method as recited in claim 1, wherein the method further comprises: (e) permitting access to the secured file when the determining (b) determines that the process is not trusted.
  • 3. The method as recited in claim 2, wherein the method further comprises: (f) denying access to the secured file when the determining (b) determines that the process is trusted and the determining (c) determines that the requestor is not permitted to access an unsecured version of the secured file.
  • 4. The method as recited in claim 3, wherein the process pertains to a network browser operating on the computer system.
  • 5. The method as recited in claim 1, wherein the method further comprises: (e) denying access to the secured file when the determining (b) determines that the process is trusted and the determining (c) determines that the requester is not permitted to access an unsecured version of the secured file.
  • 6. The method as recited in claim 1, wherein: the process has a current destination address associated therewith; andthe determining (b) of whether the process is trusted by the file security system is determined based on at least the current destination address.
  • 7. The method as recited in claim 6, wherein the current destination address is determined by monitoring a current destination address for each of a plurality of processes operating on the computer system.
  • 8. The method as recited in claim 7, wherein when a process being monitored for a current destination address has multiple windows, the current destination address for the process pertains to one of the windows in a foreground position.
  • 9. The method as recited in claim 1, wherein the determining (b) of whether the process is trusted by the file security system comprises: (b1) identifying a process name and a current destination address for the process; and(b2) comparing the process name and the current destination address with a predetermined list of trusted processes and destination addresses.
  • 10. The method as recited in claim 9, wherein step (b) further comprises: (b3) concluding that the process is trusted when the comparing (b2) determines that the process name and the current destination address are present within the list of trusted processes and destination addresses.
  • 11. The method as recited in claim 1, wherein the process pertains to a network browser operating on the computer system.
  • 12. A method comprising: (a) receiving a file open request to open a secured file, the request being initiated by a requester and being associated with a process;(b) determining whether the process is a trusted process wherein the determination is based on trust of the process and trust of an external destination of the process, wherein the external destination of the process is based on one or more of a destination location associated with the process and a current Universal Resource Locator (URL) associated with the process;(c) determining whether the requester is permitted to open an unsecured version of the secured file;(d) permitting the secured file to be opened for limited use by the requestor when the process is determined not to be trusted; and(e) upon successful determination in steps (b) and (c), permitting the unsecured version of the secured file to be opened for use by the requestor.
  • 13. The method as recited in claim 12, wherein the method further comprises: preventing the secured file or the unsecured version of the secured file from being opened for use by the requestor when the requestor lacks permission.
  • 14. The method as recited in claim 12, wherein the secured file is secured through encryption.
  • 15. The method as recited in claim 12, wherein: the process has a current Universal Resource Locator (URL) associated therewith, andthe determining of whether the process is trusted by the file security system is determined based on at least the current URL.
  • 16. The method as recited in claim 15, wherein the process pertains to a network browser operating on the computer system.
  • 17. The method as recited in claim 15, wherein the current URL is determined by monitoring a current URL for each of a plurality of processes operating on the computer system.
  • 18. The method as recited in claim 17, wherein when a process being monitored for a current URL has multiple windows, the current URL for the process pertains to one of the windows in a foreground position.
  • 19. The method as recited in claim 15, wherein the determining of whether the process is trusted by the file security system comprises: identifying a process name and a current Universal Resource Locator (URL) for the process; andcomparing the process name and the current URL with a predetermined list of trusted processes and URLs.
  • 20. The method as recited in claim 12, wherein the determining of whether the process is trusted by the file security system comprises: identifying a process name and a current Universal Resource Locator (URL) for the process, andcomparing the process name and the current URL with a predetermined list of trusted processes and URLs.
  • 21. The method as recited in claim 20, wherein the method further comprises: concluding that the process is trusted when the comparing determines that the process name and the current URL are present within the list of trusted processes and URLs.
  • 22. The method as recited in claim 12, wherein the process pertains to a network browser operating on the computer system.
  • 23. A computer readable storage medium having computer program code recorded thereon, that when executed by a processor, causes a processor to limit access to a file secured by a file security system, the computer readable storage medium comprising: computer program code enabling a processor to receive a request for access to a secured file, wherein the request is initiated by a requester, and wherein the request is associated with a process;computer program code enabling the processor to determine whether the process is trusted wherein the determination is based on trust of the process and trust of an external destination of the process, wherein the external destination of the process is based on one or more of a destination address associated with the process and a current Universal Resource Locator (URL) associated with the process;computer program code enabling the processor to determine whether the requestor is permitted to access an unsecured version of the secured file; andcomputer program code enabling the processor to unsecure the secured file to produce an unsecured version of the secured file, thereby permitting access to the unsecured version of the secured file.
  • 24. The computer readable storage medium as recited in claim 23, wherein the process pertains to a network browser operating on the computer system.
  • 25. The computer readable storage medium as recited in claim 23, wherein the computer program code enabling the processor to determine whether the process is trusted by the file security system comprises: computer program code enabling the processor to identify a process name and a current destination address for the process;computer program code enabling the processor to compare the process name and the current destination address with a predetermined list of trusted processes and destination addresses; andcomputer program code enabling the processor to conclude that the process is trusted when the computer program code enabling the processor to compare determines that the process name and the current destination address are present within the list of trusted processes and destination addresses.
  • 26. The computer readable storage medium as recited in claim 23, wherein the process has a current destination address associated therewith, and wherein the computer program code enabling the processor to determine determines whether the process is trusted by the file security system based on at least the current destination address.
  • 27. The computer readable storage medium as recited in claim 26, wherein the current destination address is determined by monitoring a current destination address for each of a plurality of processes operating on the computer system.
  • 28. The computer readable storage medium as recited in claim 27, wherein when a process being monitored for a current destination address has multiple windows, the current destination address for the process pertains to one of the windows in a foreground position.
  • 29. The computer readable storage medium as recited in claim 26, wherein the computer readable storage medium further comprises: computer program code enabling the processor to permit access to the secured file when the computer program code enables the processor to determine determines that the process is not trusted; andcomputer program code enabling the processor to deny access to the secured file when the computer program code enables the processor to determine that the process is trusted and the computer program code enabling the processor to determine that the requester is not permitted to access an unsecured version of the secured file.
  • 30. The computer readable storage medium as recited in claim 26, wherein the current destination address is one of a Universal Resource Identifier (URI) or a Universal Resource Locator (URL).
  • 31. A computer system providing file security, comprising: an access control system configured to limit access to stored files based on at least access rules and trusted criteria, wherein the trusted criteria includes trust of the process and trust of an external destination of the process, wherein the external destination of the process is based on one or more of a destination address associated with the process and a current Universal Resource Locator (URL) associated with the process;a process configured to operate on the computer system; anda destination monitor configured to monitor an external destination of the process, wherein the access control module permits access to the stored, secured files only when the access rules are satisfied and the process, as well as the external destination, satisfy the trusted criteria.
  • 32. The computer system as recited in claim 31, wherein the process pertains to a network browser operating on the computer system.
  • 33. The computer system as recited in claim 32, wherein the destination monitor examines a resource being displayed in a foreground window of the network browser to determine the external destination that is being or is to be accessed by the network browser.
US Referenced Citations (432)
Number Name Date Kind
4203166 Ehrsam et al. May 1980 A
4734568 Watanabe Mar 1988 A
4757533 Allen et al. Jul 1988 A
4796220 Wolfe Jan 1989 A
4799258 Davies Jan 1989 A
4827508 Shear May 1989 A
4888800 Marshall et al. Dec 1989 A
4972472 Brown et al. Nov 1990 A
5032979 Hecht et al. Jul 1991 A
5052040 Preston et al. Sep 1991 A
5058164 Elmer et al. Oct 1991 A
5144660 Rose Sep 1992 A
5204897 Wyman Apr 1993 A
5220657 Bly et al. Jun 1993 A
5235641 Nozawa et al. Aug 1993 A
5247575 Sprague et al. Sep 1993 A
5276735 Boebert et al. Jan 1994 A
5301247 Rasmussen et al. Apr 1994 A
5319705 Halter et al. Jun 1994 A
5369702 Shanton Nov 1994 A
5375169 Seheidt et al. Dec 1994 A
5404404 Novorita Apr 1995 A
5406628 Beller et al. Apr 1995 A
5414852 Kramer et al. May 1995 A
5495533 Linehan et al. Feb 1996 A
5499297 Boebert Mar 1996 A
5502766 Boebert et al. Mar 1996 A
5535375 Eshel et al. Jul 1996 A
5557765 Lipner et al. Sep 1996 A
5570108 McLaughlin et al. Oct 1996 A
5584023 Hsu Dec 1996 A
5600722 Yamaguchi et al. Feb 1997 A
5606663 Kadooka Feb 1997 A
5655119 Davy Aug 1997 A
5661806 Nevoux et al. Aug 1997 A
5671412 Christiano Sep 1997 A
5673316 Auerbach et al. Sep 1997 A
5677953 Dolphin Oct 1997 A
5680452 Shanton Oct 1997 A
5684987 Mamiya et al. Nov 1997 A
5689718 Sakurai et al. Nov 1997 A
5699428 McDonnal et al. Dec 1997 A
5708709 Rose Jan 1998 A
5715403 Stefik Feb 1998 A
5717755 Shanton Feb 1998 A
5720033 Deo Feb 1998 A
5729734 Parker et al. Mar 1998 A
5732265 Dewitt et al. Mar 1998 A
5745573 Lipner et al. Apr 1998 A
5748736 Mittra May 1998 A
5751287 Hahn et al. May 1998 A
5757920 Misra et al. May 1998 A
5765152 Ericson Jun 1998 A
5778065 Hauser et al. Jul 1998 A
5787169 Eldridge et al. Jul 1998 A
5787173 Seheidt et al. Jul 1998 A
5787175 Carter Jul 1998 A
5790789 Suarez Aug 1998 A
5790790 Smith et al. Aug 1998 A
5813009 Johnson et al. Sep 1998 A
5821933 Keller et al. Oct 1998 A
5825876 Peterson Oct 1998 A
5835592 Chang et al. Nov 1998 A
5835601 Shimbo et al. Nov 1998 A
5857189 Riddle Jan 1999 A
5862325 Reed et al. Jan 1999 A
5870468 Harrison Feb 1999 A
5870477 Sasaki et al. Feb 1999 A
5881287 Mast Mar 1999 A
5892900 Ginter et al. Apr 1999 A
5893084 Morgan et al. Apr 1999 A
5898781 Shanton Apr 1999 A
5922073 Shimada Jul 1999 A
5923754 Angelo et al. Jul 1999 A
5933498 Schneck et al. Aug 1999 A
5944794 Okamoto et al. Aug 1999 A
5953419 Lohstroh et al. Sep 1999 A
5968177 Batten-Carew et al. Oct 1999 A
5970502 Salkewicz et al. Oct 1999 A
5987440 O'Neil et al. Nov 1999 A
5991879 Still Nov 1999 A
5999907 Donner Dec 1999 A
6014730 Ohtsu Jan 2000 A
6023506 Ote et al. Feb 2000 A
6032216 Schmuck et al. Feb 2000 A
6038322 Harkins Mar 2000 A
6044155 Thomlinson et al. Mar 2000 A
6055314 Spies et al. Apr 2000 A
6058424 Dixon et al. May 2000 A
6061790 Bodnar May 2000 A
6069957 Richards May 2000 A
6085323 Shimizu et al. Jul 2000 A
6088717 Reed et al. Jul 2000 A
6088805 Davis et al. Jul 2000 A
6098056 Rusnak et al. Aug 2000 A
6101507 Cane et al. Aug 2000 A
6105131 Carroll Aug 2000 A
6122630 Strickler et al. Sep 2000 A
6134327 Van Oorschot Oct 2000 A
6134658 Multerer et al. Oct 2000 A
6134660 Boneh et al. Oct 2000 A
6134664 Walker Oct 2000 A
6141754 Choy Oct 2000 A
6145084 Zuili Nov 2000 A
6158010 Moriconi et al. Dec 2000 A
6161139 Win et al. Dec 2000 A
6182142 Win et al. Jan 2001 B1
6185684 Pravetz et al. Feb 2001 B1
6205549 Pravetz et al. Mar 2001 B1
6212561 Sitaraman et al. Apr 2001 B1
6223285 Komuro et al. Apr 2001 B1
6226618 Downs et al. May 2001 B1
6226745 Wiederhold et al. May 2001 B1
6240188 Dondeti et al. May 2001 B1
6249873 Richard et al. Jun 2001 B1
6253193 Ginter et al. Jun 2001 B1
6260040 Kauffman et al. Jul 2001 B1
6260141 Park Jul 2001 B1
6263348 Kathrow et al. Jul 2001 B1
6272631 Thomlinson et al. Aug 2001 B1
6272632 Carmen et al. Aug 2001 B1
6282649 Lambert et al. Aug 2001 B1
6289450 Pensak et al. Sep 2001 B1
6292895 Baltzley Sep 2001 B1
6292899 McBride Sep 2001 B1
6295361 Kadansky et al. Sep 2001 B1
6301614 Najork et al. Oct 2001 B1
6308256 Folmsbee Oct 2001 B1
6308273 Goertzel et al. Oct 2001 B1
6314409 Schneck et al. Nov 2001 B2
6317777 Skarbo et al. Nov 2001 B1
6332025 Takahashi et al. Dec 2001 B2
6336114 Garrison Jan 2002 B1
6339423 Sampson et al. Jan 2002 B1
6339825 Pensak et al. Jan 2002 B2
6341164 Dilkie et al. Jan 2002 B1
6343316 Sakata Jan 2002 B1
6347374 Drake et al. Feb 2002 B1
6349337 Parsons et al. Feb 2002 B1
6351813 Mooney et al. Feb 2002 B1
6356903 Baxter et al. Mar 2002 B1
6356941 Cohen Mar 2002 B1
6357010 Viets et al. Mar 2002 B1
6363480 Perlman Mar 2002 B1
6370249 Van Oorschot Apr 2002 B1
6381698 Devanbu et al. Apr 2002 B1
6389433 Bolosky et al. May 2002 B1
6389538 Gruse et al. May 2002 B1
6393420 Peters May 2002 B1
6405315 Burns et al. Jun 2002 B1
6421714 Rai et al. Jul 2002 B1
6442688 Moses et al. Aug 2002 B1
6442695 Dutcher et al. Aug 2002 B1
6446090 Hart Sep 2002 B1
6449721 Pensak et al. Sep 2002 B1
6453353 Win et al. Sep 2002 B1
6466932 Dennis et al. Oct 2002 B1
6477544 Bolosky et al. Nov 2002 B1
6490680 Scheidt et al. Dec 2002 B1
6505300 Chan et al. Jan 2003 B2
6510349 Schnek et al. Jan 2003 B1
6529956 Smith et al. Mar 2003 B1
6530020 Aoki Mar 2003 B1
6530024 Proctor Mar 2003 B1
6542608 Scheidt et al. Apr 2003 B2
6549623 Scheidt et al. Apr 2003 B1
6550011 Sims Apr 2003 B1
6557039 Leong et al. Apr 2003 B1
6567914 Just et al. May 2003 B1
6571291 Chow May 2003 B1
6584466 Serbinis et al. Jun 2003 B1
6587946 Jakobsson Jul 2003 B1
6588673 Chan et al. Jul 2003 B1
6594662 Sieffert et al. Jul 2003 B1
6598161 Kluttz et al. Jul 2003 B1
6603857 Batten-Carew et al. Aug 2003 B1
6608636 Roseman Aug 2003 B1
6611599 Natarajan Aug 2003 B2
6615349 Hair Sep 2003 B1
6615350 Schell et al. Sep 2003 B1
6625650 Stelliga Sep 2003 B2
6629243 Kleinman et al. Sep 2003 B1
6633311 Douvikas et al. Oct 2003 B1
6640307 Viets et al. Oct 2003 B2
6646515 Jun et al. Nov 2003 B2
6647388 Numao et al. Nov 2003 B2
6678835 Shah et al. Jan 2004 B1
6687822 Jakobsson Feb 2004 B1
6711683 Laczko et al. Mar 2004 B1
6718361 Basani et al. Apr 2004 B1
6735701 Jacobson May 2004 B1
6738908 Bonn et al. May 2004 B1
6775779 England et al. Aug 2004 B1
6782403 Kino et al. Aug 2004 B1
6801999 Venkatesan et al. Oct 2004 B1
6807534 Erickson Oct 2004 B1
6807636 Hartman et al. Oct 2004 B2
6810389 Meyer Oct 2004 B1
6810479 Barlow et al. Oct 2004 B1
6816871 Lee Nov 2004 B2
6826698 Minkin et al. Nov 2004 B1
6834333 Yoshino et al. Dec 2004 B2
6834341 Bahl et al. Dec 2004 B1
6845452 Roddy et al. Jan 2005 B1
6851050 Singhal et al. Feb 2005 B2
6865555 Novak Mar 2005 B2
6874139 Krueger et al. Mar 2005 B2
6877136 Bess et al. Apr 2005 B2
6889210 Vainstein May 2005 B1
6891953 DeMello et al. May 2005 B1
6892201 Brown et al. May 2005 B2
6892306 En-Seung et al. May 2005 B1
6907034 Begis Jun 2005 B1
6909708 Krishnaswamy et al. Jun 2005 B1
6915434 Kuroda et al. Jul 2005 B1
6920558 Sames et al. Jul 2005 B2
6931450 Howard et al. Aug 2005 B2
6931530 Pham et al. Aug 2005 B2
6931597 Prakash Aug 2005 B1
6938042 Aboulhosn et al. Aug 2005 B2
6941355 Donaghey et al. Sep 2005 B1
6941456 Wilson Sep 2005 B2
6941472 Moriconi et al. Sep 2005 B2
6944183 Iyer et al. Sep 2005 B1
6947556 Matyas, Jr. et al. Sep 2005 B1
6950818 Dennis et al. Sep 2005 B2
6950936 Subramaniam et al. Sep 2005 B2
6950941 Lee et al. Sep 2005 B1
6950943 Bacha et al. Sep 2005 B1
6952780 Olsen et al. Oct 2005 B2
6957261 Lortz Oct 2005 B2
6959308 Gramsamer et al. Oct 2005 B2
6961849 Davis et al. Nov 2005 B1
6968060 Pinkas Nov 2005 B1
6971018 Witt et al. Nov 2005 B1
6978376 Giroux et al. Dec 2005 B2
6978377 Asano et al. Dec 2005 B1
6988133 Zavalkovsky et al. Jan 2006 B1
6988199 Toh et al. Jan 2006 B2
6993135 Ishibashi Jan 2006 B2
6996718 Henry et al. Feb 2006 B1
7003117 Kacker et al. Feb 2006 B2
7003560 Mullen et al. Feb 2006 B1
7003661 Beattie et al. Feb 2006 B2
7013332 Friedel et al. Mar 2006 B2
7013485 Brown et al. Mar 2006 B2
7020645 Bisbee et al. Mar 2006 B2
7024427 Bobbitt et al. Apr 2006 B2
7035854 Hsiao et al. Apr 2006 B2
7035910 Dutta et al. Apr 2006 B1
7046807 Hirano et al. May 2006 B2
7051213 Kobayashi et al. May 2006 B1
7058696 Phillips et al. Jun 2006 B1
7058978 Feuerstein et al. Jun 2006 B2
7073063 Peinado Jul 2006 B2
7073073 Nonaka et al. Jul 2006 B1
7076067 Raike et al. Jul 2006 B2
7076312 Law et al. Jul 2006 B2
7076469 Schreiber et al. Jul 2006 B2
7076633 Tormasov et al. Jul 2006 B2
7080077 Ramamurthy et al. Jul 2006 B2
7095853 Morishita Aug 2006 B2
7096266 Lewin et al. Aug 2006 B2
7099926 Ims et al. Aug 2006 B1
7107269 Arlein et al. Sep 2006 B2
7120635 Bhide et al. Oct 2006 B2
7120757 Tsuge Oct 2006 B2
7124164 Chemtob Oct 2006 B1
7130964 Ims et al. Oct 2006 B2
7131071 Gune et al. Oct 2006 B2
7134041 Murray et al. Nov 2006 B2
7136903 Phillips et al. Nov 2006 B1
7145898 Elliott Dec 2006 B1
7146498 Takechi et al. Dec 2006 B1
7159036 Hinchliffe et al. Jan 2007 B2
7171557 Kallahalla et al. Jan 2007 B2
7174563 Brownlie et al. Feb 2007 B1
7177427 Komuro et al. Feb 2007 B1
7178033 Garcia Feb 2007 B1
7181017 Nagel et al. Feb 2007 B1
7185364 Knouse et al. Feb 2007 B2
7187033 Pendharkar Mar 2007 B2
7188181 Squier et al. Mar 2007 B1
7194764 Martherus et al. Mar 2007 B2
7200747 Riedel et al. Apr 2007 B2
7203317 Kallahalla et al. Apr 2007 B2
7203968 Asano et al. Apr 2007 B2
7219230 Riedel et al. May 2007 B2
7224795 Takada et al. May 2007 B2
7225256 Villavicencio May 2007 B2
7227953 Shida Jun 2007 B2
7233948 Shamoon et al. Jun 2007 B1
7237002 Estrada et al. Jun 2007 B1
7249044 Kumar et al. Jul 2007 B2
7260555 Rossmann et al. Aug 2007 B2
7265764 Alben et al. Sep 2007 B2
7266684 Jancula Sep 2007 B2
7280658 Amini et al. Oct 2007 B2
7287055 Smith et al. Oct 2007 B2
7290148 Tozawa et al. Oct 2007 B2
7308702 Thomsen et al. Dec 2007 B1
7313824 Bala et al. Dec 2007 B1
7319752 Asano et al. Jan 2008 B2
7380120 Garcia May 2008 B1
7383586 Cross et al. Jun 2008 B2
7386529 Kiessig et al. Jun 2008 B2
20010011254 Clark Aug 2001 A1
20010021926 Schneck et al. Sep 2001 A1
20010032181 Jakstadt et al. Oct 2001 A1
20010034839 Karjoth et al. Oct 2001 A1
20010044903 Yamamoto et al. Nov 2001 A1
20010056550 Lee Dec 2001 A1
20020010679 Felsher Jan 2002 A1
20020016922 Richards et al. Feb 2002 A1
20020031230 Sweet et al. Mar 2002 A1
20020035624 Kim Mar 2002 A1
20020046350 Lordemann et al. Apr 2002 A1
20020050098 Chan May 2002 A1
20020056042 Van Der Kaay et al. May 2002 A1
20020062240 Morinville May 2002 A1
20020062245 Niu et al. May 2002 A1
20020069077 Brophy et al. Jun 2002 A1
20020069272 Kim et al. Jun 2002 A1
20020069363 Winburn Jun 2002 A1
20020073320 Rinkevich et al. Jun 2002 A1
20020077986 Kobata et al. Jun 2002 A1
20020077988 Sasaki et al. Jun 2002 A1
20020087479 Malcolm Jul 2002 A1
20020099947 Evans Jul 2002 A1
20020124180 Hagman Sep 2002 A1
20020129235 Okamoto et al. Sep 2002 A1
20020133699 Pueschel Sep 2002 A1
20020138762 Horne Sep 2002 A1
20020143710 Liu Oct 2002 A1
20020143906 Tormasov et al. Oct 2002 A1
20020156726 Kleckner et al. Oct 2002 A1
20020157016 Russell et al. Oct 2002 A1
20020169963 Seder et al. Nov 2002 A1
20020169965 Hale et al. Nov 2002 A1
20020172367 Mulder et al. Nov 2002 A1
20020174109 Chandy et al. Nov 2002 A1
20020176572 Ananth Nov 2002 A1
20020178271 Graham et al. Nov 2002 A1
20020194484 Bolosky et al. Dec 2002 A1
20020198798 Ludwig et al. Dec 2002 A1
20030009685 Choo et al. Jan 2003 A1
20030014391 Evans et al. Jan 2003 A1
20030023559 Choi et al. Jan 2003 A1
20030028610 Pearson Feb 2003 A1
20030033528 Ozog et al. Feb 2003 A1
20030037133 Owens Feb 2003 A1
20030037237 Abgrall et al. Feb 2003 A1
20030037253 Blank et al. Feb 2003 A1
20030046238 Nonaka et al. Mar 2003 A1
20030051039 Brown et al. Mar 2003 A1
20030056139 Murray et al. Mar 2003 A1
20030074580 Knouse et al. Apr 2003 A1
20030078959 Yeung et al. Apr 2003 A1
20030079175 Limantsev Apr 2003 A1
20030081784 Kallahalla et al. May 2003 A1
20030081787 Kallahalla et al. May 2003 A1
20030088517 Medoff May 2003 A1
20030088783 DiPierro May 2003 A1
20030110169 Zuili Jun 2003 A1
20030110266 Rollins et al. Jun 2003 A1
20030110397 Supramaniam Jun 2003 A1
20030115146 Lee et al. Jun 2003 A1
20030115570 Bisceglia Jun 2003 A1
20030120601 Ouye Jun 2003 A1
20030120684 Zuili et al. Jun 2003 A1
20030126434 Lim et al. Jul 2003 A1
20030154381 Ouye Aug 2003 A1
20030159066 Staw et al. Aug 2003 A1
20030177070 Viswanath et al. Sep 2003 A1
20030177378 Wittkotter Sep 2003 A1
20030182579 Leporini et al. Sep 2003 A1
20030196096 Sutton Oct 2003 A1
20030197729 Denoue et al. Oct 2003 A1
20030200202 Hsiao et al. Oct 2003 A1
20030217264 Martin et al. Nov 2003 A1
20030217281 Ryan Nov 2003 A1
20030217333 Smith et al. Nov 2003 A1
20030226013 Dutertre Dec 2003 A1
20030233650 Zaner et al. Dec 2003 A1
20040022390 McDonald et al. Feb 2004 A1
20040025037 Hair Feb 2004 A1
20040039781 LaVallee et al. Feb 2004 A1
20040064710 Vainstein Apr 2004 A1
20040068524 Aboulhosn et al. Apr 2004 A1
20040068664 Nachenberg et al. Apr 2004 A1
20040073718 Johannessen et al. Apr 2004 A1
20040088548 Smetters et al. May 2004 A1
20040098580 DeTreville May 2004 A1
20040103202 Hildebrand et al. May 2004 A1
20040103280 Balfanz et al. May 2004 A1
20040133544 Kiessig et al. Jul 2004 A1
20040158586 Tsai Aug 2004 A1
20040193602 Liu et al. Sep 2004 A1
20040193905 Lirov et al. Sep 2004 A1
20040193912 Li et al. Sep 2004 A1
20040199514 Rosenblatt et al. Oct 2004 A1
20040215956 Venkatachary et al. Oct 2004 A1
20040215962 Douceur et al. Oct 2004 A1
20040243853 Swander et al. Dec 2004 A1
20050021467 Franzdonk Jan 2005 A1
20050021629 Cannata et al. Jan 2005 A1
20050028006 Leser et al. Feb 2005 A1
20050039034 Doyle et al. Feb 2005 A1
20050071275 Vainstein et al. Mar 2005 A1
20050071657 Ryan Mar 2005 A1
20050071658 Nath et al. Mar 2005 A1
20050081029 Thornton et al. Apr 2005 A1
20050086531 Kenrich Apr 2005 A1
20050091484 Thornton et al. Apr 2005 A1
20050120199 Carter Jun 2005 A1
20050138371 Supramaniam Jun 2005 A1
20050138383 Vainstein Jun 2005 A1
20050177716 Ginter et al. Aug 2005 A1
20050177858 Ueda Aug 2005 A1
20050198326 Schlimmer et al. Sep 2005 A1
20050223242 Nath Oct 2005 A1
20050223414 Kenrich et al. Oct 2005 A1
20050256909 Aboulhosn et al. Nov 2005 A1
20050273600 Seeman Dec 2005 A1
20050283610 Serret-Avila et al. Dec 2005 A1
20050288961 Tabrizi Dec 2005 A1
20060005021 Torrubia-Saez Jan 2006 A1
20060075465 Ramanathan et al. Apr 2006 A1
20060093150 Reddy et al. May 2006 A1
20060168147 Inoue et al. Jul 2006 A1
20060230437 Boyer et al. Oct 2006 A1
20070006214 Dubal et al. Jan 2007 A1
Foreign Referenced Citations (22)
Number Date Country
0 672 991 Sep 1995 EP
0 674 253 Sep 1995 EP
0 809 170 Nov 1997 EP
0 913 966 May 1999 EP
0 913 967 May 1999 EP
0 950 941 Oct 1999 EP
0 950 941 Oct 1999 EP
1 107 504 Jun 2001 EP
1 107504 Jun 2001 EP
1 130 492 Sep 2001 EP
1 154 348 Nov 2001 EP
1324565 Jul 2003 EP
2 328 047 Feb 1999 GB
2001-036517 Feb 2001 JP
WO 9641288 Dec 1996 WO
WO 0056028 Sep 2000 WO
WO 0161438 Aug 2001 WO
WO 0163387 Aug 2001 WO
WO 0163387 Aug 2001 WO
WO 0177783 Oct 2001 WO
WO 0178285 Oct 2001 WO
WO 0184271 Nov 2001 WO