Method and system for providing a HAMR writer including a multi-mode interference device

Information

  • Patent Grant
  • 10381029
  • Patent Number
    10,381,029
  • Date Filed
    Friday, March 16, 2018
    6 years ago
  • Date Issued
    Tuesday, August 13, 2019
    5 years ago
Abstract
A heat-assisted magnetic recording (HAMR) write apparatus includes a laser for providing energy and resides in proximity to a media during use. The HAMR write apparatus includes a write pole that writes to a region of the media, coil(s) for energizing the write pole and a waveguide optically coupled with the laser. The waveguide includes at least one multi-mode interference (MMI) device. The MMI device has at least one input, a plurality of outputs, a propagation section and a multi-mode interference (MMI) section. Energy from the laser propagates through the propagation section before the MMI section. The propagation section expands the energy from the laser to a plurality of modes. A first portion of the outputs is output from the propagation section. The MMI section is between the propagation section and a second portion of the plurality of outputs.
Description
BACKGROUND

Conventional heat assisted magnetic recording (HAMR) utilizes a laser in a conjunction with magnetic recording technology to write to magnetic media in a disk drive. Light is provided from a laser to a waveguide in a HAMR writer fabricated on a slider. The waveguide may be an interference waveguide (IWG) which includes multiple arms. The light travels through the waveguide toward the ABS and is split between the arms of the waveguide. The light is recombined in proximity to a near-field transducer (NFT). Light from the waveguide is coupled in to the NFT. The NFT couples light into the media at a spot size smaller than the optical diffraction limit, heating a region of the media. Coils in the apparatus energize the main pole to magnetically write to a portion of the media heated by the spot size at a relatively modest field. Thus, data may be written to the media.


In order for HAMR writers to function as desired, not only is sufficient energy required to be delivered to heat the media, but the functioning of various components desired to be monitored. For example, the waveguide may be desired to be tapped in order to monitor the power from the laser that is delivered to the waveguide. Tapping typically involves placing a tapping waveguide in proximity to the waveguide. A small amount of energy is coupled out of the waveguide to the tapping waveguide. Particularly as the HAMR transducer is scaled to smaller sizes, the fabrication and, therefore, reliable operation of such optical components may become challenging. Accordingly, what is needed is a mechanism for improving performance and fabrication of the optical components in HAMR magnetic recording.





BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS


FIG. 1 is a side view of an exemplary embodiment of a HAMR disk drive.



FIG. 2 is a block diagram of certain optical components for an exemplary embodiment of a HAMR write apparatus.



FIG. 3 depicts a block diagram of certain optical components for an exemplary embodiment of a HAMR write apparatus.



FIG. 4 depicts an exemplary embodiment of optical components for a HAMR write apparatus.



FIG. 5 depicts an exemplary embodiment of optical components for a HAMR write apparatus.



FIG. 6 depicts an exemplary embodiment of optical components for a HAMR write apparatus.



FIG. 7 depicts an exemplary embodiment of optical components for a HAMR write apparatus.



FIG. 8 is a flow chart depicting an exemplary embodiment of a method for fabricating a HAMR write apparatus.



FIG. 9 is a flow chart depicting an exemplary embodiment of a method for fabricating optical components for a HAMR write apparatus.





DETAILED DESCRIPTION

While the various embodiments disclosed are applicable to a variety of data storage devices such as magnetic recording disk drives, solid-state hybrid disk drives, networked storage systems and/or other data storage devices, for the sake of illustration the description below uses disk drives as examples. FIG. 1 depicts an exemplary embodiment of a heat assisted magnetic recording (HAMR) disk drive. 100. FIG. 1 is a side view of the HAMR disk drive 100. FIG. 2 is a block diagram depicting an exemplary embodiment of a waveguide 130 and other optical components used in the HAMR disk drive 100. For clarity, FIGS. 1-2 are not to scale. For simplicity not all portions of the HAMR disk drive 100 are shown. In addition, although the HAMR disk drive 100 is depicted in the context of particular components other and/or different components may be used. For simplicity, only single components are shown. However, multiples of the component(s) and/or their sub-component(s) might be used.


The HAMR disk drive 100 includes media 102, a slider 110, a HAMR write apparatus 120 and a laser subassembly 190. Additional and/or different components may be included in the HAMR disk drive 100. The slider 110, the laser subassembly 190 and HAMR apparatus 120 are generally attached to a suspension (not shown). The HAMR apparatus 120 is fabricated on the slider 110 and includes a media-facing surface. In the disk drive 100, the media-facing surface is also an air-bearing surface (ABS) proximate to the media 102 during use.


In general, the HAMR disk drive 100 includes a write apparatus and a reader. However, for clarity, only the write portion (HAMR write apparatus 120) of the head is shown. The HAMR write apparatus 120 includes optional near-field transducer (NFT) 122, a write pole 124, coil(s) 126, waveguide 130. In other embodiments, different and/or additional components may be used in the HAMR write apparatus 120. The laser subassembly 190 includes a laser 192, a submount 194 and an optional photodetector 196. The laser 192 may be an edge emitting laser diode. The laser subassembly 190 is generally affixed to the back side (the side opposite the ABS) of the slider 110. However, other locations are possible. The submount 194 is a substrate to which the laser 192 may be affixed for mechanical stability, heat sinking, and ease of integration with the slider 110. The photodetector may be used to sample the light provided from the laser 192 to the HAMR apparatus 120. Thus, the laser 192 may be controlled via feedback obtained from the photodetector 196. However, other configurations are possible.


The waveguide 130 is optically coupled with the laser 192 and NFT 122, which resides near the ABS. The waveguide 130 shown may be an interferometric waveguide (IWG). However, other configurations are possible. The waveguide 130 includes an optional mode converter 140, a multi-mode interference (MMI) device 150 and an additional portion 180.


The MMI device 150 is also depicted in block diagram form in FIG. 3. FIG. 3 is not to scale. Referring to FIGS. 1-3, light in the waveguide is provided from the mode converter 140 to the MMI device 150 and then to the remainder of the waveguide 180. The mode converter 140 is in proximity to the waveguide entrance and receives optical energy from the laser 192. The mode converter 140 may have a core which tapers such that the exit of the mode converter is narrower than its entrance. The mode converter 140 aids in capturing laser power and transforming the laser mode(s) into waveguide mode(s).


The MMI device 150 includes a propagation section 162, an MMI section 164 and an optional output section 166. The propagation section 162 has one or more outputs 151. In some embodiments, the output(s) 151 include two outputs, 152 and 154, which are more explicitly shown in FIG. 2. Also shown are output(s) 155 of the MMI device 150. Thus, item 155 may refer to a single output or multiple outputs. As depicted in FIG. 2, one output 152 provides light to an optional output grating 172. Another output 154 provides light to an optional photodiode 170. In some embodiments, the photodiode 170 is the same component as the photodiode 196. This output 154 may be used to monitor and control the laser power. The output grating 172 may be used to align the laser 192 during fabrication of the HAMR disk drive 100. For example, light from the output grating 172 may be detected while the laser 192 is aligned to the entrance of the waveguide 130. An increased signal from the output grating 172 indicates a better alignment between the laser 192 and waveguide 130. In some cases the laser subassembly 190 may be fixed in a location corresponding to a maximum in the signal from the output grating 172. In other embodiments, the output grating 172 may be omitted. In such embodiments, the output 152 may be omitted or used for another purpose. The light provided via outputs 152 and 154 is desired to be a small percentage of the light carried by the waveguide 130. In some embodiments, each output 152 and 154 taps out at least two percent and not more than seven percent of the power carried by the MMI device 150. In some such embodiments, nominally five percent of the power is tapped out by each output 152 and 154.


In addition to having outputs 151/152 and 154, the propagation section 162 may be used to expand the energy from the laser to multiple modes. In some embodiments, fifty or more modes may be present in the propagation section 162. In some such embodiments, one hundred or more modes may present. However, in other embodiments, another (larger or smaller) number of modes may be carried by the propagation section 162. Although not shown in FIG. 3, the geometry of the propagation section 162 may be such that the section 162 tapers (narrows in the direction of the exit to the MMI section 164), is untapered, or inversely tapered (widens toward the exit to the MMI section 164)


The MMI section 164 receives light from the propagation section 162. In the MMI section, multiple modes undergo interference. Because the modes traversing the MMI section 164 are interfering, within the MMI section 164 there may be maxima and minima. The outputs are coupled where the appropriate number of maxima are located. The length of the MMI section 164 in the direction of transmission of light may be configured depending upon the number of outputs desired. In general, there will be more maxima closer to the propagation section 162. Thus, if a single output 155 is desired, the MMI section 164 may be longer than if two outputs 155 are desired. Although not shown in FIG. 3, the geometry of the MMI section 164 may be such that the MMI section 164 tapers (narrows in the direction of the exit to the output section 166), is untapered, or inversely tapers (widens toward the exit to the output section 166). A tapered MMI section 164 may allow for the locations of the maxima to be closer to the propagation section 162. Thus, the MMI section 164 may be shorter. In addition, note that although interference is only described for the MMI section 164, it is understood that there is some interference in the other section(s) 162 and 166. However, the majority of the interference occurs in the MMI section 164.


The optional output section 166 is the region to which the output(s) 155 are connected. If the output section 166 is omitted, then the output(s) 155 may be coupled directly to the MMI section 164. The output section 166 may also be tapered, untapered or inversely tapered. If the waveguide 130 is desired to be an IWG, then multiple outputs 155 may be used. In such a case, the remainder of the waveguide 180 includes multiple arms. Alternatively, a single output 155 may be used if only one output is desired or if a separate power splitter is desired to be used. The output(s) 155 provides the remainder of the light carried by the MMI device 150 to the remainder 180 of the waveguide 130. Because the outputs 152 and 154 each couple out at least two percent and not more than seven percent of the power carried by the MMI device 150, the output(s) 155 may carry at least ninety-three percent and not more than ninety-eight percent of the power carried by the MMI device 150 (ignoring losses in transmission through the MMI device 150). Thus, there is an uneven split in the light provided by the outputs 151/152 and 154 and 155.


The output(s) 155 of the MMI device 150 are coupled to the remainder of the waveguide 150. As discussed above, in some embodiments, the remainder 180 of the waveguide 130 includes multiple arms of the IWG 130. Alternatively, the remainder 180 may include a single arm. The remainder 180 of the waveguide 130 is optically coupled with the NFT 122.


In operation, the light from the laser 192 is transmitted to the waveguide 130. The light is concentrated by the mode converter 140. Light is then transmitted to the MMI device 150. Thus, light may enter the propagation section 162 and be expanded out to a larger number of modes. In addition, a small amount of light may be tapped out through outputs 151/152 and 154. Light from the propagation section 162 traverses the MMI section 164, undergoing interference. The light may then be provided to the output section 166 for coupling to the remainder 180 of the waveguide 130 via output(s) 155. The light energy is then transferred to the NFT 122, which heats a small region of the media 102. The coil(s) 126 are energized and the pole 124 used to magnetically write to the media 102.


The HAMR disk drive 100 may have improved performance and fabrication. The waveguide 130 using the MMI device 150 may be simpler to fabricate and have higher fabrication tolerances than alternative waveguide splitters because of the geometry of the MMI device 150. The waveguide 150 may also occupy less space on the HAMR write apparatus. The MMI device 150 and thus the waveguide 130 may also be more insensitive to uncertainties in wavelength. Because fabrication is facilitated, it is believed that yield and performance of the fabricated devices may be enhanced. Consequently, formation and performance of the HAMR disk drive 100 may be improved.



FIG. 4 is a diagram depicting another embodiment of optical components including a waveguide 130′ usable in the HAMR write apparatus 120. For clarity, FIG. 4 is not to scale. The waveguide 130′ is described in the context of the HAMR disk drive 100 but could be used in another data storage device. The waveguide 130′ is analogous to the waveguide 130. Thus, analogous portions of the waveguide 130′ are labeled similarly to the waveguide 130. The waveguide 130′ includes a mode converter (not shown), MMI device 150′, outputs 151′ and 155′ and remaining portion 180′ that are analogous to the MMI device 150, outputs 151 and 155 and remaining portion 180.


The MMI device 150′ includes a propagation section 162, an MMI section 164 and an output section 166. The sections 162, 164 and 166 of the MMI device 150′ are shown as divided by dashed lines. For example one dashed line indicates the exit of the propagation section 162 and the entrance of the MMI section 164. Another dashed line indicates the exit of the MMI section 164 and the entrance of the output section 166. The functions of the sections 162, 164 and 166 are analogous to those described above for the MMI device 150. The propagation section 162 has entrance 161. Outputs 152 and 154 are connected to the propagation section 162. In the embodiment shown in FIG. 4, the propagation section 162 is inversely tapered. As a result, the mode(s) of the light entering the propagation section 162 may be more rapidly expanded.


The MMI section 164 is tapered while the output section 166 is untapered. In other embodiments, other tapering(s) are possible. As discussed above, the majority of the interference between multiple modes occurs in the MMI section 164, which may have standing nodes and maxima, For the waveguide 130′, two outputs 156 and 158 are the output(s) 155′. The tapered MMI section 164 may allow for more rapid convergence of the interference pattern within the MMI section 164 to the desired number of maxima. Thus, the output section 166 and outputs 156 and 158 may be placed closer to the entrance 161 of the MMI device 150. The output section 166 may be untapered for more predictable coupling of the light to the outputs 156 and 158.


Because of the tapers of the sections 162, 164 and 166, the length, l, of the MMI device 150 may be reduced. Note that the length l is not depicted as including the output section because the desired maxima are formed in the MMI section 164. In some embodiments, l is desired not to exceed twenty micrometers. Because it is tapered (narrows toward the exit), the length l2 of the MMI section 164 may be shortened. In some embodiments, l2 does not exceed fifteen micrometers. In some embodiments, the MMI section 164 is at least two micrometers and not more than three micrometers wide. In some such embodiments, the MMI section 164 is at least 2.5 micrometers and not more than 2.8 micrometers. However, other widths and lengths are possible. The length, l1 of the propagation section may be less than l2. However, the propagation section may have a desired maximum width, w, based on the space available and number of modes desired to be coupled in. In some embodiments, w is desired not to exceed four micrometers. In designing the MMI device 150′, the lengths, l and l2, desired are generally fixed and the widths configured based on these lengths.


The outputs 156 and 158 are connected to the remainder 180′ of the waveguide 130′. The outputs 156 and 158 may be located at the positions of two intensity maxima of the interference pattern for the MMI section 164. The separation between the outputs 156 and 158 may be relatively large. In some embodiments, the separation between the outputs 156 and 158 is at least five hundred nanometers and not more than 2 micrometers.


The remainder 180′ of the waveguide 130′ is an IWG 180′. Thus, two arms 182 and 184 are shown. Because the MMI device 150′ is coupled to an IWG 180′, the light carried by the outputs 156 and 158 may be desired to be matched in power and phase. The light in the arms 182 and 184 may be recombined and coupled out to the NFT 122.


A HAMR write apparatus using the waveguide 130′ may have improved fabrication and performance. As can be seen in FIG. 4, the geometry of the MMI device 150′ is relatively simple. For example, the outputs 152 and 154 may be relatively simple to fabricate in comparison to other tapping waveguides, which require narrow waveguides to be in close proximity over a particular length in order to couple out a desired portion of the energy. Similarly, the outputs 156 and 158 may be placed further apart than a conventional power splitter. As a result, the relatively narrow outputs 156 and 158 may be easier to fabricate. Further, the process margins for the structures 150′, 152, 154, 156, 158, 161, 162, 164 and 166 may be greater. Because the MMI device 150′ may be more readily fabricated, the yield and performance of the waveguide 130′ may be improved. In addition, the MMI device 150′ and thus the waveguide 130′ may be more tolerant to uncertainties in wavelength. Consequently, manufacturing and performance of data storage devices using the waveguide 130′, such as the HAMR disk drive 100, may be improved.



FIG. 5 is a diagram depicting another embodiment of optical components including a waveguide 130″ usable in the HAMR write apparatus 120. For clarity, FIG. 5 is not to scale. The waveguide 130″ is described in the context of the HAMR disk drive 100 but could be used. in another data storage device. The waveguide 130′ is analogous to the waveguides 130 and 130′. Thus, analogous portions of the waveguide 130″ are labeled similarly to the waveguides 130 and 130′. The waveguide 130″ includes a mode converter (not shown), MMI device 150″, outputs 151′ and 155′ and remaining portion 180′ that are analogous to the MMI device 150/150′, outputs 151/151′ and 155/155′ and remaining portion 180/180′.


The MMI device 150″ includes a propagation section 162, an MMI section 164′ and an output section 166. The sections 162, 164′ and 166 of the MMI device 150″ are shown as divided by dashed lines. The functions of the sections 162, 164′ and 166 are analogous to those described above for the MMI devices 150 and 150′. The propagation section 162 has entrance 161. Outputs 152 and 154 are connected to the propagation section. In the embodiment shown in FIG. 5, the propagation section 162 is inversely tapered. As a result, the modes of the light entering the propagation section 162 may be more rapidly expanded.


The MMI section 164′ and the output section 166 are both untapered. As a result, the length, l′, of the MMI device 150″ may be increased over that shown for the MMI device 150/150′. Because it is not tapered, the length l2′ of the MMI section 164′ may be increased. Thus, even though the length l1 may remain the same, the length l′ may be increased over l for the waveguide 130. However, some or all of the remaining benefits of the waveguide 130/130′ may be achieved.


A HAMR write apparatus using the waveguide 130″ may have improved fabrication and performance. As can be seen in FIG. 5, the geometry of the MMI device 150″ is relatively simple and analogous to the geometry of the MMI devices 150 and 150′. For example, the outputs 152 and 154 may be relatively simple to fabricate in comparison to other tapping waveguides. Similarly, the outputs 156 and 158 may be placed further apart than a conventional power splitter. As a result, the relatively narrow outputs 156 and 158 may be easier to fabricate. Further, the process margins for the structures 150″, 152, 154, 156, 158, 161, 162, 164′ and 166 may be greater. In addition, the MMI device 150″ and thus the waveguide 130″ may be more tolerant to uncertainties in wavelength. Because the MMI device 150″ may be more readily fabricated, the yield and performance of the waveguide 130″ may be improved. Consequently, manufacturing and performance of data storage devices using the waveguide 130″, such as the HAMR disk drive 100, may be improved.



FIG. 6 is a diagram depicting another embodiment of optical components including a waveguide 230 usable in the HAMR write apparatus 120. For clarity, FIG. 6 is not to scale. The waveguide 230 is described in the context of the HAMR disk drive 100 but could be used in another data storage device. The waveguide 230 is analogous to the waveguides 130, 130′ and 130″. Thus, analogous portions of the waveguide 230 are labeled similarly to the waveguides 130, 130′ and 130″. The waveguide 230 includes a mode converter (not shown), MMI device 250, outputs 251 and 255 and remaining portion 280 that are analogous to the MMI device 150/150′/150″, outputs 151/151′ and 155/155′ and remaining portion 180/180′.


The MMI device 250 includes a propagation section 262, an MMI section 264 and an output section 266 that are analogous to the propagation section 162, MMI section 164/164′ and output section 166. The sections 262, 264 and 266 of the MMI device 250 are shown as divided by dashed lines. The functions of the sections 262, 264 and 266 are analogous to those described above for the MMI devices 150, 150′ and 150″. The propagation section 262 has entrance 261 and may be used to expand the modes. Outputs 252 and 254 are connected to the propagation section 262. In the embodiment shown in FIG. 6, the propagation section 262 is inversely tapered. As a result, the modes of the light entering the propagation section 262 may be more rapidly expanded. However, in other embodiments, the propagation section 262 may be untapered or tapered.


The MMI section 264 is tapered while the output section 266 is untapered. As a result, the length, l″, of the MMI device 250 may be decreased over that for an untapered or inversely tapered MMI device. Stated differently, the sections 262 and 264 are analogous to the sections 162 and 164 depicted in FIG. 4. Because it is tapered (narrows toward the exit), the length l2″ of the MMI section 164 may be decreased over an untapered or inversely tapered MMI section. Similarly, in other embodiments, the optional output section 266 may be tapered or inversely tapered.


The MMI device 250 includes a single output 256/255. Thus, the remainder 280 of the waveguide 230 is not an IWG. Instead, a single arm 280 is used. As discussed above, the lengths l″ and l2″ may depend upon the number of outputs 255/256. This is because the output 255/256 is desired to be located at the position of a single maximum in the interference pattern developed in the MMI section 264. Thus, despite the presence of the taper, the length l2″ of the MMI section 264 for a single output 255/256 is generally greater than the length l2 of the tapered MMI section 164 for the dual outputs 155′/156 and 158. However, the length l″ of the MMI device 250 may be decreased over that of an MMI device having an untapered MMI section.


A HAMR write apparatus using the waveguide 230 may have improved fabrication and performance. As can be seen in FIG. 6, the geometry of the MMI device 250 is relatively simple and analogous to the geometry of the MMI devices 150, 150′ and 150″. For example, the outputs 252 and 254 may be relatively simple to fabricate in comparison to other tapping waveguides. Further, the process margins for the structures 250, 252, 254, 261, 262, 264 and 266 may be greater. In addition, the MMI device 250 and thus the waveguide 230 may be more insensitive to uncertainties in wavelength. Because the MMI device 250 may be more readily fabricated, the yield and performance of the waveguide 230 may be improved. Consequently, manufacturing and performance of data storage devices using the waveguide 230, such as the HAMR disk drive 100, may be improved.



FIG. 7 is a diagram depicting another embodiment of optical components including a waveguide 230′ usable in the HAMR write apparatus 120. For clarity, FIG. 7 is not to scale. The waveguide 230′ is described in the context of the HAMR disk drive 100 but could be used in another data storage device. The waveguide 230′ is analogous to the waveguides 130, 130′, 130″ and 230. Thus, analogous portions of the waveguide 230′ are labeled similarly to the waveguides 130, 130′, 130″ and 230. The waveguide 230′ includes a mode converter (not shown), MMI device 250′, outputs 251 and 255′ and remaining portion 280 that are analogous to the MMI device 150/150′/150″/250, outputs 151/151′/251 and 155/155′/255 and remaining portion 180/180′/280.


The MMI device 250′ includes a propagation section 262, an MMI section 264′ and an output section 266 that are analogous to the propagation section 162/262, MMI section 164/164′/264 and output section 166/266. The sections 262, 264′ and 266 of the MMI device 250′ are shown as divided by dashed lines. The functions of the sections 262, 264′ and 266 are analogous to those described above for the MMI devices 150, 150′, 150″ and 250. The propagation section 262 has entrance 261 and may be used to expand the modes. Outputs 252 and 254 are connected to the propagation section 262. In the embodiment shown in FIG. 7, the propagation section 262 is inversely tapered. As a result, the modes of the light entering the propagation section 262 may be more rapidly expanded. However, in other embodiments, the propagation section 262 may be untapered or tapered.


The MMI section 264′ and the output section 266 are both untapered. As a result, the length, l′″, of the MMI device 250′ may be increased over that shown for the MMI device 250. Because it is not tapered, the length l2′″ of the MMI section 264′ may be increased. Thus, even though the length l1 may remain the same, the length l′″ may be increased.


The MMI device 250′ includes a single output 255′/256′ coupled with a single arm 280. As discussed above, the lengths l′″ and l2′″ may depend upon the number of outputs 255′/256′. Because a single output 255′/256′ is used, the lengths l′″ and l2′″ may be increased. In addition, the output 256′ is tapered. Thus, fabrication of the output 255′/256′ may be facilitated.


A HAMR write apparatus using the waveguide 230 may have improved fabrication and performance. As can be seen in FIG. 7, the geometry of the MMI device 250′ is relatively simple and analogous to the geometry of the MMI devices 150, 150′, and 150″ and 250. Consequently, manufacturing and performance of data storage devices using the waveguide 230′, such as the HAMR disk drive 100, may be improved. Thus, the waveguides 130, 130′, 230 and 230′ are depicted with various features. However, these features may be combined in manners not explicitly disclosed herein and which are not inconsistent with the apparatus and methods described.



FIG. 8 is a flow chart depicting an exemplary embodiment of a method 300 for fabricating HAMR disk drives having improved optical efficiency. In particular, the method 300 may be used in fabricating a HAMR disk drive 100. For simplicity, some steps may be omitted, performed in another order, interleaved with other steps and/or combined. The method 300 is described in the context of forming a single disk drive 100. However, the method 300 may be used to fabricate multiple disk drives at substantially the same time and/or single or multiple other data storage devices. The method 300 and system are also described in the context of particular components. However, such components may include multiple sub-components that are also manufactured.


The write pole 124 is fabricated, via step 304. Step 304 may include forming top and/or bottom bevels in the pole tip and otherwise shaping the write pole. The coil(s) 126 may be provided, via step 304. The waveguide 130, 130′, 230 and/or 230′ including the MMI devices 150, 150′, 250 and/or 250′, respectively, are fabricated, via step 306. Step 306 may include depositing the core layer on a cladding layer, providing a photoresist mask in the desired shape of the core/components of the waveguides 130/130′/230/230′, removing the exposed portions of the core layer and depositing another cladding layer. Thus, the optional mode converter, MMI device and remainder of the waveguide may be provided. The NFT may also be provided, via step 308. Fabrication of the apparatus may then be completed.


Thus, using the method 300, the HAMR disk drive 100 and waveguides 130, 130′, 230, 230′ and/or some combination thereof may be provided. Consequently, the benefits of the waveguides 130, 130′, 230, 230′ and MMI devices 150, 150′, 250 and/or 250′ may be achieved.



FIG. 9 is a flow chart depicting an exemplary embodiment of a method 350 for fabricating waveguide including an MMI device. In particular, the method 350 may be used in fabricating the waveguide 130, 130′, 230 and/or 230′. For simplicity, some steps may be omitted, performed in another order, interleaved with other steps and/or combined. The method 350 is described in the context of forming the waveguide 130. However, the method 350 may be used to fabricate waveguides at substantially the same time and/or other waveguides. The method 350 and system are also described in the context of particular components. However, such components may include multiple sub-components that are also manufactured.


The materials for the core are deposited, via step 352. Step 352 typically includes depositing higher index of refraction materials, such as tantalum oxide, on a lower index cladding material, such as aluminum oxide or silicon oxide. The core materials are patterned, via step 354. Step 354 may include providing a photoresist mask in the desired shape of the mode converter 140, MMI device 150, outputs 151/151, and remainder 180/180′ of the waveguide 150. The exposed portions of the core layer are then removed. Thus, the mode converter 140, MMI device 150, outputs 151/151, and remainder 180/180′ of the waveguide 150 are formed. Thus, the geometry of the components and waveguides depicted in FIGS. 1-7 corresponds to this patterned core layer. A cladding layer may then be deposited to refill the regions around the components, via step 356.


Thus, using the method 350, the waveguides 130, 130′, 230, 230′ and/or some combination thereof may be provided. Consequently, the benefits of the waveguides 130, 130′, 230, 230′ and MMI devices 150, 150′, 250 and/or 250′ may be achieved.

Claims
  • 1. A magnetic write apparatus comprising: a waveguide configured to direct energy from a light source to a near field transducer, the waveguide comprising a multi-mode interference device comprising a propagation section,wherein the propagation section receives the energy from the light source via a propagation section entrance; andwherein the propagation section entrance is narrower than a propagation section exit.
  • 2. The magnetic write apparatus of claim 1, wherein the waveguide further comprises a mode converter configured to receive the energy from the light source and direct the energy to the propagation section entrance.
  • 3. The magnetic write apparatus of claim 1, wherein the waveguide further comprises an additional portion configured to receive an output from the multi-mode interference device and transmit the output to the near field transducer.
  • 4. The magnetic write apparatus of claim 1, wherein an output from the propagation section comprises a first output portion and a second output portion, and wherein the first output portion is transmitted outside the waveguide to control the light source and the second output portion is transmitted to a multi-mode interference section of the multi-mode interference device.
  • 5. The magnetic write apparatus of claim 1, wherein the multi-mode interference device further comprises a multi-mode interference section that receives an output via the propagation section exit, and wherein the multi-mode interference section has a multi-mode interference section entrance that is wider than a multi-mode interference section exit.
  • 6. The magnetic write apparatus of claim 5, wherein a combined length of the propagation section and the multi-mode interference section in a direction of propagation of the energy from the light source to the near field transducer is not more than twenty micrometers.
  • 7. The magnetic write apparatus of claim 5, wherein a length of the propagation section in a direction of propagation of the energy from the light source to the near field transducer is less than a length of the multi-mode interference section in the direction of propagation of the energy.
  • 8. The magnetic write apparatus of claim 5, wherein a width of the multi-mode interference section in a direction perpendicular to a direction of propagation of the energy from the light source to the near field transducer is at least two micrometers and not more than three micrometers.
  • 9. The magnetic write apparatus of claim 1, wherein a width of the propagation section in a direction perpendicular to a direction of propagation of the energy from the light source to the near field transducer is not more than four micrometers.
  • 10. The magnetic write apparatus of claim 1, wherein the multi-mode interference device further comprises a multi-mode interference section that receives an output via the propagation section exit, and wherein the multi-mode interference section is untapered.
  • 11. The magnetic write apparatus of claim 1, wherein the multi-mode interference device further comprises an output section that receives an output from the propagation section, and wherein the output section is untapered.
  • 12. A waveguide comprising: a mode converter to receive energy from a light source and convert the energy from a first mode to a second mode;a multi-mode interference device to receive the energy in the second mode from the mode converter and generate a plurality of outputs, wherein the multi-mode interference device comprises: a propagation section;a multi-mode interference section; andan output section; andan additional portion to receive at least a portion of the plurality of outputs from the multi-mode interference device and transmit an output energy outside the waveguide.
  • 13. The waveguide of claim 12, wherein the propagation section comprises an entrance and an exit, and wherein the propagation section is one of tapered, untapered, and inversely tapered between the entrance and the exit.
  • 14. The waveguide of claim 12, wherein the multi-mode interference section comprises an entrance and an exit, and wherein the multi-mode interference section is one of tapered, untapered, and inversely tapered between the entrance and the exit.
  • 15. The waveguide of claim 12, wherein output section comprises an entrance and an exit, and wherein the output section is one of tapered, untapered, and inversely tapered between the entrance and the exit.
  • 16. The waveguide of claim 12, wherein the propagation section transmits a first output portion and a second output portion, and wherein the first output portion is transmitted outside the waveguide to control the light source and the second output portion is transmitted to the multi-mode interference section of the waveguide.
  • 17. The waveguide of claim 12, wherein the output section transmits a pair of outputs to the additional portion, and wherein the additional portion is an interferometric waveguide having a pair of arms to receive the pair of outputs.
  • 18. The waveguide of claim 12, wherein the propagation section is inversely tapered, the multi-mode interference section is untapered, and the output section is untapered.
  • 19. The waveguide of claim 12, wherein the propagation section is inversely tapered, the multi-mode interference section is tapered, and the output section is untapered.
  • 20. An apparatus comprising: means for receiving energy from a light source and transforming the energy from a first mode to a second mode;means for receiving the energy in the second mode via an entrance that is narrower than an exit thereof and expanding the energy into multiple modes;means for receiving the multiple modes of the energy and causing interference between the multiple modes for obtaining an output; andmeans for receiving the output and directing the output to a near field transducer for heating a region of a magnetic media.
CROSS-REFERENCE TO RELATED PATENT APPLICATIONS

This application is a continuation application of U.S. patent application Ser. No. 14/936,967, filed on Nov. 10, 2015, the entirety of which is incorporated by reference herein.

US Referenced Citations (609)
Number Name Date Kind
6016290 Chen et al. Jan 2000 A
6018441 Wu et al. Jan 2000 A
6025978 Hoshi et al. Feb 2000 A
6025988 Yan Feb 2000 A
6032353 Hiner et al. Mar 2000 A
6033532 Minami Mar 2000 A
6034851 Zarouri et al. Mar 2000 A
6043959 Crue et al. Mar 2000 A
6046885 Aimonetti et al. Apr 2000 A
6049650 Jerman et al. Apr 2000 A
6055138 Shi Apr 2000 A
6058094 Davis et al. May 2000 A
6073338 Liu et al. Jun 2000 A
6078479 Nepela et al. Jun 2000 A
6081499 Berger et al. Jun 2000 A
6094803 Carlson et al. Aug 2000 A
6099362 Viches et al. Aug 2000 A
6103073 Thayamballi Aug 2000 A
6108166 Lederman Aug 2000 A
6118629 Huai et al. Sep 2000 A
6118638 Knapp et al. Sep 2000 A
6125018 Takagishi et al. Sep 2000 A
6130779 Carlson et al. Oct 2000 A
6134089 Barr et al. Oct 2000 A
6136166 Shen et al. Oct 2000 A
6137661 Shi et al. Oct 2000 A
6137662 Huai et al. Oct 2000 A
6160684 Heist et al. Dec 2000 A
6163426 Nepela et al. Dec 2000 A
6166891 Lederman et al. Dec 2000 A
6173486 Hsiao et al. Jan 2001 B1
6175476 Huai et al. Jan 2001 B1
6178066 Barr Jan 2001 B1
6178070 Hong et al. Jan 2001 B1
6178150 Davis Jan 2001 B1
6181485 He Jan 2001 B1
6181525 Carlson Jan 2001 B1
6185051 Chen et al. Feb 2001 B1
6185077 Tong et al. Feb 2001 B1
6185081 Simion et al. Feb 2001 B1
6188549 Wiitala Feb 2001 B1
6190764 Shi et al. Feb 2001 B1
6193584 Rudy et al. Feb 2001 B1
6195229 Shen et al. Feb 2001 B1
6198608 Hong et al. Mar 2001 B1
6198609 Barr et al. Mar 2001 B1
6201673 Rottmayer et al. Mar 2001 B1
6204998 Katz Mar 2001 B1
6204999 Crue et al. Mar 2001 B1
6212153 Chen et al. Apr 2001 B1
6215625 Carlson Apr 2001 B1
6219205 Yuan et al. Apr 2001 B1
6221218 Shi et al. Apr 2001 B1
6222707 Huai et al. Apr 2001 B1
6229782 Wang et al. May 2001 B1
6230959 Heist et al. May 2001 B1
6233116 Chen et al. May 2001 B1
6233125 Knapp et al. May 2001 B1
6236784 Ido May 2001 B1
6237215 Hunsaker et al. May 2001 B1
6252743 Bozorgi Jun 2001 B1
6255721 Roberts Jul 2001 B1
6258468 Mahvan et al. Jul 2001 B1
6266216 Hikami et al. Jul 2001 B1
6271604 Frank et al. Aug 2001 B1
6275354 Huai et al. Aug 2001 B1
6277505 Shi et al. Aug 2001 B1
6282056 Feng et al. Aug 2001 B1
6296955 Hossain et al. Oct 2001 B1
6297955 Frank et al. Oct 2001 B1
6304414 Crue et al. Oct 2001 B1
6307715 Berding et al. Oct 2001 B1
6310746 Hawwa et al. Oct 2001 B1
6310750 Hawwa et al. Oct 2001 B1
6317290 Wang et al. Nov 2001 B1
6317297 Tong et al. Nov 2001 B1
6322911 Fukagawa et al. Nov 2001 B1
6330136 Wang et al. Dec 2001 B1
6330137 Knapp et al. Dec 2001 B1
6333830 Rose et al. Dec 2001 B2
6340533 Ueno et al. Jan 2002 B1
6349014 Crue et al. Feb 2002 B1
6351355 Min et al. Feb 2002 B1
6353318 Sin et al. Mar 2002 B1
6353511 Shi et al. Mar 2002 B1
6356412 Levi et al. Mar 2002 B1
6359779 Frank et al. Mar 2002 B1
6369983 Hong Apr 2002 B1
6376964 Young et al. Apr 2002 B1
6377535 Chen et al. Apr 2002 B1
6381095 Sin et al. Apr 2002 B1
6381105 Huai et al. Apr 2002 B1
6389499 Frank et al. May 2002 B1
6392850 Tong et al. May 2002 B1
6396660 Jensen et al. May 2002 B1
6399179 Hanrahan et al. Jun 2002 B1
6400526 Crue et al. Jun 2002 B2
6404600 Hawwa et al. Jun 2002 B1
6404601 Rottmayer et al. Jun 2002 B1
6404706 Stovall et al. Jun 2002 B1
6410170 Chen et al. Jun 2002 B1
6411522 Frank et al. Jun 2002 B1
6417998 Crue et al. Jul 2002 B1
6417999 Knapp et al. Jul 2002 B1
6418000 Gibbons et al. Jul 2002 B1
6418048 Sin et al. Jul 2002 B1
6421211 Hawwa et al. Jul 2002 B1
6421212 Gibbons et al. Jul 2002 B1
6424505 Lam et al. Jul 2002 B1
6424507 Lederman et al. Jul 2002 B1
6430009 Komaki et al. Aug 2002 B1
6430806 Chen et al. Aug 2002 B1
6433965 Gopinathan et al. Aug 2002 B1
6433968 Shi et al. Aug 2002 B1
6433970 Knapp et al. Aug 2002 B1
6437945 Hawwa et al. Aug 2002 B1
6445536 Rudy et al. Sep 2002 B1
6445542 Levi et al. Sep 2002 B1
6445553 Barr et al. Sep 2002 B2
6445554 Dong et al. Sep 2002 B1
6447935 Zhang et al. Sep 2002 B1
6448765 Chen et al. Sep 2002 B1
6451514 Iitsuka Sep 2002 B1
6452742 Crue et al. Sep 2002 B1
6452765 Mahvan et al. Sep 2002 B1
6456465 Louis et al. Sep 2002 B1
6459552 Liu et al. Oct 2002 B1
6462920 Karimi Oct 2002 B1
6466401 Hong et al. Oct 2002 B1
6466402 Crue et al. Oct 2002 B1
6466404 Crue et al. Oct 2002 B1
6468436 Shi et al. Oct 2002 B1
6469877 Knapp et al. Oct 2002 B1
6477019 Matono et al. Nov 2002 B2
6479096 Shi et al. Nov 2002 B1
6483662 Thomas et al. Nov 2002 B1
6487040 Hsiao et al. Nov 2002 B1
6487056 Gibbons et al. Nov 2002 B1
6490125 Barr Dec 2002 B1
6496330 Crue et al. Dec 2002 B1
6496334 Pang et al. Dec 2002 B1
6504676 Hiner et al. Jan 2003 B1
6512657 Heist et al. Jan 2003 B2
6512659 Hawwa et al. Jan 2003 B1
6512661 Louis Jan 2003 B1
6512690 Qi et al. Jan 2003 B1
6515573 Dong et al. Feb 2003 B1
6515791 Hawwa et al. Feb 2003 B1
6532823 Knapp et al. Mar 2003 B1
6535363 Hosomi et al. Mar 2003 B1
6552874 Chen et al. Apr 2003 B1
6552928 Qi et al. Apr 2003 B1
6577470 Rumpler Jun 2003 B1
6583961 Levi et al. Jun 2003 B2
6583968 Scura et al. Jun 2003 B1
6597548 Yamanaka et al. Jul 2003 B1
6611398 Rumpler et al. Aug 2003 B1
6618223 Chen et al. Sep 2003 B1
6629357 Akoh Oct 2003 B1
6633464 Lai et al. Oct 2003 B2
6636394 Fukagawa et al. Oct 2003 B1
6639291 Sin et al. Oct 2003 B1
6650503 Chen et al. Nov 2003 B1
6650506 Risse Nov 2003 B1
6654195 Frank et al. Nov 2003 B1
6657816 Barr et al. Dec 2003 B1
6661621 Iitsuka Dec 2003 B1
6661625 Sin et al. Dec 2003 B1
6674610 Thomas et al. Jan 2004 B1
6680863 Shi et al. Jan 2004 B1
6683763 Hiner et al. Jan 2004 B1
6687098 Huai Feb 2004 B1
6687178 Qi et al. Feb 2004 B1
6687977 Knapp et al. Feb 2004 B2
6691226 Frank et al. Feb 2004 B1
6697294 Qi et al. Feb 2004 B1
6700738 Sin et al. Mar 2004 B1
6700759 Knapp et al. Mar 2004 B1
6704158 Hawwa et al. Mar 2004 B2
6707083 Hiner et al. Mar 2004 B1
6713801 Sin et al. Mar 2004 B1
6721138 Chen et al. Apr 2004 B1
6721149 Shi et al. Apr 2004 B1
6721203 Qi et al. Apr 2004 B1
6724569 Chen et al. Apr 2004 B1
6724572 Stoev et al. Apr 2004 B1
6729015 Matono et al. May 2004 B2
6735850 Gibbons et al. May 2004 B1
6737281 Dang et al. May 2004 B1
6744608 Sin et al. Jun 2004 B1
6747301 Hiner et al. Jun 2004 B1
6751055 Alfoqaha et al. Jun 2004 B1
6754049 Seagle et al. Jun 2004 B1
6756071 Shi et al. Jun 2004 B1
6757140 Hawwa Jun 2004 B1
6760196 Niu et al. Jul 2004 B1
6762910 Knapp et al. Jul 2004 B1
6765756 Hong et al. Jul 2004 B1
6775902 Huai et al. Aug 2004 B1
6778358 Jiang et al. Aug 2004 B1
6781927 Heanuc et al. Aug 2004 B1
6785955 Chen et al. Sep 2004 B1
6791793 Chen et al. Sep 2004 B1
6791807 Hikami et al. Sep 2004 B1
6798616 Seagle et al. Sep 2004 B1
6798625 Ueno et al. Sep 2004 B1
6801408 Chen et al. Oct 2004 B1
6801411 Lederman et al. Oct 2004 B1
6803615 Sin et al. Oct 2004 B1
6806035 Atireklapvarodom et al. Oct 2004 B1
6807030 Hawwa et al. Oct 2004 B1
6807332 Hawwa Oct 2004 B1
6809899 Chen et al. Oct 2004 B1
6816345 Knapp et al. Nov 2004 B1
6828897 Nepela Dec 2004 B1
6829160 Qi et al. Dec 2004 B1
6829819 Crue et al. Dec 2004 B1
6833979 Knapp et al. Dec 2004 B1
6834010 Qi et al. Dec 2004 B1
6859343 Alfoqaha et al. Feb 2005 B1
6859997 Tong et al. Mar 2005 B1
6861937 Feng et al. Mar 2005 B1
6870712 Chen et al. Mar 2005 B2
6873494 Chen et al. Mar 2005 B2
6873547 Shi et al. Mar 2005 B1
6879464 Sun et al. Apr 2005 B2
6888184 Shi et al. May 2005 B1
6888704 Diao et al. May 2005 B1
6891702 Tang May 2005 B1
6894871 Alfoqaha et al. May 2005 B2
6894877 Crue et al. May 2005 B1
6906894 Chen et al. Jun 2005 B2
6909578 Missell et al. Jun 2005 B1
6912106 Chen et al. Jun 2005 B1
6934113 Chen Aug 2005 B1
6934129 Zhang et al. Aug 2005 B1
6940688 Jiang et al. Sep 2005 B2
6942824 Li Sep 2005 B1
6943993 Chang et al. Sep 2005 B2
6944938 Crue et al. Sep 2005 B1
6947258 Li Sep 2005 B1
6950266 McCaslin et al. Sep 2005 B1
6954332 Hong et al. Oct 2005 B1
6958885 Chen et al. Oct 2005 B1
6961221 Niu et al. Nov 2005 B1
6969989 Mei Nov 2005 B1
6975486 Chen et al. Dec 2005 B2
6987643 Seagle Jan 2006 B1
6989962 Dong et al. Jan 2006 B1
6989972 Stoev et al. Jan 2006 B1
7006327 Krounbi et al. Feb 2006 B2
7007372 Chen et al. Mar 2006 B1
7012832 Sin et al. Mar 2006 B1
7023658 Knapp et al. Apr 2006 B1
7026063 Ueno et al. Apr 2006 B2
7027268 Zhu et al. Apr 2006 B1
7027274 Sin et al. Apr 2006 B1
7035046 Young et al. Apr 2006 B1
7041985 Wang et al. May 2006 B1
7046490 Ueno et al. May 2006 B1
7054113 Seagle et al. May 2006 B1
7057857 Niu et al. Jun 2006 B1
7059868 Yan Jun 2006 B1
7092195 Liu et al. Aug 2006 B1
7110289 Sin et al. Sep 2006 B1
7111382 Knapp et al. Sep 2006 B1
7113366 Wang et al. Sep 2006 B1
7114241 Kubota et al. Oct 2006 B2
7116517 He et al. Oct 2006 B1
7124654 Davies et al. Oct 2006 B1
7126788 Liu et al. Oct 2006 B1
7126790 Liu et al. Oct 2006 B1
7131346 Buttar et al. Nov 2006 B1
7133253 Seagle et al. Nov 2006 B1
7134185 Knapp et al. Nov 2006 B1
7154715 Yamanaka et al. Dec 2006 B2
7170725 Zhou et al. Jan 2007 B1
7177117 Jiang et al. Feb 2007 B1
7193815 Stoev et al. Mar 2007 B1
7196880 Anderson et al. Mar 2007 B1
7199974 Alfoqaha Apr 2007 B1
7199975 Pan Apr 2007 B1
7211339 Seagle et May 2007 B1
7212384 Stoev et al. May 2007 B1
7238292 He et al. Jul 2007 B1
7239478 Sin et al. Jul 2007 B1
7248431 Liu et al. Jul 2007 B1
7248433 Stoev et al. Jul 2007 B1
7248449 Seagle Jul 2007 B1
7280325 Pan Oct 2007 B1
7283327 Liu et al. Oct 2007 B1
7284316 Huai et al. Oct 2007 B1
7286329 Chen et al. Oct 2007 B1
7289303 Sin et al. Oct 2007 B1
7292409 Stoev et al. Nov 2007 B1
7296339 Yang et al. Nov 2007 B1
7307814 Seagle et al. Dec 2007 B1
7307818 Park et al. Dec 2007 B1
7310204 Stoev et al. Dec 2007 B1
7318947 Park et al. Jan 2008 B1
7333295 Medina et al. Feb 2008 B1
7337530 Stoev et al. Mar 2008 B1
7342752 Zhang et al. Mar 2008 B1
7349170 Rudman et al. Mar 2008 B1
7349179 He et al. Mar 2008 B1
7354664 Jiang et al. Apr 2008 B1
7363697 Dunn et al. Apr 2008 B1
7371152 Newman May 2008 B1
7372665 Stoev et al. May 2008 B1
7375926 Stoev et al. May 2008 B1
7379269 Krounbi et al. May 2008 B1
7386933 Krounbi et al. Jun 2008 B1
7389577 Shang et al. Jun 2008 B1
7417832 Erickson et al. Aug 2008 B1
7419891 Chen et al. Sep 2008 B1
7428124 Song et al. Sep 2008 B1
7430098 Song et al. Sep 2008 B1
7436620 Kang et al. Oct 2008 B1
7436638 Pan Oct 2008 B1
7440220 Kang et al. Oct 2008 B1
7443632 Stoev et al. Oct 2008 B1
7444740 Chung et al. Nov 2008 B1
7493668 Piraino Feb 2009 B2
7508627 Zhang et al. Mar 2009 B1
7522377 Jiang et al. Apr 2009 B1
7522379 Krounbi et al. Apr 2009 B1
7522382 Pan Apr 2009 B1
7542246 Song et al. Jun 2009 B1
7551406 Thomas et al. Jun 2009 B1
7552523 He et al. Jun 2009 B1
7554767 Hu et al. Jun 2009 B1
7583466 Kermiche et al. Sep 2009 B2
7595967 Moon et al. Sep 2009 B1
7639457 Chen et al. Dec 2009 B1
7660080 Liu et al. Feb 2010 B1
7672080 Tang et al. Mar 2010 B1
7672086 Jiang Mar 2010 B1
7684160 Erickson et al. Mar 2010 B1
7688546 Bai et al. Mar 2010 B1
7691434 Zhang et al. Apr 2010 B1
7695761 Shen et al. Apr 2010 B1
7719795 Hu et al. May 2010 B2
7726009 Liu et al. Jun 2010 B1
7729086 Song et al. Jun 2010 B1
7729087 Stoev et al. Jun 2010 B1
7736823 Wang et al. Jun 2010 B1
7785666 Sun et al. Aug 2010 B1
7796356 Fowler et al. Sep 2010 B1
7800858 Bajikar et al. Sep 2010 B1
7819979 Chen et al. Oct 2010 B1
7829264 Wang et al. Nov 2010 B1
7840108 Miyadera et al. Nov 2010 B2
7846643 Sun et al. Dec 2010 B1
7855854 Hu et al. Dec 2010 B2
7869160 Pan et al. Jan 2011 B1
7872824 Macchioni et al. Jan 2011 B1
7872833 Hu et al. Jan 2011 B2
7910267 Zeng et al. Mar 2011 B1
7911735 Sin et al. Mar 2011 B1
7911737 Jiang et al. Mar 2011 B1
7916426 Hu et al. Mar 2011 B2
7918013 Dunn et al. Apr 2011 B1
7968219 Jiang et al. Jun 2011 B1
7982989 Shi et al. Jul 2011 B1
8008912 Shang Aug 2011 B1
8012804 Wang et al. Sep 2011 B1
8015692 Zhang et al. Sep 2011 B1
8018677 Chung et al. Sep 2011 B1
8018678 Zhang et al. Sep 2011 B1
8024748 Moravec et al. Sep 2011 B1
8072705 Wang et al. Dec 2011 B1
8074345 Anguelouch et al. Dec 2011 B1
8077418 Hu et al. Dec 2011 B1
8077434 Shen et al. Dec 2011 B1
8077435 Liu et al. Dec 2011 B1
8077557 Hu et al. Dec 2011 B1
8079135 Shen et al. Dec 2011 B1
8081403 Chen et al. Dec 2011 B1
8091210 Sasaki et al. Jan 2012 B1
8097846 Anguelouch et al. Jan 2012 B1
8104166 Zhang et al. Jan 2012 B1
8116043 Leng et al. Feb 2012 B2
8116171 Lee Feb 2012 B1
8125856 Li et al. Feb 2012 B1
8134794 Wang Mar 2012 B1
8134802 Bai et al. Mar 2012 B2
8136224 Sun et al. Mar 2012 B1
8136225 Zhang et al. Mar 2012 B1
8136805 Lee Mar 2012 B1
8141235 Zhang Mar 2012 B1
8146236 Luo et al. Apr 2012 B1
8149536 Yang et al. Apr 2012 B1
8151441 Rudy et al. Apr 2012 B1
8163185 Sun et al. Apr 2012 B1
8164760 Willis Apr 2012 B2
8164855 Gibbons et al. Apr 2012 B1
8164864 Kaiser et al. Apr 2012 B2
8165709 Rudy Apr 2012 B1
8166631 Tran et al. May 2012 B1
8166632 Zhang et al. May 2012 B1
8169473 Yu et al. May 2012 B1
8171618 Wang et al. May 2012 B1
8179636 Bai et al. May 2012 B1
8191237 Luo et al. Jun 2012 B1
8194365 Leng et al. Jun 2012 B1
8194366 Li et al. Jun 2012 B1
8196285 Zhang et al. Jun 2012 B1
8200054 Li et al. Jun 2012 B1
8203800 Li et al. Jun 2012 B2
8208350 Hu et al. Jun 2012 B1
8220140 Wang et al. Jul 2012 B1
8222599 Chien Jul 2012 B1
8225488 Zhang et al. Jul 2012 B1
8227023 Liu et al. Jul 2012 B1
8228633 Tran et al. Jul 2012 B1
8231796 Li et al. Jul 2012 B1
8233248 Li et al. Jul 2012 B1
8248896 Yuan et al. Aug 2012 B1
8254060 Shi et al. Aug 2012 B1
8257597 Guan et al. Sep 2012 B1
8259410 Bai et al. Sep 2012 B1
8259539 Hu et al. Sep 2012 B1
8262918 Li et al. Sep 2012 B1
8262919 Luo et al. Sep 2012 B1
8264797 Emley Sep 2012 B2
8264798 Guan et al. Sep 2012 B1
8270126 Roy et al. Sep 2012 B1
8276258 Tran et al. Oct 2012 B1
8277669 Chen et al. Oct 2012 B1
8279719 Hu et al. Oct 2012 B1
8284517 Sun et al. Oct 2012 B1
8288204 Wang et al. Oct 2012 B1
8289821 Huber Oct 2012 B1
8291743 Shi et al. Oct 2012 B1
8307539 Rudy et al. Nov 2012 B1
8307540 Tran et al. Nov 2012 B1
8308921 Hiner et al. Nov 2012 B1
8310901 Batra et al. Nov 2012 B1
8315019 Mao et al. Nov 2012 B1
8316527 Hong et al. Nov 2012 B2
8320076 Shen et al. Nov 2012 B1
8320077 Tang et al. Nov 2012 B1
8320219 Wolf et al. Nov 2012 B1
8320220 Yuan et al. Nov 2012 B1
8320722 Yuan et al. Nov 2012 B1
8322022 Yi et al. Dec 2012 B1
8322023 Zeng et al. Dec 2012 B1
8325569 Shi et al. Dec 2012 B1
8333008 Sin et al. Dec 2012 B1
8334093 Zhang et al. Dec 2012 B2
8336194 Yuan et al. Dec 2012 B2
8339738 Tran et al. Dec 2012 B1
8341826 Jiang et al. Jan 2013 B1
8343319 Li et al. Jan 2013 B1
8343364 Gao et al. Jan 2013 B1
8349195 Si et al. Jan 2013 B1
8351307 Wolf et al. Jan 2013 B1
8357244 Zhao et al. Jan 2013 B1
8373945 Luo et al. Feb 2013 B1
8375564 Luo et al. Feb 2013 B1
8375565 Hu et al. Feb 2013 B2
8381391 Park et al. Feb 2013 B2
8385157 Champion et al. Feb 2013 B1
8385158 Hu et al. Feb 2013 B1
8394280 Wan et al. Mar 2013 B1
8400731 Li et al. Mar 2013 B1
8404128 Zhang et al. Mar 2013 B1
8404129 Luo et al. Mar 2013 B1
8405930 Li et al. Mar 2013 B1
8409453 Jiang et al. Apr 2013 B1
8413317 Wan et al. Apr 2013 B1
8416540 Li et al. Apr 2013 B1
8419953 Su et al. Apr 2013 B1
8419954 Chen et al. Apr 2013 B1
8422176 Leng et al. Apr 2013 B1
8422342 Lee Apr 2013 B1
8422841 Shi et al. Apr 2013 B1
8424192 Yang et al. Apr 2013 B1
8441756 Sun et al. May 2013 B1
8443510 Shi et al. May 2013 B1
8444866 Guan et al. May 2013 B1
8449948 Medina et al. May 2013 B2
8451556 Wang et al. May 2013 B1
8451563 Zhang et al. May 2013 B1
8454846 Zhou et al. Jun 2013 B1
8455119 Jiang et al. Jun 2013 B1
8456961 Wang et al. Jun 2013 B1
8456963 Hu et al. Jun 2013 B1
8456964 Yuan et al. Jun 2013 B1
8456966 Shi et al. Jun 2013 B1
8456967 Mallary Jun 2013 B1
8458892 Si et al. Jun 2013 B2
8462592 Wolf et al. Jun 2013 B1
8468682 Zhang Jun 2013 B1
8472288 Wolf et al. Jun 2013 B1
8480911 Osugi et al. Jul 2013 B1
8486285 Zhou et al. Jul 2013 B2
8486286 Gao et al. Jul 2013 B1
8488272 Tran et al. Jul 2013 B1
8491801 Tanner et al. Jul 2013 B1
8491802 Gao et al. Jul 2013 B1
8493693 Zheng et al. Jul 2013 B1
8493695 Kaiser et al. Jul 2013 B1
8495813 Hu et al. Jul 2013 B1
8498084 Leng et al. Jul 2013 B1
8506828 Osugi et al. Aug 2013 B1
8514517 Batra et al. Aug 2013 B1
8518279 Wang et al. Aug 2013 B1
8518832 Yang et al. Aug 2013 B1
8520336 Liu et al. Aug 2013 B1
8520337 Liu et al. Aug 2013 B1
8524068 Medina et al. Sep 2013 B2
8526275 Yuan et al. Sep 2013 B1
8531801 Xiao et al. Sep 2013 B1
8532450 Wang et al. Sep 2013 B1
8533937 Wang et al. Sep 2013 B1
8537494 Pan et al. Sep 2013 B1
8537495 Luo et al. Sep 2013 B1
8545999 Leng et al. Oct 2013 B1
8547659 Bai et al. Oct 2013 B1
8547667 Roy et al. Oct 2013 B1
8547730 Shen et al. Oct 2013 B1
8555486 Medina et al. Oct 2013 B1
8559141 Pakala et al. Oct 2013 B1
8563146 Zhang et al. Oct 2013 B1
8565049 Tanner et al. Oct 2013 B1
8576517 Tran et al. Nov 2013 B1
8578594 Jiang et al. Nov 2013 B2
8582238 Liu et al. Nov 2013 B1
8582241 Yu et al. Nov 2013 B1
8582253 Zheng et al. Nov 2013 B1
8588039 Shi et al. Nov 2013 B1
8593914 Wang et al. Nov 2013 B2
8597528 Roy et al. Dec 2013 B1
8599520 Liu et al. Dec 2013 B1
8599657 Lee Dec 2013 B1
8603593 Roy et al. Dec 2013 B1
8607438 Gao et al. Dec 2013 B1
8607439 Wang et al. Dec 2013 B1
8611035 Bajikar et al. Dec 2013 B1
8611054 Shang et al. Dec 2013 B1
8611055 Pakala et al. Dec 2013 B1
8614864 Hong et al. Dec 2013 B1
8619512 Yuan et al. Dec 2013 B1
8625233 Ji et al. Jan 2014 B1
8625941 Shi et al. Jan 2014 B1
8628672 Si et al. Jan 2014 B1
8630068 Mauri et al. Jan 2014 B1
8634280 Wang et al. Jan 2014 B1
8638529 Leng et al. Jan 2014 B1
8643980 Fowler et al. Feb 2014 B1
8649123 Zhang et al. Feb 2014 B1
8665561 Knutson et al. Mar 2014 B1
8670211 Sun et al. Mar 2014 B1
8670213 Zeng et al. Mar 2014 B1
8670214 Knutson et al. Mar 2014 B1
8670294 Shi et al. Mar 2014 B1
8670295 Hu et al. Mar 2014 B1
8675318 Ho et al. Mar 2014 B1
8675455 Krichevsky et al. Mar 2014 B1
8681594 Shi et al. Mar 2014 B1
8689430 Chen et al. Apr 2014 B1
8693141 Elliott et al. Apr 2014 B1
8703397 Zeng et al. Apr 2014 B1
8705205 Li et al. Apr 2014 B1
8711518 Zeng et al. Apr 2014 B1
8711528 Xiao et al. Apr 2014 B1
8717709 Shi et al. May 2014 B1
8720044 Tran et al. May 2014 B1
8721902 Wang et al. May 2014 B1
8724259 Liu et al. May 2014 B1
8749790 Tanner et al. Jun 2014 B1
8749920 Knutson et al. Jun 2014 B1
8753903 Tanner et al. Jun 2014 B1
8760807 Zhang et al. Jun 2014 B1
8760818 Diao et al. Jun 2014 B1
8760819 Liu et al. Jun 2014 B1
8760822 Li et al. Jun 2014 B1
8760823 Chen et al. Jun 2014 B1
8763235 Wang et al. Jul 2014 B1
8780498 Jiang et al. Jul 2014 B1
8780505 Xiao Jul 2014 B1
8786983 Liu et al. Jul 2014 B1
8790524 Luo et al. Jul 2014 B1
8790527 Luo et al. Jul 2014 B1
8792208 Liu et al. Jul 2014 B1
8792312 Wang et al. Jul 2014 B1
8793866 Zhang et al. Aug 2014 B1
8797680 Luo et al. Aug 2014 B1
8797684 Tran et al. Aug 2014 B1
8797686 Bai et al. Aug 2014 B1
8797692 Guo et al. Aug 2014 B1
8813324 Emley et al. Aug 2014 B2
9052534 Sudo et al. Jun 2015 B2
9075192 Adams Jul 2015 B2
9953670 Mu Apr 2018 B1
20100290157 Zhang et al. Nov 2010 A1
20110086240 Xiang et al. Apr 2011 A1
20120111826 Chen et al. May 2012 A1
20120216378 Emley et al. Aug 2012 A1
20120237878 Zeng et al. Sep 2012 A1
20120298621 Gao Nov 2012 A1
20130216702 Kaiser et al. Aug 2013 A1
20130216863 Li et al. Aug 2013 A1
20130257421 Shang et al. Oct 2013 A1
20140154529 Yang et al. Jun 2014 A1
20140175050 Zhang et al. Jun 2014 A1
20150131415 Peng May 2015 A1
20150243304 Wan Aug 2015 A1
Foreign Referenced Citations (1)
Number Date Country
2 183 625 Feb 2013 EP
Non-Patent Literature Citations (5)
Entry
Besse, et al., “New 2/spl times/2 and 1/spl times/3 multimode interference couplers with free selection of power splitting ratios,” Journal of Lightwave Technology, Oct. 1996, pp. 2286-2293, vol. 14, Issue 10.
Feng, et al., “Waveguide couplers with new power splitting ratios made possible by cascading of short multimode interference sections,” Optics Express, 2007, p. 1588, vol. 15, Issue 4.
Levy, et al., “A multimode interference-based variable power splitter in GaAs—AlGaAs,” IEEE Photonics Technology Letters, Oct. 1997, p. 1373-1375, vol. 9, Issue 10.
Non-Final Rejection Office Action in U.S. Appl. No. 14/936,967 dated Jul. 25, 2017 (9 pages).
Notice of Allowance in U.S. Appl. No. 14/936,967 dated Jan. 11, 2018 (8 pages).
Related Publications (1)
Number Date Country
20180204590 A1 Jul 2018 US
Continuations (1)
Number Date Country
Parent 14936967 Nov 2015 US
Child 15923044 US