Method and system for providing a device which can be adapted on an ongoing basis

Information

  • Patent Grant
  • 7937591
  • Patent Number
    7,937,591
  • Date Filed
    Friday, October 25, 2002
    21 years ago
  • Date Issued
    Tuesday, May 3, 2011
    13 years ago
Abstract
A method and system for adapting a device is disclosed. The method and system comprises providing a data stream to the device to be changed based upon a parameter. In a second aspect an adaptable device is disclosed. The adaptable device comprises an adaptable computerized environment (ACE) for receiving a data stream that allows the device to be changed based upon a parameter. The adaptable device includes a mechanism within the ACE for authorizing the data stream. A system and method in accordance with the present invention provides a hardware device that can be changed based upon a particular parameter such as time and location. In so doing, a provider of the hardware device can provide a more adaptable component which provides more value to the provider. Indeed, it is possible to give away the hardware upfront or even give an incentive to a receiver of the hardware and thereby use the device in a variety of ways.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is related to U.S. patent application Ser. No. 09/815,122, filed on Mar. 22, 2001, entitled “Adaptive Integrated Circuitry with Heterogeneous and Reconfigurable Matrices of Diverse and Adaptive Computational Units Having Fixed, Application Specific Computational Elements.” Said application is hereby incorporated by reference as if set forth in full in this document.


FIELD OF THE INVENTION

The present invention relates generally to adaptive hardware devices and more specifically adapting a hardware device on an ongoing basis.


BACKGROUND OF THE INVENTION

Traditional consumer electronic devices have substantially fixed functionality. Devices such as cell phones, digital audio players, personal digital assistants (PDAs), global positioning satellite (GPS) terminals, etc., are designed, manufactured and marketed as a specific type of device with a specific feature set. Typically, a manufacturer of a new device makes decisions at the very outset of design or manufacturing as to what functions the device will perform, which standards (e.g., communication transfer standard, data format standard, etc.) the device will be compatible with, etc. This requires selection of appropriate integrated circuit (IC) chips, or the design of new chips and circuitry.


A next step in manufacturing the device is the “board-level” design and assembly. The IC chips are arranged with other circuitry, user controls, connectors, etc., on a singular assembly such as a printed-circuit (PC) board. Typically, a new design is needed for each new device as different chips and other components are being used.


Next, a chassis designer and manufacturer is used to create and enclose the assembly in a housing, or shell. Again, this is a customized step as the packaging for a new board assembly is usually unique. After the assembly is incorporated into the housing package the device is physically completed.


Often times it is desirable to change the product based upon location and time. For example, at a sporting event, concert or other entertainment activity it may be desired to provide certain information to users of a hardware device such as a telephone, PDA or the like for advertising, promotional or other reasons. Present hardware devices are not easily adaptable for such purposes.


Accordingly, what is desired is to provide a hardware device which can be adequately changed based upon location and/or time. The present invention addresses such a need.


SUMMARY OF THE INVENTION

A method and system for adapting a device is disclosed. The method and system comprises providing a data stream to the device to be changed based upon a parameter. In a second aspect an adaptable device is disclosed. The adaptable device comprises an adaptable computerized environment (ACE) for receiving a data stream that allows the device to be changed based upon a parameter. The adaptable device includes a mechanism within the ACE for authorizing the data stream.


A system and method in accordance with the present invention provides a hardware device that can be changed based upon a particular parameter such as time and location. In so doing, a provider of the hardware device can provide a more adaptable component which provides more value to the provider. Indeed, it is possible to give away the hardware upfront or even give an incentive to a receiver of the hardware and thereby use the device in a variety of ways.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an adaptable device in accordance with the present invention.



FIG. 2 illustrates basic parts of an adaptable device architecture based on an adaptive computing environment (ACE) approach.



FIG. 3 illustrates a system for providing an adaptive hardware device that can be changed based upon location and time.



FIG. 4 shows a plurality of mobile devices which include an ACE architecture.



FIG. 5 is a block diagram of a conventional multimode multiband receiver.



FIG. 6 illustrates a multimode multiband receiver in accordance with the present invention.





DETAILED DESCRIPTION

The present invention relates generally to adaptive hardware devices and more specifically adapting a hardware device on an ongoing basis. The following description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the preferred embodiment and the generic principles and features described herein will be readily apparent to those skilled in the art. Thus, the present invention is not intended to be limited to the embodiment shown but is to be accorded the widest scope consistent with the principles and features described herein.


The present invention provides for adapting a device used in commercial consumer electronic devices. Although the present application is presented primarily with respect to consumer electronic devices and relevant standards, aspects of the invention can be used with other types of electronic devices and other standards, licensed technology or functionality.


An adaptable device is initially provided to a distribution network by an original manufacturer of the device represented by adaptable device 100. A preferred embodiment of the invention uses a device including an adaptive computing engine (ACE) that is described in detail in the co-pending patent application referenced above, entitled “Adaptive Integrated Circuitry with Heterogeneous and Reconfigurable Matrices of Diverse and Adaptive Computational Units Having Fixed, Application Specific Computational Elements.” It should be apparent that any type of adaptable hardware device design is adaptable for use with the present invention. For example, the adaptable device can be any type of adaptable device using other architectures or design methodologies, such as a device using a general-purpose processor, multiprocessing, application-specific integrated circuit (ASIC), field-programmable gate array (FPGA), dedicated circuitry, etc., or combination of the foregoing. The adaptable device can be adapted with a desired standard, or other functionality, at the point of initial shipping of the device. This is represented in FIG. 1 by an arrow from adaptation information 102 to adaptable device 100. The device can be adapted by adaptation information loaded into the device by any type of communication means such as reading magnetic media, using a digital network such as a local-area network (LAN), the interne; using a hardwire transfer, using optical or radio-frequency communication, etc. Some types of standards to which the device can be adapted to use include data formats and communication standards. For example, where a device is intended to perform a cellular telephone function, standards such as TDMA, CDMA, voice-over interne protocol (VoIP), analog, digital satellite, or other standards can be employed. Where a device is an audio playback device, formats such as Moving Pictures Expert's Group (MPEG) version 3, RealNetworks' “RealAudio” (.ra), Quicktime's (.mov), digital audio (.wav), Microsoft Media Player (.au) or other formats can be used. Where a device is a global positioning system (GPS) receiver the appropriate standards can be used. Many other types of standards and functionality can be suitable for use with the present invention.



FIG. 2 illustrates basic parts of a adaptable device architecture based on an adaptive computing environment (ACE) approach. Such an approach is discussed in detail in the co-pending patent application referenced above. The ACE architecture uses small processing elements called nodes, or matrices. The matrices are each designed to be specialized in one basic type of processing such as arithmetic, bit manipulation, finite state machine, memory oriented or reduced instruction set computing (RISC) approaches. The matrices are provided with adaptable interconnection networks. A scheduler performs the task of mapping an operation, or function, onto the matrices. Once mapped, the function can execute for a while before a next function is mapped onto the same set of matrices. In this manner, the functionality of a device that includes the matrices can be changed quickly and efficiently.


In FIG. 2, adaptable matrix 150 includes a plurality of computation units 200 (illustrated as computation units 200A through 200N). Computation units include a plurality of computational units 250 (illustrated as computational elements 250A through 250Z). As illustrated in FIG. 2, matrix 150 generally includes a matrix controller 230 and plurality of computation (or computational) units 200 as logical or conceptual subsets or portions of a matrix interconnect network. Also shown are data interconnect network 240 and Boolean interconnect network 210. Interconnect networks can have different levels of interconnectivity and flexibility for greater levels of adaptability and adaptation. In an applied architecture, the matrix represented by FIG. 2 is replicated within a single chip, or chipset, and interconnected with each other to provide a scalable approach to providing processing resources. A network interconnecting matrices (not shown) is referred to as a matrix interconnection network.


Boolean interconnect network 210 provides adaptation and data interconnection capability between and among the various computation units 200, and is preferably small (i.e., only a few bits wide). Data interconnect network 240 provides the adaptation and data interconnection capability for data input and output between and among the various computation units 200, and is preferably comparatively large (i.e., many bits wide). It should be noted, however, that while conceptually divided into adaptation and data capabilities, any given physical portion of the matrix interconnection network, at any given time, may be operating as either the Boolean interconnect network 210, the data interconnect network 240, the lowest level interconnect 220 (between and among the various computational elements 250), or other input, output, or connection functionality.


Continuing to refer to FIG. 2, included within a computation unit 200 are a plurality of computational elements 250, illustrated as computational elements 250A through 250Z (individually and collectively referred to as computational elements 250), and additional interconnect 220. The interconnect 220 provides the adaptable interconnection capability and input/output paths between and among the various computational elements 250. As indicated above, each of the various computational elements 250 consist of dedicated, application specific hardware designed to perform a given task or range of tasks, resulting in a plurality of different, fixed computational elements 250. Utilizing the interconnect 220, the fixed computational elements 250 may be adaptably connected together into adaptive and varied computational units 200, which also may be further adapted and interconnected, to execute an algorithm or other function, at any given time, utilizing the interconnect 220, the Boolean network 210, and the matrix interconnection network (not shown).


In a preferred embodiment, the various computational elements 250 are designed and grouped together, into various adaptive and adaptable computation units 200. In addition to computational elements 250 which are designed to execute a particular algorithm or function, such as multiplication or addition, other types of computational elements 250 are also utilized. As illustrated in FIG. 2, computational elements 250A and 250B implement memory, to provide local memory elements for any given calculation or processing function (compared to more “remote” or auxiliary memory that can be external to the matrix). In addition, computational elements 250I, 250J, 250K and 250L are adapted to implement finite state machines to provide local processing capability especially suitable for complicated control processing.


With the various types of different computational elements 250 that may be available, depending upon the desired functionality, the computation units 200 may be loosely categorized. A first category of computation units 200 includes computational elements 250 performing linear operations, such as multiplication, addition, finite impulse response filtering, and so on. A second category of computation units 200 includes computational units 250 performing non-linear operations, such as discrete cosine transformation, trigonometric calculations, and complex multiplications. A third type of computation unit 200 implements a finite state machine, such as computation unit 200C as illustrated in FIG. 2, particularly useful for complicated control sequences, dynamic scheduling, and input/output management, while a fourth type may implement memory and memory management, such as computation unit 200A. Lastly, a fifth type of computation unit 200 may be included to perform bit-level manipulation, such as for encryption, decryption, channel coding, Viterbi decoding, and packet and protocol processing (such as Internet Protocol processing).


In addition to the ways of determining functionality for general-purpose processing devices, as described above, the functionality of a device using the ACE architecture can be determined by adaptation information that is used to schedule operations on the computation units. Usage information can include the availability, types and frequency of use of different computation units. Adaptation of the interconnect network, number of active computation units over time, rate of execution of operations, etc., can all be used as usage parameters.


The present invention provides for the devices to be adapted at any point based upon a parameter such as location or time. Note that such an approach provides advantages in quickly meeting consumer demand for specific types of devices. For example, if demand for TDMA cellular phones suddenly increases. The devices can merely be adapted as TDMA devices anywhere in the various entities of FIG. 1.


Naturally, the adaptation information can be transferred to a location prior to, or in the absence of, actual devices being present at the location. The adaptation information can be stored and used at a later time.


A key feature of the present invention is providing a hardware device that can be changed based upon a particular parameter such as time and location. In so doing, a provider of the hardware device can provide a more adaptable component which provides more value to the provider. Indeed, it is possible to give away the hardware upfront or even give an incentive to a receiver of the hardware and thereby use the device in a variety of ways. To describe the features of the present invention in more detail, refer to the following description in conjunction with the accompanying drawings.



FIG. 3 illustrates a system for providing an adaptive hardware device 300 that can be changed based upon location and time. As is seen, a source 302 provides a data stream 306 to the device. The device 300 has a location in its memory 304 which receives a crypto algorithm 308 as part of that data stream. That crypto algorithm 308 can, for example, be limited in time, limited in a number of operations, limited in distance, or have other types of limitations to provide a potential revenue stream to the provider. Through the use of the crypto algorithm only devices that are authorized can receive the particular configuration. Through the use of this type of system in conjunction with the ACE architecture, an adaptable device can be provided. This concept can be extended to other applications which will be described hereinbelow.


Distributed Network



FIG. 4 shows a plurality of mobile devices 400a-400d, each of which includes an ACE architecture. Each of the mobile devices 400a-400d can receive the data stream 406 from a source 402. Each of the devices can receive the data from the source 402, but they also each include an adaptive self-caching mechanism which would allow each of them to receive information from each other. Hence, for example, it would likely be possible that a particular local mobile device 400 had some or all of the information from the source. One of the other mobile devices 400a-400c could obtain that information directly from that mobile device 400a rather than having to receive the stream from the source 402.


Since the mobile devices are closer to each other than to the source, this would allow for quicker downloads than having to go to the source. In addition, it is also possible that each of the devices has separate pieces of the overall information, so that once again a local device could determine based on the other devices what pieces of information that it needed were locally provided and then what pieces of information they would need to get from the source and connect all of those pieces together.


These devices could receive information from one stream or a plurality of streams and would be advantageously used in a variety of environments. For example, a sporting event where a plurality of these devices are present would allow for information to be provided related to advertisements, etc., that a particular vendor or vendors associated with that sporting event or entertainment event would provide. Accordingly, an individual entering a location near such an event or activity could receive an almost infinite amount of data streams based upon the particular demographic, the particular location, the particular time that the individual is within that particular environment. Accordingly, an adaptive device is provided which has significant utility for a variety of applications.


Multiple Communication Protocols


This could be used in an environment where there are multiple communication protocols in which the multimode multiband receiver can receive the signals. In a conventional receiver, if there are multiple communication protocols, there would be separate signals which are provided to separate chips, such as shown in FIG. 5. FIG. 5 is a block diagram of a conventional multimode multi-band receiver 500 in which there are a plurality of RF signals and a plurality of chips/integrated circuits associated with the signals. For example, in this device, there is an integrated circuit 502a for receiving an 802.1b signal, an integrated circuit 502b for receiving 802.1a signals, an integrated circuit 502c for receiving a GPR3 signal, and finally an integrated circuit 502d for receiving a Com2 signal. Each of these integrated circuits would require time and effort to design and produce.



FIG. 6 illustrates a multimode multi-band receiver 600 in accordance with the present invention. The receiver 600 handles the same protocols as those of FIG. 5. Utilizing an ACE architecture 604, multiple communication protocols can be provided to that ACE architecture and the data streams associated with the particular communication protocols 602a-602d that are desired and can be used therein. Thereby there is a self-selecting mechanism that can be utilized that is based upon a particular set of information being provided to the device.


A key feature of the present invention is providing a hardware device that can be changed based upon a particular parameter such as time and location. In so doing, a provider of the hardware device can provide a more adaptable component which provides more value to the provider. Indeed, it is possible to give away the hardware upfront or even give an incentive to a receiver of the hardware and thereby use the device in a variety of ways.


Although the present invention has been described in accordance with the embodiments shown, one of ordinary skill in the art will readily recognize that there could be variations to the embodiments and those variations would be within the spirit and scope of the present invention. Accordingly, many modifications may be made by one of ordinary skill in the art without departing from the spirit and scope of the appended claims.

Claims
  • 1. A method for adapting a configurable device, the configurable device comprising an interconnection network coupled to a plurality of heterogeneous computational units each including a plurality of computational elements, the method comprising: determining whether the configurable device is to be adapted via the interconnection network changing interconnections between a selected plurality of computational elements of the plurality of heterogeneous computational units to perform a second function different from the first function based upon at least one parameter, the at least one parameter comprising at least one of a time of day parameter and a demographic parameter, the configurable device previously configured to perform a first function via changing interconnections of the interconnection network between selected computational elements of the plurality of computational units in response to adaptation information, wherein the plurality of heterogeneous computational units are hardware components and at least one of the plurality of heterogeneous computational units differs from another one of the plurality of computational units; andwhen the configurable device is to be adapted, providing a data stream to the configurable device, the data stream comprising adaptation information to configure the configurable device to perform the second function different from the first function by changing interconnections between selected computational elements of the plurality of heterogeneous computational units.
  • 2. The method of claim 1 wherein the determining whether the configurable device is to be adapted is based upon a second parameter in addition to the at least one parameter.
  • 3. The method of claim 1 wherein data stream includes authorization information including a crypto-algorithm which authorizes the device to receive the data stream.
  • 4. The method of claim 3 wherein the crypto algorithm is based upon at least one limitation, the at least one limitation comprising at least one of time, number of operations, geographic distance, and geographic location.
  • 5. The method of claim 1, wherein the configurable device is a telephone, the at least one parameter comprises the time of day parameter, and the configurable device is configured to change from a first communication standard to a second communication standard.
  • 6. The method of claim 1, wherein the selected parameter is a demographic parameter, and the configurable device is configured to receive advertising information targeted to the demographic parameter.
  • 7. A distributed network comprising: a source for providing a data stream with adaptation information;a plurality of adaptable devices for receiving the data stream from the source;each of the plurality of adaptable devices including an adaptive computing circuit including an interconnection network coupled to a plurality of heterogeneous hardware computational units each including a plurality of computational elements, at least one of the computational units differing from another one of the computational units, the adaptive computing circuit previously configured to perform a first function via changing interconnections between selected computational elements of the plurality of heterogeneous computational units in response to adaptation information; andwherein the adaptive computing circuit is configured to perform a second function different from the first function based upon at least one parameter, the at least one parameter comprising at least one of a time of day parameter and a demographic parameter, the adaptive computing circuit configured to perform the second function by changing interconnections between selected computational elements of the plurality of heterogeneous computational units in response to the adaptation information.
  • 8. The distributed network of claim 7 wherein the corresponding device to be changed is based on a second parameter from the plurality of parameters in addition to the at least one parameter.
  • 9. The distributed network of claim 7 wherein the data stream further comprises a crypto algorithm which authorizes the device to receive the data stream.
  • 10. The distributed network of claim 9 wherein the crypto algorithm is based on at least one limitation of a plurality of limitations, the plurality of limitations comprising at least one of time, number of operations and geographic location of the device.
  • 11. A method for adapting a configurable device, the configurable device comprising an interconnection network coupled to a plurality of heterogeneous computational units, each including a plurality of computational elements, the method comprising: determining whether the configurable device is to be adapted via the interconnection network changing interconnections between a selected plurality of computational elements of the plurality of heterogeneous computational units to perform a second function different from a first function based upon a time of day parameter, the configurable device previously configured to perform the first function based on changing interconnections of the interconnection network between selected computational elements of the plurality of heterogeneous computational units in response to adaptation information, wherein the plurality of heterogeneous computational units are hardware components and wherein at least one of the computational units differs from another one of the computational units; andwhen the configurable device is to be configured to perform the second function, providing a data stream to the configurable device, the data stream comprising adaptation information to adapt the configurable device to perform the second function different from the first function by changing interconnections between selected computational elements of the plurality of heterogeneous computational units.
  • 12. The method of claim 11, wherein the configurable device is a telephone configured to change from a first communication standard to a second communication standard.
  • 13. The method of claim 11 wherein data stream includes authorization information including a crypto-algorithm which authorizes the device to receive the data stream.
  • 14. A method for adapting a configurable device, the configurable device comprising an interconnection network coupled to a plurality of heterogeneous computational units each including a plurality of computational elements, the method comprising: determining whether the configurable device is to be adapted via the interconnection network changing interconnections between a selected plurality of computational elements of the plurality of heterogeneous computational units to perform a second function different from a first function based upon a demographics parameter, the configurable device previously configured to perform the first function by changing interconnections of the interconnection network between selected computational elements of the plurality of heterogeneous computational units in response to adaptation information, wherein the plurality of computational units are hardware components and at least one of the computational units differs from another one of the computational units; andwhen the configurable device is to be configured to perform the second function, providing a data stream to the configurable device, the data stream comprising adaptation information to adapt the configurable device to perform the second function different from the first function by changing interconnections between selected computational elements of the plurality of heterogeneous computational units.
  • 15. The method of claim 14, wherein the configurable device is configured to receive advertising information targeted to the demographic parameter.
  • 16. The method of claim 14 wherein data stream includes authorization information including a crypto-algorithm which authorizes the device to receive the data stream.
US Referenced Citations (522)
Number Name Date Kind
3409175 Byrne Nov 1968 A
3666143 Weston May 1972 A
3938639 Birrell Feb 1976 A
3949903 Benasutti et al. Apr 1976 A
3960298 Birrell Jun 1976 A
3967062 Dobias Jun 1976 A
3991911 Shannon et al. Nov 1976 A
3995441 McMillin Dec 1976 A
4076145 Zygiel Feb 1978 A
4143793 McMillin et al. Mar 1979 A
4172669 Edelbach Oct 1979 A
4174872 Fessler Nov 1979 A
4181242 Zygiel et al. Jan 1980 A
RE30301 Zygiel Jun 1980 E
4218014 Tracy Aug 1980 A
4222972 Caldwell Sep 1980 A
4237536 Enelow et al. Dec 1980 A
4252253 Shannon Feb 1981 A
4302775 Widergren et al. Nov 1981 A
4333587 Fessler et al. Jun 1982 A
4354613 Desai et al. Oct 1982 A
4377246 McMillin et al. Mar 1983 A
4380046 Fung Apr 1983 A
4393468 New Jul 1983 A
4413752 McMillin et al. Nov 1983 A
4458584 Annese et al. Jul 1984 A
4466342 Basile et al. Aug 1984 A
4475448 Shoaf et al. Oct 1984 A
4509690 Austin et al. Apr 1985 A
4520950 Jeans Jun 1985 A
4549675 Austin Oct 1985 A
4553573 McGarrah Nov 1985 A
4560089 McMillin et al. Dec 1985 A
4577782 Fessler Mar 1986 A
4578799 Scholl et al. Mar 1986 A
RE32179 Sedam et al. Jun 1986 E
4633386 Terepin Dec 1986 A
4658988 Hassell Apr 1987 A
4694416 Wheeler et al. Sep 1987 A
4711374 Gaunt et al. Dec 1987 A
4713755 Worley, Jr. et al. Dec 1987 A
4719056 Scott Jan 1988 A
4726494 Scott Feb 1988 A
4747516 Baker May 1988 A
4748585 Chiarulli et al. May 1988 A
4758985 Carter Jul 1988 A
4760525 Webb Jul 1988 A
4760544 Lamb Jul 1988 A
4765513 McMillin et al. Aug 1988 A
4766548 Cedrone et al. Aug 1988 A
4781309 Vogel Nov 1988 A
4800492 Johnson et al. Jan 1989 A
4811214 Nosenchuck et al. Mar 1989 A
4824075 Holzboog Apr 1989 A
4827426 Patton et al. May 1989 A
4850269 Hancock et al. Jul 1989 A
4856684 Gerstung Aug 1989 A
4870302 Freeman Sep 1989 A
4901887 Burton Feb 1990 A
4905231 Leung et al. Feb 1990 A
4921315 Metcalfe et al. May 1990 A
4930666 Rudick Jun 1990 A
4932564 Austin et al. Jun 1990 A
4936488 Austin Jun 1990 A
4937019 Scott Jun 1990 A
4960261 Scott et al. Oct 1990 A
4961533 Teller et al. Oct 1990 A
4967340 Dawes Oct 1990 A
4974643 Bennett et al. Dec 1990 A
4982876 Scott Jan 1991 A
4993604 Gaunt et al. Feb 1991 A
5007560 Sassak Apr 1991 A
5021947 Campbell et al. Jun 1991 A
5040106 Maag Aug 1991 A
5044171 Farkas Sep 1991 A
5090015 Dabbish et al. Feb 1992 A
5099418 Pian et al. Mar 1992 A
5129549 Austin Jul 1992 A
5139708 Scott Aug 1992 A
5144166 Camarota et al. Sep 1992 A
5156301 Hassell et al. Oct 1992 A
5156871 Goulet et al. Oct 1992 A
5165023 Gifford Nov 1992 A
5165575 Scott Nov 1992 A
5190083 Gupta et al. Mar 1993 A
5190189 Zimmer et al. Mar 1993 A
5193151 Jain Mar 1993 A
5193718 Hassell et al. Mar 1993 A
5202993 Tarsy et al. Apr 1993 A
5203474 Haynes Apr 1993 A
5218240 Camarota et al. Jun 1993 A
5240144 Feldman Aug 1993 A
5245227 Furtek et al. Sep 1993 A
5261099 Bigo et al. Nov 1993 A
5263509 Cherry et al. Nov 1993 A
5269442 Vogel Dec 1993 A
5280711 Motta et al. Jan 1994 A
5297400 Benton et al. Mar 1994 A
5301100 Wagner Apr 1994 A
5303846 Shannon Apr 1994 A
5325525 Shan et al. Jun 1994 A
5335276 Thompson et al. Aug 1994 A
5336950 Popli et al. Aug 1994 A
5339428 Burmeister et al. Aug 1994 A
5343716 Swanson et al. Sep 1994 A
5361362 Benkeser et al. Nov 1994 A
5367651 Smith et al. Nov 1994 A
5367687 Tarsy et al. Nov 1994 A
5368198 Goulet Nov 1994 A
5379343 Grube et al. Jan 1995 A
5381546 Servi et al. Jan 1995 A
5381550 Jourdenais et al. Jan 1995 A
5388062 Knutson Feb 1995 A
5388212 Grube et al. Feb 1995 A
5392960 Kendt et al. Feb 1995 A
5437395 Bull et al. Aug 1995 A
5450557 Kopp et al. Sep 1995 A
5454406 Rejret et al. Oct 1995 A
5465368 Davidson et al. Nov 1995 A
5475856 Kogge Dec 1995 A
5479055 Eccles Dec 1995 A
5490165 Blakeney, II et al. Feb 1996 A
5491823 Ruttenberg Feb 1996 A
5507009 Grube et al. Apr 1996 A
5515519 Yoshioka et al. May 1996 A
5517600 Shimokawa May 1996 A
5519694 Brewer et al. May 1996 A
5522070 Sumimoto May 1996 A
5530964 Alpert et al. Jun 1996 A
5534796 Edwards Jul 1996 A
5542265 Rutland Aug 1996 A
5553755 Bonewald et al. Sep 1996 A
5555417 Odnert et al. Sep 1996 A
5560028 Sachs et al. Sep 1996 A
5560038 Haddock Sep 1996 A
5570587 Kim Nov 1996 A
5572572 Kawan et al. Nov 1996 A
5590353 Sakakibara et al. Dec 1996 A
5594657 Cantone et al. Jan 1997 A
5600810 Ohkami Feb 1997 A
5600844 Shaw et al. Feb 1997 A
5600845 Gilson Feb 1997 A
5602833 Zehavi Feb 1997 A
5603043 Taylor et al. Feb 1997 A
5607083 Vogel et al. Mar 1997 A
5608643 Wichter et al. Mar 1997 A
5611867 Cooper et al. Mar 1997 A
5619695 Arbabi et al. Apr 1997 A
5623545 Childs et al. Apr 1997 A
5625669 McGregor et al. Apr 1997 A
5626407 Westcott May 1997 A
5630206 Urban et al. May 1997 A
5635940 Hickman et al. Jun 1997 A
5646544 Iadanza Jul 1997 A
5646545 Trimberger et al. Jul 1997 A
5647512 Assis Mascarenhas deOliveira et al. Jul 1997 A
5667110 McCann et al. Sep 1997 A
5684793 Kiema et al. Nov 1997 A
5684980 Casselman Nov 1997 A
5687236 Moskowitz et al. Nov 1997 A
5694613 Suzuki Dec 1997 A
5694794 Jerg et al. Dec 1997 A
5699328 Ishizaki et al. Dec 1997 A
5701398 Glier et al. Dec 1997 A
5701482 Harrison et al. Dec 1997 A
5704053 Santhanam Dec 1997 A
5706191 Bassett et al. Jan 1998 A
5706976 Purkey Jan 1998 A
5712996 Schepers Jan 1998 A
5720002 Wang Feb 1998 A
5721693 Song Feb 1998 A
5721854 Ebcioglu et al. Feb 1998 A
5729754 Estes Mar 1998 A
5732563 Bethuy et al. Mar 1998 A
5734808 Takeda Mar 1998 A
5737631 Trimberger Apr 1998 A
5742180 DeHon et al. Apr 1998 A
5742821 Prasanna Apr 1998 A
5745366 Highma et al. Apr 1998 A
RE35780 Hassell et al. May 1998 E
5751295 Becklund et al. May 1998 A
5754227 Fukuoka May 1998 A
5758261 Wiedeman May 1998 A
5768561 Wise Jun 1998 A
5778439 Trimberger et al. Jul 1998 A
5784636 Rupp Jul 1998 A
5787237 Reilly Jul 1998 A
5790817 Asghar et al. Aug 1998 A
5791517 Avital Aug 1998 A
5791523 Oh Aug 1998 A
5794062 Baxter Aug 1998 A
5794067 Kadowaki Aug 1998 A
5802055 Krein et al. Sep 1998 A
5818603 Motoyama Oct 1998 A
5819255 Celis et al. Oct 1998 A
5822308 Weigand et al. Oct 1998 A
5822313 Malek et al. Oct 1998 A
5822360 Lee et al. Oct 1998 A
5828858 Athanas et al. Oct 1998 A
5829085 Jerg et al. Nov 1998 A
5835753 Witt Nov 1998 A
5838165 Chatter Nov 1998 A
5845815 Vogel Dec 1998 A
5860021 Klingman Jan 1999 A
5862961 Motta et al. Jan 1999 A
5870427 Tiedemann, Jr. et al. Feb 1999 A
5873045 Lee et al. Feb 1999 A
5881106 Cartier Mar 1999 A
5883956 Le et al. Mar 1999 A
5884284 Peters et al. Mar 1999 A
5886537 Macias et al. Mar 1999 A
5887174 Simons et al. Mar 1999 A
5889816 Agrawal et al. Mar 1999 A
5889989 Robertazzi et al. Mar 1999 A
5890014 Long Mar 1999 A
5892900 Ginter et al. Apr 1999 A
5892961 Trimberger Apr 1999 A
5892962 Cloutier Apr 1999 A
5894473 Dent Apr 1999 A
5901884 Goulet et al. May 1999 A
5903886 Heimlich et al. May 1999 A
5907285 Toms et al. May 1999 A
5907580 Cummings May 1999 A
5910733 Bertolet et al. Jun 1999 A
5912572 Graf, III Jun 1999 A
5913172 McCabe et al. Jun 1999 A
5917852 Butterfield et al. Jun 1999 A
5920801 Thomas et al. Jul 1999 A
5931918 Row et al. Aug 1999 A
5933642 Greenbaum et al. Aug 1999 A
5940438 Poon et al. Aug 1999 A
5949415 Lin et al. Sep 1999 A
5950011 Albrecht et al. Sep 1999 A
5950131 Vilmur Sep 1999 A
5951674 Moreno Sep 1999 A
5953322 Kimball Sep 1999 A
5956518 DeHon et al. Sep 1999 A
5956967 Kim Sep 1999 A
5959811 Richardson Sep 1999 A
5959881 Trimberger et al. Sep 1999 A
5963048 Harrison et al. Oct 1999 A
5966534 Cooke et al. Oct 1999 A
5970254 Cooke et al. Oct 1999 A
5987105 Jenkins et al. Nov 1999 A
5987611 Freund Nov 1999 A
5991302 Berl et al. Nov 1999 A
5991308 Fuhrmann et al. Nov 1999 A
5993739 Lyon Nov 1999 A
5999734 Willis et al. Dec 1999 A
6005943 Cohen et al. Dec 1999 A
6006249 Leong Dec 1999 A
6016395 Mohamed Jan 2000 A
6021186 Suzuki et al. Feb 2000 A
6021492 May Feb 2000 A
6023742 Ebeling et al. Feb 2000 A
6023755 Casselman Feb 2000 A
6028610 Deering Feb 2000 A
6036166 Olson Mar 2000 A
6039219 Bach et al. Mar 2000 A
6041322 Meng et al. Mar 2000 A
6041970 Vogel Mar 2000 A
6046603 New Apr 2000 A
6047115 Mohan et al. Apr 2000 A
6052600 Fette et al. Apr 2000 A
6055314 Spies et al. Apr 2000 A
6056194 Kolls May 2000 A
6059840 Click, Jr. May 2000 A
6061580 Altschul et al. May 2000 A
6073132 Gehman Jun 2000 A
6076174 Freund Jun 2000 A
6078736 Guccione Jun 2000 A
6085740 Ivri et al. Jul 2000 A
6088043 Kelleher et al. Jul 2000 A
6091263 New et al. Jul 2000 A
6091765 Pietzold, III et al. Jul 2000 A
6094065 Tavana et al. Jul 2000 A
6094726 Gonion et al. Jul 2000 A
6111893 Volftsun et al. Aug 2000 A
6111935 Hughes-Hartogs Aug 2000 A
6115751 Tam et al. Sep 2000 A
6119178 Martin et al. Sep 2000 A
6120551 Law et al. Sep 2000 A
6122670 Bennett et al. Sep 2000 A
6128307 Brown Oct 2000 A
6134605 Hudson et al. Oct 2000 A
6138693 Matz Oct 2000 A
6141283 Bogin et al. Oct 2000 A
6150838 Wittig et al. Nov 2000 A
6154494 Sugahara et al. Nov 2000 A
6157997 Oowaki et al. Dec 2000 A
6173389 Pechanek et al. Jan 2001 B1
6175854 Bretscher Jan 2001 B1
6175892 Sazzad et al. Jan 2001 B1
6181981 Varga et al. Jan 2001 B1
6185418 MacLellan et al. Feb 2001 B1
6192070 Poon et al. Feb 2001 B1
6192255 Lewis et al. Feb 2001 B1
6192388 Cajolet Feb 2001 B1
6195788 Leaver et al. Feb 2001 B1
6198924 Ishii et al. Mar 2001 B1
6199181 Rechef et al. Mar 2001 B1
6202130 Scales, III et al. Mar 2001 B1
6202189 Hinedi et al. Mar 2001 B1
6219697 Lawande et al. Apr 2001 B1
6219756 Kasamizugami Apr 2001 B1
6219780 Lipasti Apr 2001 B1
6223222 Fijolek et al. Apr 2001 B1
6226387 Tewfik et al. May 2001 B1
6230307 Davis et al. May 2001 B1
6237029 Master et al. May 2001 B1
6246883 Lee Jun 2001 B1
6247125 Noel-Baron et al. Jun 2001 B1
6249251 Chang et al. Jun 2001 B1
6258725 Lee et al. Jul 2001 B1
6263057 Silverman Jul 2001 B1
6266760 DeHon et al. Jul 2001 B1
6272579 Lentz et al. Aug 2001 B1
6272616 Fernando et al. Aug 2001 B1
6281703 Furuta et al. Aug 2001 B1
6282627 Wong et al. Aug 2001 B1
6289375 Knight et al. Sep 2001 B1
6289434 Roy Sep 2001 B1
6289488 Dave et al. Sep 2001 B1
6292822 Hardwick Sep 2001 B1
6292827 Raz Sep 2001 B1
6292830 Taylor et al. Sep 2001 B1
6301653 Mohamed et al. Oct 2001 B1
6305014 Roediger et al. Oct 2001 B1
6311149 Ryan et al. Oct 2001 B1
6321985 Kolls Nov 2001 B1
6326806 Fallside et al. Dec 2001 B1
6346824 New Feb 2002 B1
6347346 Taylor Feb 2002 B1
6349346 Hanrahan et al. Feb 2002 B1
6349394 Brock et al. Feb 2002 B1
6353841 Marshall et al. Mar 2002 B1
6356994 Barry et al. Mar 2002 B1
6359248 Mardi Mar 2002 B1
6360256 Lim Mar 2002 B1
6360259 Bradley Mar 2002 B1
6360263 Kurtzberg et al. Mar 2002 B1
6363411 Dugan et al. Mar 2002 B1
6366999 Drabenstott et al. Apr 2002 B1
6377983 Cohen et al. Apr 2002 B1
6378072 Collins et al. Apr 2002 B1
6381293 Lee et al. Apr 2002 B1
6381735 Hunt Apr 2002 B1
6385751 Wolf May 2002 B1
6405214 Meade, II Jun 2002 B1
6408039 Ito Jun 2002 B1
6410941 Taylor et al. Jun 2002 B1
6411612 Halford et al. Jun 2002 B1
6421372 Bierly et al. Jul 2002 B1
6421809 Wuytack et al. Jul 2002 B1
6426649 Fu et al. Jul 2002 B1
6430624 Jamtgaard et al. Aug 2002 B1
6433578 Wasson Aug 2002 B1
6434590 Blelloch et al. Aug 2002 B1
6438737 Morelli et al. Aug 2002 B1
6446258 McKinsey et al. Sep 2002 B1
6449747 Wuytack et al. Sep 2002 B2
6456996 Crawford, Jr. et al. Sep 2002 B1
6459883 Subramanian et al. Oct 2002 B2
6467009 Winegarden et al. Oct 2002 B1
6469540 Nakaya Oct 2002 B2
6473609 Schwartz et al. Oct 2002 B1
6483343 Faith et al. Nov 2002 B1
6507947 Schreiber et al. Jan 2003 B1
6510138 Pannell Jan 2003 B1
6510510 Garde Jan 2003 B1
6538470 Langhammer et al. Mar 2003 B1
6556044 Langhammer et al. Apr 2003 B2
6563891 Eriksson et al. May 2003 B1
6570877 Kloth et al. May 2003 B1
6577678 Scheuermann Jun 2003 B2
6587684 Hsu et al. Jul 2003 B1
6590415 Agrawal et al. Jul 2003 B2
6601086 Howard et al. Jul 2003 B1
6601158 Abbott et al. Jul 2003 B1
6604085 Kolls Aug 2003 B1
6604189 Zemlyak et al. Aug 2003 B1
6606529 Crowder, Jr. et al. Aug 2003 B1
6615333 Hoogerbrugge et al. Sep 2003 B1
6618434 Heidari-Bateni et al. Sep 2003 B2
6640304 Ginter et al. Oct 2003 B2
6647429 Semal Nov 2003 B1
6653859 Sihlbom et al. Nov 2003 B2
6675265 Barroso et al. Jan 2004 B2
6675284 Warren Jan 2004 B1
6691148 Zinky et al. Feb 2004 B1
6694380 Wolrich et al. Feb 2004 B1
6711617 Bantz et al. Mar 2004 B1
6718182 Kung Apr 2004 B1
6718541 Ostanevich et al. Apr 2004 B2
6721286 Williams et al. Apr 2004 B1
6721884 De Oliveira Kastrup Pereira et al. Apr 2004 B1
6732354 Ebeling et al. May 2004 B2
6735621 Yoakum et al. May 2004 B1
6738744 Kirovski et al. May 2004 B2
6748360 Pitman et al. Jun 2004 B2
6751723 Kundu et al. Jun 2004 B1
6754470 Hendrickson et al. Jun 2004 B2
6760587 Holtzman et al. Jul 2004 B2
6760833 Dowling Jul 2004 B1
6766165 Sharma et al. Jul 2004 B2
6778212 Deng et al. Aug 2004 B1
6785341 Walton et al. Aug 2004 B2
6810527 Conrad et al. Oct 2004 B1
6819140 Yamanaka et al. Nov 2004 B2
6823448 Roth et al. Nov 2004 B2
6829633 Gelfer et al. Dec 2004 B2
6832250 Coons et al. Dec 2004 B1
6836839 Master et al. Dec 2004 B2
6859434 Segal et al. Feb 2005 B2
6865664 Budrovic et al. Mar 2005 B2
6871236 Fishman et al. Mar 2005 B2
6883084 Donohoe Apr 2005 B1
6894996 Lee May 2005 B2
6901440 Bimm et al. May 2005 B1
6912515 Jackson et al. Jun 2005 B2
6941336 Mar Sep 2005 B1
6980515 Schunk et al. Dec 2005 B1
6985517 Matsumoto et al. Jan 2006 B2
6986021 Master et al. Jan 2006 B2
6986142 Ehlig et al. Jan 2006 B1
6988139 Jervis et al. Jan 2006 B1
7032229 Flores et al. Apr 2006 B1
7044741 Leem May 2006 B2
7082456 Mani-Meitav et al. Jul 2006 B2
7139910 Ainsworth et al. Nov 2006 B1
7142731 Toi Nov 2006 B1
7249242 Ramchandran Jul 2007 B2
7304677 Keelan et al. Dec 2007 B2
20010003191 Kovacs et al. Jun 2001 A1
20010019613 Dillon et al. Sep 2001 A1
20010023482 Wray Sep 2001 A1
20010029515 Mirsky Oct 2001 A1
20010034795 Moulton et al. Oct 2001 A1
20010039654 Miyamoto Nov 2001 A1
20010048713 Medlock et al. Dec 2001 A1
20010048714 Jha Dec 2001 A1
20010050948 Ramberg et al. Dec 2001 A1
20020010848 Kamano et al. Jan 2002 A1
20020013799 Blaker Jan 2002 A1
20020013937 Ostanevich et al. Jan 2002 A1
20020015435 Rieken Feb 2002 A1
20020015439 Kohli et al. Feb 2002 A1
20020023210 Tuomenoksa et al. Feb 2002 A1
20020024942 Tsuneki et al. Feb 2002 A1
20020024993 Subramanian et al. Feb 2002 A1
20020031166 Subramanian et al. Mar 2002 A1
20020032551 Zakiya Mar 2002 A1
20020035560 Sone Mar 2002 A1
20020035623 Lawande et al. Mar 2002 A1
20020041581 Aramaki Apr 2002 A1
20020042907 Yamanaka et al. Apr 2002 A1
20020061741 Leung et al. May 2002 A1
20020069282 Reisman Jun 2002 A1
20020072830 Hunt Jun 2002 A1
20020078229 Lindemann et al. Jun 2002 A1
20020078337 Moreau et al. Jun 2002 A1
20020083305 Renard et al. Jun 2002 A1
20020083423 Ostanevich et al. Jun 2002 A1
20020087829 Snyder et al. Jul 2002 A1
20020089348 Langhammer Jul 2002 A1
20020101909 Chen et al. Aug 2002 A1
20020107905 Roe et al. Aug 2002 A1
20020107962 Richter et al. Aug 2002 A1
20020119803 Bitterlich et al. Aug 2002 A1
20020120672 Butt et al. Aug 2002 A1
20020133688 Lee et al. Sep 2002 A1
20020138716 Master et al. Sep 2002 A1
20020141489 Imaizumi Oct 2002 A1
20020147845 Sanchez-Herrero et al. Oct 2002 A1
20020159503 Ramachandran Oct 2002 A1
20020162026 Neuman et al. Oct 2002 A1
20020168018 Scheuermann Nov 2002 A1
20020181559 Heidari-Bateni et al. Dec 2002 A1
20020184275 Dutta et al. Dec 2002 A1
20020184291 Hogenauer Dec 2002 A1
20020184498 Qi Dec 2002 A1
20020184653 Pierce et al. Dec 2002 A1
20020191790 Anand et al. Dec 2002 A1
20030007606 Suder et al. Jan 2003 A1
20030012270 Zhou et al. Jan 2003 A1
20030018446 Makowski et al. Jan 2003 A1
20030018700 Giroti et al. Jan 2003 A1
20030023830 Hogenauer Jan 2003 A1
20030026242 Jokinen et al. Feb 2003 A1
20030030004 Dixon et al. Feb 2003 A1
20030046421 Horvitz et al. Mar 2003 A1
20030061260 Rajkumar Mar 2003 A1
20030061311 Lo Mar 2003 A1
20030063656 Rao et al. Apr 2003 A1
20030074473 Pham et al. Apr 2003 A1
20030076815 Miller et al. Apr 2003 A1
20030099223 Chang et al. May 2003 A1
20030102889 Master et al. Jun 2003 A1
20030105949 Master et al. Jun 2003 A1
20030110485 Lu et al. Jun 2003 A1
20030142818 Raghunathan et al. Jul 2003 A1
20030154357 Master et al. Aug 2003 A1
20030163723 Kozuch et al. Aug 2003 A1
20030172138 McCormack et al. Sep 2003 A1
20030172139 Srinivasan et al. Sep 2003 A1
20030200538 Ebeling et al. Oct 2003 A1
20030212684 Meyer et al. Nov 2003 A1
20030229864 Watkins Dec 2003 A1
20040006584 Vandeweerd Jan 2004 A1
20040010645 Scheuermann et al. Jan 2004 A1
20040015970 Scheuermann Jan 2004 A1
20040015973 Skovira Jan 2004 A1
20040025159 Scheuermann et al. Feb 2004 A1
20040057505 Valio Mar 2004 A1
20040062300 McDonough et al. Apr 2004 A1
20040081248 Parolari Apr 2004 A1
20040093479 Ramchandran May 2004 A1
20040168044 Ramchandran Aug 2004 A1
20050044344 Stevens Feb 2005 A1
20050166038 Wang et al. Jul 2005 A1
20050198199 Dowling Sep 2005 A1
20060031660 Master et al. Feb 2006 A1
Foreign Referenced Citations (52)
Number Date Country
100 18 374 Oct 2001 DE
0 301 169 Feb 1989 EP
0 166 586 Jan 1991 EP
0 236 633 May 1991 EP
0 478 624 Apr 1992 EP
0 479 102 Apr 1992 EP
0 661 831 Jul 1995 EP
0 668 659 Aug 1995 EP
0 690 588 Jan 1996 EP
0 691 754 Jan 1996 EP
0 768 602 Apr 1997 EP
0 817 003 Jan 1998 EP
0 821 495 Jan 1998 EP
0 866 210 Sep 1998 EP
0 923 247 Jun 1999 EP
0 926 596 Jun 1999 EP
1 056 217 Nov 2000 EP
1 061 437 Dec 2000 EP
1 061 443 Dec 2000 EP
1 126 368 Aug 2001 EP
1 150 506 Oct 2001 EP
1 189 358 Mar 2002 EP
2 067 800 Jul 1981 GB
2 237 908 May 1991 GB
62-249456 Oct 1987 JP
63-147258 Jun 1988 JP
4-51546 Feb 1992 JP
7-064789 Mar 1995 JP
7066718 Mar 1995 JP
10233676 Sep 1998 JP
10254696 Sep 1998 JP
11296345 Oct 1999 JP
2000315731 Nov 2000 JP
2001-053703 Feb 2001 JP
WO 8905029 Jun 1989 WO
WO 8911443 Nov 1989 WO
WO 9100238 Jan 1991 WO
WO 9313603 Jan 1991 WO
WO 9511855 May 1995 WO
WO 9633558 Oct 1996 WO
WO 9832071 Jul 1998 WO
WO 9903776 Jan 1999 WO
WO 9921094 Apr 1999 WO
WO 9926860 Jun 1999 WO
WO 9965818 Dec 1999 WO
WO 0019311 Apr 2000 WO
WO 0065855 Nov 2000 WO
WO 0069073 Nov 2000 WO
WO 0111281 Feb 2001 WO
WO 0122235 Mar 2001 WO
WO 0176129 Oct 2001 WO
WO 0212978 Feb 2002 WO