Method and system for providing an integrated analyte sensor insertion device and data processing unit

Information

  • Patent Grant
  • 9808186
  • Patent Number
    9,808,186
  • Date Filed
    Friday, September 26, 2014
    9 years ago
  • Date Issued
    Tuesday, November 7, 2017
    6 years ago
Abstract
Method and apparatus for providing an integrated analyte sensor and data processing unit assembly is provided.
Description
BACKGROUND

Analyte monitoring systems generally include a sensor such as a subcutaneous analyte sensor, at least a portion of which is inserted under the skin for fluid contact with interstitial fluid, for detecting analyte levels such as glucose levels, a transmitter (such as an RF transmitter) in communication with the sensor and configured to receive the sensor signals and to transmit them to a corresponding receiver unit by for example, using RF data transmission protocol. The receiver may be operatively coupled to a glucose monitor that performs glucose related calculations and data analysis.


The transmitter is in signal communication with the sensor. Generally, the sensor is configured to detect and measure the glucose levels of the patient over a predetermined period of time, and the transmitter is configured to transmit data corresponding to or associated with the measured glucose levels over the predetermined period of time for further analysis. To initially deploy the sensor so that the sensor electrodes are in fluid contact with the patient's analyte fluids, a separate deployment mechanism such as a sensor inserter or introducer is used. More specifically, the introducer includes a sharp needle shaped inserter that is configured to pierce through the skin of the patient and substantially concurrently guide the sensor through the patient's skin so as to place at least a portion of the sensor in fluid contact with the target biological fluid of the patient.


The inserter is typically used only during the sensor insertion process, and once the sensor is properly and accurately positioned, the inserter and the introducer are discarded. This requires a level of care as the inserter is sharp and may damage other parts of the patient's skin if not properly handled. Further, since the tip of the inserter has come into fluid contact with the patient's biological fluids, it is important to take particular precautions in the handling of the inserter.


Further, to minimize data errors in the continuous or semi-continuous monitoring system, it is important to properly insert the sensor through the patient's skin and securely retain the sensor during the time that the sensor is configured to detect analyte levels. Additionally, for the period of continuous or semi-continuous monitoring which can include, for example, 3 days, 5 days or 7 days, it is important to have the transmitter in proper signal contact with the analyte sensor so as to minimize the potential errors in the monitored data.


In view of the foregoing, it would be desirable to have method and apparatus for providing simple, easy to handle and accurate sensor introduction and retention mechanism for use in an analyte monitoring system. More specifically, it would be desirable to have method and apparatus that minimizes the number of components which the patient has to handle, and which also reduces the number of required steps to properly and accurately position the analyte sensor in fluid contact with the patient's analytes.


SUMMARY

An apparatus in accordance with one embodiment of the present disclosure includes a disposable assembly including, a housing, a data processing unit disposed in the housing, an introducer disposed within the housing and including a first portion having a sharp distal end configured for piercing through a skin layer, where the first portion of the introducer is retained within the housing after piercing through the skin layer, and an analyte sensor including a first portion and a second portion, the first portion of the analyte sensor coupled to the first portion of the introducer, and the second portion of the analyte sensor coupled to the data processing unit, where the first portion of the analyte sensor is configured for transcutaneous placement so as to be in fluid contact with an interstitial fluid, where the second portion of the analyte sensor is in electrical contact with the data processing unit prior to transcutaneous placement of the first portion of the analyte sensor, and where the housing, the data processing unit and the introducer are assembled to form the disposable assembly, and the data processing unit includes an aperture through which the introducer is removable.


An integrated assembly in accordance with another embodiment includes a housing, a data processing unit disposed within the housing, an introducer having at least a portion disposed within the housing and including a first portion having a sharp distal end configured for piercing through a skin layer, where the first portion of the introducer is retained within the housing after piercing through the skin layer, and an analyte sensor coupled to the housing, a first portion of the analyte sensor configured for subcutaneous placement and so as to be in fluid contact with interstitial fluid under the skin layer, and a second portion of the analyte sensor disposed within the housing and in electrical communication with the data processing unit prior to subcutaneous placement of the first portion of the analyte sensor, where the housing, the data processing unit, the introducer, and the analyte sensor are assembled as a single disposable unit, and the data processing unit includes an aperture through which the introducer is removable.


In the manner described, within the scope of the present invention, the integrated analyte sensor and data processing unit assembly in accordance with the various embodiments is configured to integrate an analyte sensor, a sensor introducer mechanism, and a data processing device into a single assembly which may be disposable, and which allows for simple and accurate sensor deployment to the desired subcutaneous position, and that may be easily operated using one hand by the user or the patient.


These and other features and advantages of the present invention will be understood upon consideration of the following detailed description of the invention and the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a side view of the overall assembly of an integrated analyte sensor delivery and data processing unit in accordance with one embodiment of the present invention;



FIG. 2 illustrates a side view of the integrated analyte sensor delivery and data processing unit of FIG. 1 without a protective guard in accordance with one embodiment of the present invention;



FIGS. 3A-3C illustrate a perspective view, a top planar view and a bottom planar view, respectively of the integrated analyte sensor delivery and data processing unit of FIG. 1 in accordance with one embodiment of the present invention;



FIG. 4A illustrates the integrated analyte sensor delivery and data processing unit of FIG. 1 with the introducer removed in accordance with one embodiment;



FIG. 4B illustrates the integrated analyte sensor delivery and data processing unit without the introducer in accordance with one embodiment of the present invention;



FIG. 5A illustrates the introducer and the analyte sensor assembly with the protective guard in accordance with one embodiment of the present invention;



FIGS. 5B-5C illustrate a side view and a perspective view, respectively, of the introducer and analyte sensor assembly in accordance with one embodiment of the present invention;



FIG. 6 illustrates a block diagram of an analyte monitoring system with integrated analyte sensor delivery and data processing unit in accordance with one embodiment of the present invention; and



FIG. 7 illustrates a block diagram of the data processing unit of the integrated analyte sensor delivery and data processing unit in accordance with one embodiment of the present invention.





DETAILED DESCRIPTION

In accordance with the various embodiments of the present invention, there is provided an integrated analyte sensor delivery and data processing unit for subcutaneous placement of an analyte sensor for fluid contact with an analyte of a subject for analyte monitoring, and data processing associated with the monitored analyte levels. More specifically, the integrated analyte sensor delivery and data processing unit in accordance with one embodiment of the present invention provides simple, easy to use analyte sensor placement for analyte monitoring and associated data processing without a direct line of sight visual aid, and also, which may be easily performed without the use of both hands.



FIG. 1 illustrates a side view of the overall assembly of an integrated analyte sensor delivery and data processing unit in accordance with one embodiment of the present invention. Referring to FIG. 1, in one embodiment, an integrated analyte sensor delivery and data processing unit assembly 100 includes a data processing unit 101 provided on an upper surface of an adhesive patch 103 as shown. The adhesive patch 103 in one embodiment is provided with an adhesive material, such as, for example, polyester or acrylic based adhesives or any other suitable material which are biocompatible providing sufficient adhesive strength, on its bottom surface that is configured to securely attach the adhesive patch 103 and the data processing unit 101 on a surface of a subject such as the skin of a patient.


Referring to FIG. 1, also provided is a temperature module 105 to be in physical contact with the surface of the subject to, among others, detect the temperature, as further discussed in further detail below in conjunction with temperature measurement section 703 of FIG. 7. Referring again to FIG. 1, the integrated sensor delivery and data processing unit assembly 100 in one embodiment also includes an introducer having an upper portion 102A and a lower portion 102B. The upper and lower portions 102A, 102B of the introducer in one embodiment is coupled to the housing of the data processing unit 101 such that the upper portion 102A of the introducer protrudes from an upper surface of the data processing unit 101, while the lower portion 102B of the introducer is configured to protrude downwardly from the bottom surface of the data processing unit 101 as can be seen in FIG. 1.


As shown in FIG. 1, the upper portion 102A of the introducer is configured to guide the user to insert the introducer through the surface of the subject such as the skin of the patient. Thus, the upper portion 102A of the introducer in one embodiment is provided with a larger surface area (that is, for example, a larger diameter) to apply force thereon, while the lower portion 102B of the introducer is configured with a sharp tip to facilitate puncturing or piercing through the surface of the subject such as the skin of the patient.


Additionally, in one aspect, there is provided a guard segment 104 in the integrated analyte sensor and data processing unit assembly 100 such that the guard segment 104 is configured to substantially cover the lower portion 102B of the introducer. In one embodiment, the guard segment 104 is configured as a protective needle guard so as to maintain the lower portion 102B of the introducer in a substantially sterile environment prior to subcutaneous placement through the surface of the subject such as the skin of the patient. Moreover, in one aspect, the guard segment 104 is configured to protect the sharp edge of the lower portion 102B of the introducer from inadvertent contact with the subject, for example, prior to the subcutaneous deployment of the analyte sensor to avoid, for example, contamination of the lower portion 102B of the introducer, or potential injury from the sharp edge of the lower portion 102B of the introducer.


More specifically, FIG. 2 illustrates a side view of the integrated analyte sensor delivery and data processing unit of FIG. 1 without a guard segment in accordance with one embodiment of the present invention. Referring to FIG. 2, with the guard segment 104 of FIG. 1 removed, it can be seen that in one embodiment, analyte sensor 106 is provided in the integrated analyte sensor delivery and data processing unit 100 such that at least a portion of the analyte sensor 106 is disposed within the lower portion 102B of the introducer.


In one embodiment, the patient or the user of the integrated analyte sensor delivery and data processing unit assembly 100 removes the guard segment 104 to expose the lower portion 102B of the introducer, and thereafter, places the entire analyte sensor delivery and data processing unit assembly 100 on the surface of the subject such as the skin layer of the patient with sufficient force applied on the upper surface of the data processing unit 101 such that the lower portion 102B of the introducer is pierced through the skin layer of the patient. Thereafter, the introducer may be removed to detach or decouple from the data processing unit 101 by, for example, pulling at the upper portion 102A of the introducer, thereby withdrawing the introducer from the patient and separating from the data processing unit 101, while retaining the analyte sensor 106 (FIG. 2) in position in fluid contact with the patient's analyte.


Referring again to FIGS. 1 and 2, in one embodiment, the bottom layer of the adhesive patch 103 may be provided with a protective layer (not shown) which the patient or the user of the integrated analyte sensor delivery and data processing unit assembly 100 removes (for example, by peeling off to detach from the bottom surface of the adhesive patch 103 and thus exposing the adhesive material on the bottom surface of the adhesive patch 103) prior to subcutaneously positioning the analyte sensor in the patient. For example, in one embodiment, the guard segment 104 may be first removed and the protective layer removed before use, or alternatively, the removal of the protective layer may be configured to remove or detach the guard segment 104 therewith. In an alternate embodiment, the protective layer and the guard segment 104 may be formed as a single integrated unit for ease of use.



FIGS. 3A-3C illustrate a perspective view, a top planar view and a bottom planar view, respectively of the integrated analyte sensor delivery and data processing unit of FIG. 1 in accordance with one embodiment of the present invention.


Referring now to FIG. 4A, the removal of the introducer is shown. More specifically, FIG. 4A illustrates the integrated analyte sensor delivery and data processing unit 100 of FIG. 1 with the introducer removed, and FIG. 4B illustrates the integrated analyte sensor delivery and data processing unit without the introducer in accordance with one embodiment of the present invention. That is, in one embodiment, upon placement of the integrated analyte sensor delivery and data processing unit assembly 100 on the skin surface of the patient, for example, the patient retracts or pulls the introducer substantially at the upper portion 102A in the direction substantially perpendicular and away from the data processing unit 101 as shown by the directional arrow 401.


When the introducer is removed, in one embodiment, the entire introducer including the upper portion 102A and the lower portion 102B is withdrawn from the housing of the data processing unit 101 to completely separate from the data processing unit. Moreover, the portion of the analyte sensor 106 is retained in the subcutaneous position so as to maintain fluid contact with the patient's analyte. In one embodiment, the housing of the data processing unit 101 is provided with a self-sealing aperture (not shown) through which the introducer may be removed, such that, when the introducer is withdrawn, there is no opening or aperture on the data processing unit 101 housing where moisture or contaminant may compromise the functions and operations of the data processing unit 101. Optionally, while not shown, a protective layer may be provided over the integrated analyte sensor delivery and data processing unit 100 upon positioning on the skin of the patient to provide protection from water, moisture or any other potential contaminants potentially damaging the integrated analyte sensor delivery and data processing unit 100.



FIG. 5A illustrates the introducer and the analyte sensor assembly with the protective guard, and FIGS. 5B-5C illustrate a side view and a perspective view, respectively, of the introducer and analyte sensor assembly in accordance with one embodiment of the present invention. As shown in the Figures, the integrated analyte sensor delivery and data processing unit 100 in one embodiment may be pre-assembled as a single integrated unit with the analyte sensor 106 in electrical contact with the data processing unit 101, and further, where a portion of the analyte sensor 106 is disposed within the lower portion 102B of the introducer such that, the user or patient may easily, and accurately position the analyte sensor 106 under the skin layer to establish fluid contact with the patient's analyte, and thereafter, to provide the detected analyte levels from the analyte sensor 106 to the data processing unit 101.



FIG. 6 illustrates a block diagram of an analyte monitoring system with integrated analyte sensor delivery and data processing unit in accordance with one embodiment of the present invention. Referring to FIG. 6, a data monitoring and management system 600 such as, for example, an analyte (e.g., glucose) monitoring and management system in accordance with one embodiment of the present invention is shown. The subject invention is further described primarily with respect to a glucose monitoring system for convenience and such description is in no way intended to limit the scope of the invention. It is to be understood that the analyte monitoring system may be configured to monitor a variety of analytes, e.g., lactate, and the like.


Analytes that may be monitored include, for example, acetyl choline, amylase, bilirubin, cholesterol, chorionic gonadotropin, creatine kinase (e.g., CK-MB), creatine, DNA, fructosamine, glucose, glutamine, growth hormones, hormones, ketones, lactate, peroxide, prostate-specific antigen, prothrombin, RNA, thyroid stimulating hormone, and troponin. The concentration of drugs, such as, for example, antibiotics (e.g., gentamicin, vancomycin, and the like), digitoxin, digoxin, drugs of abuse, theophylline, and warfarin, may also be monitored.


The data monitoring and management system 600 in one embodiment includes an integrated analyte sensor and data processing unit 610, a data analysis unit 630 which is configured to communicate with the integrated analyte sensor and data processing unit 610 via a communication link 620. The data analysis unit 630 may be further configured to transmit and/or receive data to and/or from a data processing terminal 650 via communication link 640. The data processing terminal 650 in one embodiment may be configured for evaluating the data received by the data analysis unit 630.


Referring again to FIG. 6, also shown is a fluid delivery unit 670 which is operatively coupled to the data processing terminal 650 via communication link 680, and further operatively coupled to the data analysis unit 630 via communication link 660, and also, operatively coupled to the integrated analyte sensor and data processing unit 610 via communication link 690. In one embodiment, the fluid delivery unit 670 may include an external or implantable infusion device such as an insulin infusion pump, or the like, which may be configured to administer insulin to patients, and which may be configured to determine suitable modifications or updates to the medication dispensing profile based on data received from one or more of the integrated analyte sensor and data processing unit 610, data analysis unit 630, or data processing terminal 650, for example, for administering and modifying basal profiles, as well as for determining appropriate boluses for administration based on, among others, the detected analyte levels received from the integrated analyte sensor and data processing unit 610.


Furthermore, referring again to FIG. 6, the one or more of the communication links 620, 640, 660, 680, and 690 may be configured as one or more of a wired or a wireless communication link, for example, including but not limited to RS232 cable connection, a Universal Serial Bus (USB) connection, an RF communication link, an infrared communication link, a Bluetooth® enabled communication link, an 802.11x wireless communication link, or an equivalent wireless communication protocol which would allow secure, wireless communication of several units (for example, per HIPAA requirements) while avoiding potential data collision and interference.


Moreover, it will be appreciated by one of ordinary skill in the art that the data monitoring and management system 600 may include one or more integrated analyte sensor and data processing unit 610, one or more data analysis unit 630, one or more fluid delivery unit 670 and one or more data processing terminal 650. In addition, the one or more integrated analyte sensor and data processing unit 610, one or more data analysis unit 630, one or more fluid delivery unit 670 and one or more data processing terminal 650 may be in communication with a remote site over a data network such as the internet for transmitting and/or receiving information associated with the functions and operations of each device. For example, the one or more integrated analyte sensor and data processing unit 610, one or more data analysis unit 630, one or more fluid delivery unit 670 and one or more data processing terminal 650 may be in communication with a data network such as the internet for retrieving and/or transmitting data from a remote server terminal.


Furthermore, in one embodiment, in a multi-component environment, each device is configured to be uniquely identified by each of the other devices in the system so that communication conflict is readily resolved between the various components within the data monitoring and management system 100 of FIG. 1.


In one embodiment of the present invention, the sensor 106 of FIG. 2 is physically positioned in or on the body of a user whose analyte level is being monitored. The sensor 106 may be configured to continuously sample the analyte level of the user and convert the sampled analyte level into a corresponding data signal for transmission by the data processing unit 101 of FIG. 1. More specifically, in one embodiment, the data processing unit 101 may be configured to perform data processing such as filtering and encoding of data signals, each of which corresponds to a sampled analyte level of the user, for transmission to the data analysis unit 630 via the communication link 620.


In one embodiment, the communication link 620 may be configured as a one-way RF communication path from the integrated analyte sensor and data processing unit 610 to the data analysis unit 630. In such embodiment, the data processing unit 101 of the integrated analyte sensor and data processing unit 610 is configured to transmit the sampled data signals received from the sensor 106 without acknowledgement from the data analysis unit 630 that the transmitted sampled data signals have been received. For example, the data processing unit 101 may be configured to transmit the encoded sampled data signals at a fixed rate (e.g., at one minute intervals) after the completion of the initial power on procedure. Likewise, the data analysis unit 630 may be configured to detect the encoded sampled data signals transmitted from the data processing unit 101 at predetermined time intervals. Alternatively, the communication link 620 may be configured with a bi-directional RF (or otherwise) communication between the data processing unit 101 and the data analysis unit 630.


Referring again to FIG. 6, in one embodiment, the data processing terminal 650 may include a personal computer, a portable computer such as a laptop or a handheld device (e.g., personal digital assistants (PDAs)), and the like, each of which may be configured for data communication with the receiver via a wired or a wireless connection. Additionally, the data processing terminal 650 may further be connected to a remote data network such as over the internet (not shown) for storing, retrieving and updating data corresponding to the detected analyte level of the user and/or therapy related information such as medication delivery profiles prescribed by a physician, for example.



FIG. 7 illustrates a block diagram of the data processing unit of the integrated analyte sensor delivery and data processing unit 610 in accordance with one embodiment of the present invention. Referring to FIGS. 6 and 7, the data processing unit 610 in one embodiment includes an analog interface 701 configured to communicate with the sensor 106 (FIG. 2), a user input 702, and a temperature detection section 703, each of which is operatively coupled to a data processing unit processor 704 such as one or more central processing units (CPUs) or equivalent microprocessor units.


Further shown in FIG. 7 are a transmitter serial communication section 705 and an RF transceiver 706, each of which is also operatively coupled to the processor 704. In one embodiment, the serial communication section 705 may be operatively coupled to the analog interface 701 via communication link 709. Moreover, a power supply 707 such as a battery is also provided in the data processing unit 610 to provide the necessary power for the components in the data processing unit 610. Additionally, as can be seen from the figure, clock 708 is provided to, among others, supply real time information to the processor 704.


Referring back to FIG. 7, the power supply section 707 in one embodiment may include a rechargeable battery unit that may be recharged by a separate power supply recharging unit (for example, provided in the data analysis unit 630 (FIG. 6)) so that the data processing unit 101 may be powered for a longer period of usage time. In addition, the temperature measurement (or detection) section 703 of the data processing unit 610 is configured to monitor the temperature of the skin near the sensor insertion site. The temperature reading may be used to adjust the analyte readings obtained from the analog interface 701.


In this manner, in one embodiment, the sensor detected analyte levels are provided to the data processing unit of the integrated analyte sensor and data processing unit 610 (FIG. 6), for example, as current signals, and which are in turn, converted to respective digital signals for transmission (including, for example, RF transmission) to the data analysis unit 630, fluid delivery unit 670, and/or the data processing terminal 650 of FIG. 6 for further processing and analysis (including drug (e.g., insulin) therapy management, infusion control, and health monitoring and treatment, for example). That is, the monitored analyte data may be used by the patient and/or the patient's healthcare provider to modify the patient's therapy such as an infusion protocol (such as basal profile modifications in the case of diabetics) as necessary to improve insulin infusion therapy for diabetics, and further, to analyze trends in analyte levels for improved treatment.


Additional detailed description of the data monitoring and management system such as analyte monitoring systems, its various components including the functional descriptions of data processing unit and data analysis unit are provided in U.S. Pat. No. 6,175,752 issued Jan. 16, 2001 entitled “Analyte Monitoring Device and Methods of Use”, and in U.S. Pat. No. 7,811,231 issued Oct. 12, 2010 entitled “Continuous Glucose Monitoring System and Methods of Use”, each assigned to the Assignee of the present application.


In the manner described above, in one embodiment, the integrated analyte sensor and data processing unit assembly is configured to integrate an analyte sensor, a sensor introducer mechanism, and a data processing device into a single disposable assembly which allows for simple and accurate sensor deployment to the desired subcutaneous position, and which may be used with one hand by the user or the patient. Accordingly, a separate sensor introducing device such as a separate insertion gun or a separate sensor delivery mechanism is not necessary.


Furthermore, by integrating the analyte sensor, the introducer as well as the data processing unit into a single assembly, it is possible to have a smaller profile, simpler use application with less packaging thereby achieving cost reduction in manufacturing. Indeed, by reducing the number of components needed for sensor placement, within the scope of the present invention, other benefits such as reduction in material cost, weight, packaging, and associated handling and disposal may be achieved.


An apparatus including an analyte sensor and a data processing unit in accordance with one embodiment of the present invention includes a housing, a data processing unit coupled to the housing, an introducer removably coupled to the housing, the introducer including a first portion configured for piercing through a skin layer of a subject, and an analyte sensor coupled to the housing, the analyte sensor including a first portion and a second portion, the first portion of the analyte sensor coupled to the first portion of the introducer, and the second portion of the analyte sensor coupled to the data processing unit, where the first portion of the analyte sensor is configured for transcutaneous placement so as to be in fluid contact with an interstitial fluid of the subject, where the second portion of the analyte sensor is in electrical contact with the data processing unit, and further, where at least a portion of the data processing unit, at least a portion of the introducer and at least a portion of the analyte sensor are coupled to the housing as a single integrated assembly.


In one embodiment, there is further provided an adhesive layer substantially on a lower surface of the housing, the adhesive layer configured to removably attach the housing to the skin layer of the subject.


Additionally, a guard segment may be removably coupled to the first portion of the introducer, where the guard segment may be configured to substantially seal the first portion of the introducer.


In a further aspect, the first portion of the introducer may include a sharp tip for piercing through the skin layer of the subject, wherein when the sharp tip is pierced through the skin layer, the first portion of the analyte sensor is transcutaneously placed under the skin layer of the subject so as to be in fluid contact with the interstitial fluid of the subject.


In another aspect, the introducer may be configured to decouple from the housing after the first portion of the analyte sensor is transcutaneously positioned under the skin layer of the subject.


The analyte sensor may include a glucose sensor.


The data processing unit in one embodiment may include a data transmission unit configured to receive one or more signals associated with an analyte level of the subject from the analyte sensor, where the data transmission unit may be configured to wirelessly transmit data associated with the one or more signals received from the analyte sensor, where the data transmission unit may include an RF data transmission unit.


An integrated assembly in accordance with another embodiment of the present invention includes a housing, a data processing unit substantially disposed within the housing, an introducer removably coupled to the housing, at least a portion of the introducer disposed within the housing, and an analyte sensor coupled to the housing, a first portion of the analyte sensor configured for subcutaneous placement and in fluid contact with an interstitial fluid of a subject, and a second portion of the analyte sensor disposed within the housing and in electrical communication with the data processing unit.


The second portion of the analyte sensor in one embodiment may be permanently coupled to the data processing unit.


In another aspect, the introducer may be configured to decouple from the housing after the second portion of the analyte sensor is transcutaneously positioned under the skin layer of the subject.


An insertion kit in accordance with still another embodiment includes a housing, a data processing unit substantially disposed within the housing, an introducer removably coupled to the housing, at least a portion of the introducer disposed within the housing, and an analyte sensor coupled to the housing, a first portion of the analyte sensor configured for subcutaneous placement and in fluid contact with an interstitial fluid of a subject, and a second portion of the analyte sensor disposed within the housing and in electrical communication with the data processing unit.


In one embodiment, the introducer may be manually removed from the housing.


Various other modifications and alterations in the structure and method of operation of this invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. It is intended that the following claims define the scope of the present invention and that structures and methods within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. An apparatus, comprising: a housing;a data processing unit disposed in the housing;an introducer disposed within the housing and including a portion having a sharp distal end configured for piercing a body of a subject, wherein the portion of the introducer is removable from the housing after piercing the body of the subject; andan analyte sensor including a first portion and a second portion, the first portion of the analyte sensor at least partially disposed, prior to the removal of the introducer, within the portion of the introducer having the sharp distal end, and the second portion of the analyte sensor coupled to the data processing unit;wherein the first portion of the analyte sensor is configured for positioning in fluid contact with a biological fluid in the subject, and the second portion of the analyte sensor is in electrical contact with the data processing unit prior to positioning of the first portion of the analyte sensor.
  • 2. The apparatus of claim 1, further including an adhesive layer provided on a lower surface of the housing, wherein the adhesive layer is configured to removably attach the housing to the body of the subject.
  • 3. The apparatus of claim 2, wherein the adhesive layer includes a removable protective layer.
  • 4. The apparatus of claim 1, wherein the apparatus is configured such that when the sharp distal end pierces the body of the subject, the first portion of the analyte sensor is positioned in fluid contact with the biological fluid in the subject.
  • 5. The apparatus of claim 1, wherein the introducer is configured to decouple from the data processing unit after the first portion of the analyte sensor is positioned in the body of the subject.
  • 6. The apparatus of claim 1, wherein the data processing unit includes a data communication unit configured to receive one or more signals associated with a monitored analyte level from the analyte sensor.
  • 7. The apparatus of claim 6, wherein the data communication unit is configured to wirelessly communicate data associated with the one or more signals received from the analyte sensor to a remote location.
  • 8. The apparatus of claim 1, wherein the introducer is positioned through an aperture of the housing.
  • 9. The apparatus of claim 1, wherein the second portion of the analyte sensor extends substantially transverse to the first portion of the analyte sensor.
  • 10. An assembly, comprising: a housing;a data processing unit disposed within the housing;an introducer disposed within the housing and including a portion having a sharp distal end configured for piercing a body of a subject, wherein the portion of the introducer is removable from the housing after piercing the body of the subject; andan analyte sensor coupled to the housing, a first portion of the analyte sensor configured for positioning in fluid contact with a biological fluid in the subject, and a second portion of the analyte sensor disposed within the housing and in electrical communication with the data processing unit prior to positioning of the first portion of the analyte sensor;wherein the first portion of the analyte sensor is at least partially disposed, prior to removal of the introducer, within the portion of the introducer having the sharp distal end; andwherein the housing includes an aperture through which the introducer is removable.
  • 11. The assembly of claim 10, wherein the second portion of the analyte sensor is permanently coupled to the data processing unit.
  • 12. The assembly of claim 10, wherein the introducer is configured to decouple from the data processing unit after the first portion of the analyte sensor is positioned in the body of the subject.
  • 13. The assembly of claim 10, wherein the data processing unit includes a data communication unit configured to receive one or more signals associated with a monitored analyte level from the analyte sensor.
  • 14. The assembly of claim 13, wherein the data communication unit is configured to wirelessly transmit data associated with the one or more signals received from the analyte sensor.
  • 15. The assembly of claim 10, further including an adhesive layer on a lower surface of the housing, wherein the adhesive layer is configured to removably attach the housing to the body of the subject.
  • 16. The assembly of claim 10, wherein the introducer is positioned through the aperture of the housing.
  • 17. The assembly of claim 10, wherein an opening in the data processing unit is configured to receive the portion of the introducer.
  • 18. The assembly of claim 10, wherein the introducer further includes a proximal portion configured for engaging an outer surface of the data processing unit.
RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 13/717,501 filed Dec. 17, 2012, now U.S. Pat. No. 8,862,198, which is a continuation of U.S. patent application Ser. No. 11/530,472 filed Sep. 10, 2006, now U.S. Pat. No. 8,333,714, entitled “Method and System for Providing an Integrated Analyte Sensor Insertion Device and Data Processing Unit”, the disclosures of each of which are incorporated herein by reference for all purposes.

US Referenced Citations (1088)
Number Name Date Kind
3123790 Tyler Mar 1964 A
3211001 Petit Oct 1965 A
3260656 Ross, Jr. Jul 1966 A
3581062 Aston May 1971 A
3653841 Klein Apr 1972 A
3719564 Lilly, Jr. et al. Mar 1973 A
3776832 Oswin et al. Dec 1973 A
3837339 Aisenberg et al. Sep 1974 A
3926760 Allen et al. Dec 1975 A
3949388 Fuller Apr 1976 A
3972320 Kalman Aug 1976 A
3979274 Newman Sep 1976 A
4008717 Kowarski Feb 1977 A
4016866 Lawton Apr 1977 A
4036749 Anderson Jul 1977 A
4055175 Clemens et al. Oct 1977 A
4059406 Fleet Nov 1977 A
4076596 Connery et al. Feb 1978 A
4098574 Dappen Jul 1978 A
4100048 Pompei et al. Jul 1978 A
4120292 LeBlanc, Jr. et al. Oct 1978 A
4129128 McFarlane Dec 1978 A
4151845 Clemens May 1979 A
4168205 Danninger et al. Sep 1979 A
4172770 Semersky et al. Oct 1979 A
4178916 McNamara Dec 1979 A
4206755 Klein Jun 1980 A
4224125 Nakamura et al. Sep 1980 A
4240438 Updike et al. Dec 1980 A
4245634 Albisser et al. Jan 1981 A
4247297 Berti et al. Jan 1981 A
4294258 Bernard Oct 1981 A
4327725 Cortese et al. May 1982 A
4340458 Lerner et al. Jul 1982 A
4344438 Schultz Aug 1982 A
4349728 Phillips et al. Sep 1982 A
4352960 Dormer et al. Oct 1982 A
4356074 Johnson Oct 1982 A
4365637 Johnson Dec 1982 A
4366033 Richter et al. Dec 1982 A
4373527 Fischell Feb 1983 A
4375399 Havas et al. Mar 1983 A
4384586 Christiansen May 1983 A
4390621 Bauer Jun 1983 A
4401122 Clark, Jr. Aug 1983 A
4404066 Johnson Sep 1983 A
4418148 Oberhardt Nov 1983 A
4425920 Bourland et al. Jan 1984 A
4427770 Chen et al. Jan 1984 A
4431004 Bessman et al. Feb 1984 A
4436094 Cerami Mar 1984 A
4440175 Wilkins Apr 1984 A
4441968 Emmer et al. Apr 1984 A
4450842 Zick et al. May 1984 A
4458686 Clark, Jr. Jul 1984 A
4461691 Frank Jul 1984 A
4469110 Slama Sep 1984 A
4477314 Richter et al. Oct 1984 A
4478976 Goertz et al. Oct 1984 A
4484987 Gough Nov 1984 A
4494950 Fischell Jan 1985 A
4509531 Ward Apr 1985 A
4522690 Venkatsetty Jun 1985 A
4524114 Samuels et al. Jun 1985 A
4526661 Steckhan et al. Jul 1985 A
4527240 Kvitash Jul 1985 A
4534356 Papadakis Aug 1985 A
4538616 Rogoff Sep 1985 A
4543955 Schroeppel Oct 1985 A
4545382 Higgins et al. Oct 1985 A
4552840 Riffer Nov 1985 A
4560534 Kung et al. Dec 1985 A
4571292 Liu et al. Feb 1986 A
4573994 Fischell et al. Mar 1986 A
4581336 Malloy et al. Apr 1986 A
4595011 Phillips Jun 1986 A
4619754 Niki et al. Oct 1986 A
4619793 Lee Oct 1986 A
4627445 Garcia et al. Dec 1986 A
4627908 Miller Dec 1986 A
4633878 Bombardien Jan 1987 A
4637403 Garcia et al. Jan 1987 A
4650547 Gough Mar 1987 A
4654197 Lilja et al. Mar 1987 A
4655880 Liu Apr 1987 A
4655885 Hill et al. Apr 1987 A
4671288 Gough Jun 1987 A
4679562 Luksha Jul 1987 A
4680268 Clark, Jr. Jul 1987 A
4682602 Prohaska Jul 1987 A
4684537 Graetzel et al. Aug 1987 A
4685463 Williams Aug 1987 A
4685466 Rau Aug 1987 A
4703756 Gough et al. Nov 1987 A
4711245 Higgins et al. Dec 1987 A
4711247 Fishman Dec 1987 A
4717673 Wrighton et al. Jan 1988 A
4721601 Wrighton et al. Jan 1988 A
4721677 Clark, Jr. Jan 1988 A
4726378 Kaplan Feb 1988 A
4726716 McGuire Feb 1988 A
4729672 Takagi Mar 1988 A
4731726 Allen, III Mar 1988 A
4749985 Corsberg Jun 1988 A
4755173 Konopka Jul 1988 A
4757022 Shults et al. Jul 1988 A
4758323 Davis et al. Jul 1988 A
4759371 Franetzki Jul 1988 A
4759828 Young et al. Jul 1988 A
4764416 Ueyama et al. Aug 1988 A
4776944 Janata et al. Oct 1988 A
4777953 Ash et al. Oct 1988 A
4779618 Mund et al. Oct 1988 A
4781683 Wozniak et al. Nov 1988 A
4781798 Gough Nov 1988 A
4784736 Lonsdale et al. Nov 1988 A
4795707 Niiyama et al. Jan 1989 A
4796634 Huntsman et al. Jan 1989 A
4805624 Yao et al. Feb 1989 A
4813424 Wilkins Mar 1989 A
4815469 Cohen et al. Mar 1989 A
4820399 Senda et al. Apr 1989 A
4822337 Newhouse et al. Apr 1989 A
4830959 McNeil et al. May 1989 A
4832797 Vadgama et al. May 1989 A
RE32947 Dormer et al. Jun 1989 E
4840893 Hill et al. Jun 1989 A
4848351 Finch Jul 1989 A
4854322 Ash et al. Aug 1989 A
4865038 Rich et al. Sep 1989 A
4871351 Feingold Oct 1989 A
4871440 Nagata et al. Oct 1989 A
4874500 Madou et al. Oct 1989 A
4890620 Gough Jan 1990 A
4894137 Takizawa et al. Jan 1990 A
4895147 Bodicky et al. Jan 1990 A
4897162 Lewandowski et al. Jan 1990 A
4897173 Nankai et al. Jan 1990 A
4909908 Ross et al. Mar 1990 A
4911794 Parce et al. Mar 1990 A
4917800 Lonsdale et al. Apr 1990 A
4919141 Zier et al. Apr 1990 A
4919767 Vadgama et al. Apr 1990 A
4923586 Katayama et al. May 1990 A
4925268 Iyer et al. May 1990 A
4927516 Yamaguchi et al. May 1990 A
4934369 Maxwell Jun 1990 A
4935105 Churchouse Jun 1990 A
4935345 Guibeau et al. Jun 1990 A
4938860 Wogoman Jul 1990 A
4944299 Silvian Jul 1990 A
4950378 Nagara Aug 1990 A
4953552 DeMarzo Sep 1990 A
4954129 Giuliani et al. Sep 1990 A
4969468 Byers et al. Nov 1990 A
4970145 Bennetto et al. Nov 1990 A
4974929 Curry Dec 1990 A
4986271 Wilkins Jan 1991 A
4988341 Columbus et al. Jan 1991 A
4994167 Shults et al. Feb 1991 A
4995402 Smith et al. Feb 1991 A
5000180 Kuypers et al. Mar 1991 A
5002054 Ash et al. Mar 1991 A
5013161 Zaragoza et al. May 1991 A
5019974 Beckers May 1991 A
5035860 Kleingeld et al. Jul 1991 A
5036860 Leigh et al. Aug 1991 A
5047044 Smith et al. Sep 1991 A
5050612 Matsumura Sep 1991 A
5055171 Peck Oct 1991 A
5058592 Whisler Oct 1991 A
5070535 Hochmair et al. Dec 1991 A
5082550 Rishpon et al. Jan 1992 A
5082786 Nakamoto Jan 1992 A
5089112 Skotheim et al. Feb 1992 A
5095904 Seligman et al. Mar 1992 A
5101814 Palti Apr 1992 A
5106365 Hernandez Apr 1992 A
5108564 Szuminsky et al. Apr 1992 A
5108889 Smith et al. Apr 1992 A
5109850 Blanco et al. May 1992 A
5120420 Nankai et al. Jun 1992 A
5122925 Inpyn Jun 1992 A
5126034 Carter et al. Jun 1992 A
5133856 Yamaguchi et al. Jul 1992 A
5135003 Souma Aug 1992 A
5140985 Schroeder et al. Aug 1992 A
5141868 Shanks et al. Aug 1992 A
5161532 Joseph Nov 1992 A
5165407 Wilson et al. Nov 1992 A
5174291 Schoonen et al. Dec 1992 A
5190041 Palti Mar 1993 A
5192416 Wang et al. Mar 1993 A
5198367 Aizawa et al. Mar 1993 A
5202261 Musho et al. Apr 1993 A
5205920 Oyama et al. Apr 1993 A
5208154 Weaver et al. May 1993 A
5209229 Gilli May 1993 A
5217595 Smith et al. Jun 1993 A
5229282 Yoshioka et al. Jul 1993 A
5234835 Nestor et al. Aug 1993 A
5238729 Debe Aug 1993 A
5246867 Lakowicz et al. Sep 1993 A
5250439 Musho et al. Oct 1993 A
5262035 Gregg et al. Nov 1993 A
5262305 Heller et al. Nov 1993 A
5264103 Yoshioka et al. Nov 1993 A
5264104 Gregg et al. Nov 1993 A
5264105 Gregg et al. Nov 1993 A
5264106 McAleer et al. Nov 1993 A
5271815 Wong Dec 1993 A
5279294 Anderson et al. Jan 1994 A
5284156 Schramm et al. Feb 1994 A
5285792 Sjoquist et al. Feb 1994 A
5286362 Hoenes et al. Feb 1994 A
5286364 Yacynych et al. Feb 1994 A
5288636 Pollmann et al. Feb 1994 A
5293546 Tadros et al. Mar 1994 A
5293877 O'Hara et al. Mar 1994 A
5299571 Mastrototaro Apr 1994 A
5320098 Davidson Jun 1994 A
5320715 Berg Jun 1994 A
5320725 Gregg et al. Jun 1994 A
5322063 Allen et al. Jun 1994 A
5337747 Neftei Aug 1994 A
5340722 Wolfbeis et al. Aug 1994 A
5342789 Chick et al. Aug 1994 A
5352348 Young et al. Oct 1994 A
5356786 Heller et al. Oct 1994 A
5360404 Novacek et al. Nov 1994 A
5368028 Palti Nov 1994 A
5372133 Hogen Esch Dec 1994 A
5372427 Padovani et al. Dec 1994 A
5376251 Kaneko et al. Dec 1994 A
5378628 Gratzel et al. Jan 1995 A
5379238 Stark Jan 1995 A
5387327 Khan Feb 1995 A
5390670 Centa et al. Feb 1995 A
5390671 Lord et al. Feb 1995 A
5391250 Cheney, II et al. Feb 1995 A
5395504 Saurer et al. Mar 1995 A
5400782 Beaubiah Mar 1995 A
5408999 Singh et al. Apr 1995 A
5411647 Johnson et al. May 1995 A
5425361 Fenzlein et al. Jun 1995 A
5431160 Wilkins Jul 1995 A
5431921 Thombre Jul 1995 A
5437999 Diebold et al. Aug 1995 A
5462645 Albery et al. Oct 1995 A
5469846 Khan Nov 1995 A
5472317 Field et al. Dec 1995 A
5489414 Schreiber et al. Feb 1996 A
5491474 Suni et al. Feb 1996 A
5494562 Maley et al. Feb 1996 A
5496453 Uenoyama et al. Mar 1996 A
5497772 Schulman et al. Mar 1996 A
5507288 Bocker et al. Apr 1996 A
5509410 Hill et al. Apr 1996 A
5514718 Lewis et al. May 1996 A
5531878 Vadgama et al. Jul 1996 A
5533977 Matcalf et al. Jul 1996 A
5543326 Heller et al. Aug 1996 A
5545191 Mann et al. Aug 1996 A
5551427 Altman Sep 1996 A
5560357 Faupel et al. Oct 1996 A
5562713 Silvian Oct 1996 A
5565085 Ikeda et al. Oct 1996 A
5567302 Song et al. Oct 1996 A
5568806 Cheney, II et al. Oct 1996 A
5569186 Lord et al. Oct 1996 A
5575563 Chiu et al. Nov 1996 A
5582184 Erickson et al. Dec 1996 A
5582697 Ikeda et al. Dec 1996 A
5582698 Flaherty et al. Dec 1996 A
5584813 Livingston et al. Dec 1996 A
5586553 Halili et al. Dec 1996 A
5589326 Deng et al. Dec 1996 A
5593852 Heller et al. Jan 1997 A
5596150 Arndt et al. Jan 1997 A
5601435 Quy Feb 1997 A
5609575 Larson et al. Mar 1997 A
5613978 Harding Mar 1997 A
5617851 Lipkovker Apr 1997 A
5628310 Rao et al. May 1997 A
5628890 Carter et al. May 1997 A
5632557 Simons May 1997 A
5651869 Yoshioka et al. Jul 1997 A
5653239 Pompei et al. Aug 1997 A
5660163 Schulman et al. Aug 1997 A
5665071 Wyrick Sep 1997 A
5665222 Heller et al. Sep 1997 A
5670031 Hintsche et al. Sep 1997 A
5680858 Hansen et al. Oct 1997 A
5682233 Brinda Oct 1997 A
5695623 Michel et al. Dec 1997 A
5708247 McAleer et al. Jan 1998 A
5711001 Bussan et al. Jan 1998 A
5711297 Iliff et al. Jan 1998 A
5711861 Ward et al. Jan 1998 A
5711862 Sakoda et al. Jan 1998 A
5733044 Rose et al. Mar 1998 A
5735285 Albert et al. Apr 1998 A
5741211 Renirie et al. Apr 1998 A
5743262 Lepper, Jr. et al. Apr 1998 A
5746697 Swedlow et al. May 1998 A
5749656 Boehm et al. May 1998 A
5766131 Kondo et al. Jun 1998 A
5771001 Cobb Jun 1998 A
5772586 Heinonen et al. Jun 1998 A
5779665 Mastrototaro et al. Jul 1998 A
5791344 Schulman et al. Aug 1998 A
5800420 Gross et al. Sep 1998 A
5807375 Gross et al. Sep 1998 A
5814020 Gross Sep 1998 A
5820551 Hill et al. Oct 1998 A
5820622 Gross et al. Oct 1998 A
5822715 Worthington et al. Oct 1998 A
5827184 Netherly et al. Oct 1998 A
5840020 Heinonen et al. Nov 1998 A
5842983 Abel et al. Dec 1998 A
5851197 Marano et al. Dec 1998 A
5858001 Tsals et al. Jan 1999 A
5865804 Bachynsky Feb 1999 A
5885211 Eppstein et al. Mar 1999 A
5899855 Brown May 1999 A
5918603 Brown Jul 1999 A
5924979 Sedlow et al. Jul 1999 A
5925021 Castellano et al. Jul 1999 A
5931814 Alex et al. Aug 1999 A
5931868 Gross et al. Aug 1999 A
5938679 Freeman et al. Aug 1999 A
5948006 Mann Sep 1999 A
5951521 Mastrototaro et al. Sep 1999 A
5951582 Thorne et al. Sep 1999 A
5954643 Van Antwerp Sep 1999 A
5954685 Tierny Sep 1999 A
5957854 Besson et al. Sep 1999 A
5961451 Reber et al. Oct 1999 A
5964993 Blubaugh, Jr. et al. Oct 1999 A
5965380 Heller et al. Oct 1999 A
5971922 Arita et al. Oct 1999 A
5972199 Heller et al. Oct 1999 A
5987353 Khatchatrian et al. Nov 1999 A
5993411 Choi Nov 1999 A
5995860 Sun et al. Nov 1999 A
5997501 Gross et al. Dec 1999 A
6001067 Shults et al. Dec 1999 A
6004278 Botich et al. Dec 1999 A
6017335 Burnham Jan 2000 A
6022368 Gavronsky et al. Feb 2000 A
6024699 Surwit et al. Feb 2000 A
6026321 Miyata et al. Feb 2000 A
6027459 Shain et al. Feb 2000 A
6049727 Crothall Apr 2000 A
6056718 Funderburk et al. May 2000 A
6059946 Yukawa et al. May 2000 A
6068399 Tseng May 2000 A
6071391 Gotoh et al. Jun 2000 A
6083710 Heller et al. Jul 2000 A
6088608 Schulman et al. Jul 2000 A
6091975 Daddona et al. Jul 2000 A
6091976 Pfeiffer et al. Jul 2000 A
6093172 Funderburk et al. Jul 2000 A
6103033 Say et al. Aug 2000 A
6117290 Say et al. Sep 2000 A
6119028 Schulman et al. Sep 2000 A
6120676 Heller et al. Sep 2000 A
6121009 Heller et al. Sep 2000 A
6121611 Lindsay et al. Sep 2000 A
6122351 Schlueter, Jr. et al. Sep 2000 A
6134461 Say et al. Oct 2000 A
6143164 Heller et al. Nov 2000 A
6144837 Quy Nov 2000 A
6159147 Lichter et al. Dec 2000 A
6161095 Brown Dec 2000 A
6162611 Heller et al. Dec 2000 A
6175752 Say et al. Jan 2001 B1
6186982 Gross et al. Feb 2001 B1
6200265 Walsh et al. Mar 2001 B1
6212416 Ward et al. Apr 2001 B1
6219574 Cormier et al. Apr 2001 B1
6248067 Causey, III et al. Jun 2001 B1
6254536 DeVito Jul 2001 B1
6254586 Mann et al. Jul 2001 B1
6270455 Brown Aug 2001 B1
6275717 Gross et al. Aug 2001 B1
6283761 Joao Sep 2001 B1
6283982 Levaughn et al. Sep 2001 B1
6284478 Heller et al. Sep 2001 B1
6293925 Safabash et al. Sep 2001 B1
6295506 Heinonen et al. Sep 2001 B1
6299757 Feldman et al. Oct 2001 B1
6302866 Marggi Oct 2001 B1
6306104 Cunningham et al. Oct 2001 B1
6309884 Cooper et al. Oct 2001 B1
6329161 Heller et al. Dec 2001 B1
6331244 Lewis et al. Dec 2001 B1
6338790 Feldman et al. Jan 2002 B1
6348640 Navot et al. Feb 2002 B1
6359444 Grimes Mar 2002 B1
6360888 McIvor et al. Mar 2002 B1
6366794 Moussy et al. Apr 2002 B1
6368141 Van Antwerp et al. Apr 2002 B1
6368274 Van Antwerp et al. Apr 2002 B1
6377828 Chaiken et al. Apr 2002 B1
6377894 Deweese et al. Apr 2002 B1
6379301 Worthington et al. Apr 2002 B1
6409740 Kuhr et al. Jun 2002 B1
6413393 Van Antwerp et al. Jul 2002 B1
6418332 Mastrototaro et al. Jul 2002 B1
6424847 Mastrototaro et al. Jul 2002 B1
6427088 Bowman, IV et al. Jul 2002 B1
6433743 Massey et al. Aug 2002 B1
6435017 Nowicki, Jr. et al. Aug 2002 B1
6437679 Roques Aug 2002 B1
6440068 Brown et al. Aug 2002 B1
6445374 Albert et al. Sep 2002 B2
6461496 Feldman et al. Oct 2002 B1
6478736 Mault Nov 2002 B1
6482176 Wich Nov 2002 B1
6484045 Holker et al. Nov 2002 B1
6484046 Say et al. Nov 2002 B1
6503381 Gotoh et al. Jan 2003 B1
6514460 Fendrock Feb 2003 B1
6514718 Heller et al. Feb 2003 B2
6520326 McIvor et al. Feb 2003 B2
6522927 Bishay et al. Feb 2003 B1
6540891 Stewart et al. Apr 2003 B1
6546268 Ishikawa et al. Apr 2003 B1
6551494 Heller et al. Apr 2003 B1
6551496 Moles et al. Apr 2003 B1
6554798 Mann et al. Apr 2003 B1
6558320 Causey, III et al. May 2003 B1
6558321 Burd et al. May 2003 B1
6560471 Heller et al. May 2003 B1
6561978 Conn et al. May 2003 B1
6562001 Lebel et al. May 2003 B2
6564105 Starkweather et al. May 2003 B2
6565509 Say et al. May 2003 B1
6571128 Lebel et al. May 2003 B2
6572566 Effenhauser Jun 2003 B2
6576101 Heller et al. Jun 2003 B1
6577899 Lebel et al. Jun 2003 B2
6579690 Bonnecaze et al. Jun 2003 B1
6585644 Lebel et al. Jul 2003 B2
6589229 Connelly et al. Jul 2003 B1
6591125 Buse et al. Jul 2003 B1
6592745 Feldman et al. Jul 2003 B1
6595919 Berner et al. Jul 2003 B2
6600997 Deweese et al. Jul 2003 B2
6605200 Mao et al. Aug 2003 B1
6605201 Mao et al. Aug 2003 B1
6607509 Bobroff et al. Aug 2003 B2
6610012 Mault Aug 2003 B2
6616819 Liamos et al. Sep 2003 B1
6618934 Feldman et al. Sep 2003 B1
6633772 Ford et al. Oct 2003 B2
6635014 Starkweather et al. Oct 2003 B2
6648821 Lebel et al. Nov 2003 B2
6650471 Doi Nov 2003 B2
6654625 Say et al. Nov 2003 B1
6659948 Lebel et al. Dec 2003 B2
6666849 Marshall et al. Dec 2003 B1
6668196 Villegas et al. Dec 2003 B1
6676290 Lu Jan 2004 B1
6687546 Lebel et al. Feb 2004 B2
6689056 Kilcoyne et al. Feb 2004 B1
6694191 Starkweather et al. Feb 2004 B2
6695860 Ward et al. Feb 2004 B1
6702857 Brauker et al. Mar 2004 B2
6730200 Stewart et al. May 2004 B1
6733446 Lebel et al. May 2004 B2
6736957 Forrow et al. May 2004 B1
6740075 Lebel et al. May 2004 B2
6741877 Shults et al. May 2004 B1
6746582 Heller et al. Jun 2004 B2
6749740 Funderburk et al. Jun 2004 B2
6758810 Lebel et al. Jul 2004 B2
6764581 Forrow et al. Jul 2004 B1
6770030 Schaupp et al. Aug 2004 B1
6773671 Lewis et al. Aug 2004 B1
6790178 Mault et al. Sep 2004 B1
6809653 Mann et al. Oct 2004 B1
6810290 Lebel et al. Oct 2004 B2
6811533 Lebel et al. Nov 2004 B2
6811534 Bowman, IV et al. Nov 2004 B2
6813519 Lebel et al. Nov 2004 B2
6830551 Uchigaki et al. Dec 2004 B1
6837858 Cunningham et al. Jan 2005 B2
6837885 Koblish et al. Jan 2005 B2
6837988 Leong et al. Jan 2005 B2
6849052 Uchigaki et al. Feb 2005 B2
6854882 Chen Feb 2005 B2
6862465 Shults et al. Mar 2005 B2
6873268 Lebel et al. Mar 2005 B2
6881551 Heller et al. Apr 2005 B2
6892085 McIvor et al. May 2005 B2
6893545 Gotoh et al. May 2005 B2
6895265 Silver May 2005 B2
6931327 Goode, Jr. et al. Aug 2005 B2
6932892 Chen et al. Aug 2005 B2
6932894 Mao et al. Aug 2005 B2
6936006 Sabra Aug 2005 B2
6942518 Liamos et al. Sep 2005 B2
6950708 Bowman, IV et al. Sep 2005 B2
6958705 Lebel et al. Oct 2005 B2
6959211 Rule et al. Oct 2005 B2
6968294 Gutta et al. Nov 2005 B2
6971274 Olin Dec 2005 B2
6971999 Py et al. Dec 2005 B2
6974437 Lebel et al. Dec 2005 B2
6990366 Say et al. Jan 2006 B2
6997907 Safabash et al. Feb 2006 B2
6998247 Monfre et al. Feb 2006 B2
7003336 Holker et al. Feb 2006 B2
7003340 Say et al. Feb 2006 B2
7003341 Say et al. Feb 2006 B2
7024245 Lebel et al. Apr 2006 B2
7025743 Mann et al. Apr 2006 B2
7041068 Freeman et al. May 2006 B2
7041468 Drucker et al. May 2006 B2
7052483 Wojcik May 2006 B2
7056302 Douglas Jun 2006 B2
7074307 Simpson et al. Jul 2006 B2
7081195 Simpson et al. Jul 2006 B2
7098803 Mann et al. Aug 2006 B2
7108778 Simpson et al. Sep 2006 B2
7110803 Shults et al. Sep 2006 B2
7113821 Sun et al. Sep 2006 B1
7134999 Brauker et al. Nov 2006 B2
7136689 Shults et al. Nov 2006 B2
7167818 Brown Jan 2007 B2
7171274 Starkweather et al. Jan 2007 B2
7190988 Say et al. Mar 2007 B2
7192450 Brauker et al. Mar 2007 B2
7198606 Boecker et al. Apr 2007 B2
7207974 Safabash et al. Apr 2007 B2
7226978 Tapsak et al. Jun 2007 B2
7276029 Goode, Jr. et al. Oct 2007 B2
7278983 Ireland et al. Oct 2007 B2
7297151 Boecker et al. Nov 2007 B2
7299082 Feldman et al. Nov 2007 B2
7310544 Brister Dec 2007 B2
7318816 Bobroff et al. Jan 2008 B2
7324012 Mann et al. Jan 2008 B2
7329239 Safabash et al. Feb 2008 B2
7335294 Heller et al. Feb 2008 B2
7340287 Mason et al. Mar 2008 B2
7340309 Miazga et al. Mar 2008 B2
7354420 Steil et al. Apr 2008 B2
7364592 Carr-Brendel et al. Apr 2008 B2
7366556 Brister et al. Apr 2008 B2
7379765 Petisce et al. May 2008 B2
7381184 Funderburk et al. Jun 2008 B2
7402153 Steil et al. Jul 2008 B2
7416541 Yuzhakov et al. Aug 2008 B2
7424318 Brister et al. Sep 2008 B2
7455663 Bikovsky Nov 2008 B2
7460898 Brister et al. Dec 2008 B2
7462264 Heller et al. Dec 2008 B2
7467003 Brister et al. Dec 2008 B2
7471972 Rhodes et al. Dec 2008 B2
7494465 Brister et al. Feb 2009 B2
7497827 Brister et al. Mar 2009 B2
7499002 Blasko et al. Mar 2009 B2
7519408 Rasdal et al. Apr 2009 B2
7583990 Goode, Jr. et al. Sep 2009 B2
7591801 Brauker et al. Sep 2009 B2
7599726 Goode, Jr. et al. Oct 2009 B2
7604592 Freeman et al. Oct 2009 B2
7613491 Boock et al. Nov 2009 B2
7615007 Shults et al. Nov 2009 B2
7632228 Brauker et al. Dec 2009 B2
7637868 Saint et al. Dec 2009 B2
7640048 Dobbles et al. Dec 2009 B2
7651596 Petisce et al. Jan 2010 B2
7654956 Brister et al. Feb 2010 B2
7657297 Simpson et al. Feb 2010 B2
7666149 Simons et al. Feb 2010 B2
7682338 Griffin Mar 2010 B2
7697967 Stafford Apr 2010 B2
7711402 Shults et al. May 2010 B2
7713574 Brister et al. May 2010 B2
7715893 Kamath et al. May 2010 B2
7727147 Osorio et al. Jun 2010 B1
7736344 Moberg et al. Jun 2010 B2
7763042 Iio et al. Jul 2010 B2
7766829 Sloan et al. Aug 2010 B2
7822454 Alden et al. Oct 2010 B1
7866026 Wang et al. Jan 2011 B1
20020013538 Teller Jan 2002 A1
20020019022 Dunn et al. Feb 2002 A1
20020022855 Bobroff et al. Feb 2002 A1
20020023852 McIvor et al. Feb 2002 A1
20020042090 Heller et al. Apr 2002 A1
20020050250 Peterson et al. May 2002 A1
20020055711 Lavi et al. May 2002 A1
20020066764 Perry et al. Jun 2002 A1
20020076966 Carron et al. Jun 2002 A1
20020082487 Kollias et al. Jun 2002 A1
20020103499 Perez et al. Aug 2002 A1
20020106709 Potts et al. Aug 2002 A1
20020119711 VanAntwerp et al. Aug 2002 A1
20020128594 Das et al. Sep 2002 A1
20020130042 Moerman et al. Sep 2002 A1
20020133066 Miller et al. Sep 2002 A1
20020154050 Krupp et al. Oct 2002 A1
20020161288 Shin et al. Oct 2002 A1
20020161290 Chance Oct 2002 A1
20020165462 Westbrook et al. Nov 2002 A1
20020169369 Ward et al. Nov 2002 A1
20020198444 Uchigaki et al. Dec 2002 A1
20030023317 Brauker et al. Jan 2003 A1
20030023461 Quintanilla et al. Jan 2003 A1
20030028089 Galley et al. Feb 2003 A1
20030032867 Crothall et al. Feb 2003 A1
20030032874 Rhodes et al. Feb 2003 A1
20030042137 Mao et al. Mar 2003 A1
20030060753 Starkweather et al. Mar 2003 A1
20030065308 Lebel et al. Apr 2003 A1
20030069510 Semler Apr 2003 A1
20030078481 McIvor et al. Apr 2003 A1
20030078560 Miller et al. Apr 2003 A1
20030083686 Freeman et al. May 2003 A1
20030097092 Flaherty May 2003 A1
20030100040 Bonnecaze et al. May 2003 A1
20030109775 O'Neil et al. Jun 2003 A1
20030134347 Heller et al. Jul 2003 A1
20030135333 Aceti et al. Jul 2003 A1
20030144581 Conn et al. Jul 2003 A1
20030144608 Kojima et al. Jul 2003 A1
20030155656 Chiu et al. Aug 2003 A1
20030168338 Gao et al. Sep 2003 A1
20030176933 Lebel et al. Sep 2003 A1
20030187338 Say et al. Oct 2003 A1
20030199790 Boecker et al. Oct 2003 A1
20030199910 Boecker et al. Oct 2003 A1
20030212379 Bylund et al. Nov 2003 A1
20030217966 Tapsak et al. Nov 2003 A1
20030225361 Sabra Dec 2003 A1
20040002682 Kovelman et al. Jan 2004 A1
20040010207 Flaherty et al. Jan 2004 A1
20040011671 Shults et al. Jan 2004 A1
20040040840 Mao et al. Mar 2004 A1
20040045879 Shults et al. Mar 2004 A1
20040054263 Moerman et al. Mar 2004 A1
20040064068 DeNuzzio et al. Apr 2004 A1
20040064133 Miller et al. Apr 2004 A1
20040072357 Steine et al. Apr 2004 A1
20040096959 Steine et al. May 2004 A1
20040106858 Say et al. Jun 2004 A1
20040106859 Say et al. Jun 2004 A1
20040116847 Wall Jun 2004 A1
20040116865 Bengtsson Jun 2004 A1
20040122353 Shahmirian et al. Jun 2004 A1
20040122489 Mazar et al. Jun 2004 A1
20040133164 Funderburk et al. Jul 2004 A1
20040135684 Steinthal et al. Jul 2004 A1
20040138544 Ward et al. Jul 2004 A1
20040138588 Saikley et al. Jul 2004 A1
20040138688 Giraud Jul 2004 A1
20040140211 Broy et al. Jul 2004 A1
20040147996 Miazga et al. Jul 2004 A1
20040152622 Keith et al. Aug 2004 A1
20040158207 Hunn et al. Aug 2004 A1
20040167801 Say et al. Aug 2004 A1
20040171910 Moore-Steele Sep 2004 A1
20040171921 Say et al. Sep 2004 A1
20040176672 Silver et al. Sep 2004 A1
20040186362 Brauker et al. Sep 2004 A1
20040186365 Jin et al. Sep 2004 A1
20040193090 Lebel et al. Sep 2004 A1
20040199059 Brauker et al. Oct 2004 A1
20040204687 Mogensen et al. Oct 2004 A1
20040210122 Sleburg Oct 2004 A1
20040223985 Dunfiled et al. Nov 2004 A1
20040225338 Lebel et al. Nov 2004 A1
20040236200 Say et al. Nov 2004 A1
20040236251 Roe et al. Nov 2004 A1
20040254433 Bandis et al. Dec 2004 A1
20040254434 Goodnow et al. Dec 2004 A1
20040267300 Mace Dec 2004 A1
20050003470 Nelson et al. Jan 2005 A1
20050004494 Perez et al. Jan 2005 A1
20050006122 Burnette Jan 2005 A1
20050010269 Lebel et al. Jan 2005 A1
20050027177 Shin et al. Feb 2005 A1
20050027180 Goode, Jr. et al. Feb 2005 A1
20050031689 Shults et al. Feb 2005 A1
20050043598 Goode, Jr. et al. Feb 2005 A1
20050070819 Poux et al. Mar 2005 A1
20050085872 Yanagihara et al. Apr 2005 A1
20050090607 Tapsak et al. Apr 2005 A1
20050090850 Thoes et al. Apr 2005 A1
20050096520 Maekawa et al. May 2005 A1
20050106713 Phan et al. May 2005 A1
20050112169 Brauker et al. May 2005 A1
20050114068 Chey et al. May 2005 A1
20050121322 Say et al. Jun 2005 A1
20050131346 Douglas Jun 2005 A1
20050143635 Kamath et al. Jun 2005 A1
20050154410 Conway et al. Jul 2005 A1
20050165404 Miller Jul 2005 A1
20050173245 Feldman et al. Aug 2005 A1
20050176136 Burd et al. Aug 2005 A1
20050182306 Sloan Aug 2005 A1
20050187720 Goode, Jr. et al. Aug 2005 A1
20050192557 Brauker et al. Sep 2005 A1
20050195930 Spital et al. Sep 2005 A1
20050197554 Polcha Sep 2005 A1
20050199494 Say et al. Sep 2005 A1
20050203360 Brauker et al. Sep 2005 A1
20050222518 Dib Oct 2005 A1
20050222599 Czernecki et al. Oct 2005 A1
20050236277 Imran et al. Oct 2005 A9
20050239154 Feldman et al. Oct 2005 A1
20050239156 Drucker et al. Oct 2005 A1
20050241957 Mao et al. Nov 2005 A1
20050245795 Goode, Jr. et al. Nov 2005 A1
20050245799 Brauker et al. Nov 2005 A1
20050245844 Mace et al. Nov 2005 A1
20050267327 Iizuka et al. Dec 2005 A1
20050277164 Drucker et al. Dec 2005 A1
20050283114 Bresina et al. Dec 2005 A1
20050287620 Heller et al. Dec 2005 A1
20060001538 Kraft et al. Jan 2006 A1
20060004303 Weidenhaupt et al. Jan 2006 A1
20060009727 O'Mahony et al. Jan 2006 A1
20060010098 Goodnow et al. Jan 2006 A1
20060015020 Neale et al. Jan 2006 A1
20060015024 Brister et al. Jan 2006 A1
20060016700 Brister et al. Jan 2006 A1
20060019327 Brister et al. Jan 2006 A1
20060020186 Brister et al. Jan 2006 A1
20060020187 Brister et al. Jan 2006 A1
20060020188 Kamath et al. Jan 2006 A1
20060020189 Brister et al. Jan 2006 A1
20060020190 Kamath et al. Jan 2006 A1
20060020191 Brister et al. Jan 2006 A1
20060020192 Brister et al. Jan 2006 A1
20060020300 Nghiem et al. Jan 2006 A1
20060025662 Buse et al. Feb 2006 A1
20060036139 Brister et al. Feb 2006 A1
20060036140 Brister et al. Feb 2006 A1
20060036141 Kamath et al. Feb 2006 A1
20060036142 Brister et al. Feb 2006 A1
20060036143 Brister et al. Feb 2006 A1
20060036144 Brister et al. Feb 2006 A1
20060036145 Brister et al. Feb 2006 A1
20060047220 Sakata et al. Mar 2006 A1
20060091006 Wang et al. May 2006 A1
20060129173 Wilkinson Jun 2006 A1
20060155210 Beckman et al. Jul 2006 A1
20060155317 List et al. Jul 2006 A1
20060166629 Reggiardo Jul 2006 A1
20060173444 Choy et al. Aug 2006 A1
20060189863 Peyser et al. Aug 2006 A1
20060189939 Gonnelli et al. Aug 2006 A1
20060193375 Lee Aug 2006 A1
20060195029 Shults et al. Aug 2006 A1
20060200181 Fukuzawa et al. Sep 2006 A1
20060200970 Brister et al. Sep 2006 A1
20060222566 Brauker et al. Oct 2006 A1
20060226985 Goodnow et al. Oct 2006 A1
20060247508 Fennell Nov 2006 A1
20060253086 Moberg et al. Nov 2006 A1
20060258929 Goode, Jr. et al. Nov 2006 A1
20060264888 Moberg et al. Nov 2006 A1
20060276724 Freeman et al. Dec 2006 A1
20060282042 Walters et al. Dec 2006 A1
20060287591 Ocvirk et al. Dec 2006 A1
20070016381 Kamath et al. Jan 2007 A1
20070027381 Stafford Feb 2007 A1
20070038044 Dobbles et al. Feb 2007 A1
20070056858 Chen et al. Mar 2007 A1
20070060814 Stafford Mar 2007 A1
20070068807 Feldman et al. Mar 2007 A1
20070073129 Shah et al. Mar 2007 A1
20070078320 Stafford Apr 2007 A1
20070078321 Mazza et al. Apr 2007 A1
20070078322 Stafford Apr 2007 A1
20070088377 Levaughn et al. Apr 2007 A1
20070095661 Wang et al. May 2007 A1
20070106135 Sloan et al. May 2007 A1
20070108048 Wang et al. May 2007 A1
20070110124 Shiraki et al. May 2007 A1
20070149875 Ouyang et al. Jun 2007 A1
20070163880 Woo et al. Jul 2007 A1
20070173706 Neinast et al. Jul 2007 A1
20070173741 Deshmukh et al. Jul 2007 A1
20070191701 Feldman et al. Aug 2007 A1
20070199818 Petyt et al. Aug 2007 A1
20070203407 Hoss et al. Aug 2007 A1
20070203966 Brauker et al. Aug 2007 A1
20070213611 Simpson et al. Sep 2007 A1
20070219496 Kamen et al. Sep 2007 A1
20070227911 Wang et al. Oct 2007 A1
20070232879 Brister et al. Oct 2007 A1
20070233013 Schoenberg Oct 2007 A1
20070235331 Simpson et al. Oct 2007 A1
20070244368 Bayloff et al. Oct 2007 A1
20070244379 Boock et al. Oct 2007 A1
20070244398 Lo et al. Oct 2007 A1
20070249922 Peyser et al. Oct 2007 A1
20070255302 Koeppel et al. Nov 2007 A1
20080004512 Funderburk et al. Jan 2008 A1
20080009692 Stafford Jan 2008 A1
20080009805 Ethelfeld Jan 2008 A1
20080017522 Heller et al. Jan 2008 A1
20080021666 Goode, Jr. et al. Jan 2008 A1
20080027474 Curry et al. Jan 2008 A1
20080029391 Mao et al. Feb 2008 A1
20080033254 Kamath et al. Feb 2008 A1
20080033268 Stafford Feb 2008 A1
20080033318 Mace et al. Feb 2008 A1
20080039702 Hayter et al. Feb 2008 A1
20080045824 Tapsak et al. Feb 2008 A1
20080064937 McGarraugh et al. Mar 2008 A1
20080064941 Funderburk et al. Mar 2008 A1
20080065646 Zhang et al. Mar 2008 A1
20080071156 Brister et al. Mar 2008 A1
20080083617 Simpson et al. Apr 2008 A1
20080086042 Brister et al. Apr 2008 A1
20080086044 Brister et al. Apr 2008 A1
20080086273 Shults et al. Apr 2008 A1
20080097246 Stafford Apr 2008 A1
20080099332 Scott et al. May 2008 A1
20080108942 Brister et al. May 2008 A1
20080112848 Huffstodt et al. May 2008 A1
20080114280 Stafford May 2008 A1
20080119707 Stafford May 2008 A1
20080133702 Sharma et al. Jun 2008 A1
20080161664 Mastrototaro et al. Jul 2008 A1
20080167578 Bryer et al. Jul 2008 A1
20080183061 Goode, Jr. et al. Jul 2008 A1
20080183399 Goode, Jr. et al. Jul 2008 A1
20080188731 Brister et al. Aug 2008 A1
20080189051 Goode, Jr. et al. Aug 2008 A1
20080194935 Brister et al. Aug 2008 A1
20080194936 Goode, Jr. et al. Aug 2008 A1
20080194937 Goode, Jr. et al. Aug 2008 A1
20080194938 Brister et al. Aug 2008 A1
20080195049 Thalmann et al. Aug 2008 A1
20080195232 Carr-Brendel et al. Aug 2008 A1
20080195967 Goode, Jr. et al. Aug 2008 A1
20080197024 Simpson et al. Aug 2008 A1
20080200788 Brister et al. Aug 2008 A1
20080200789 Brister et al. Aug 2008 A1
20080200791 Simpson et al. Aug 2008 A1
20080200897 Hoss et al. Aug 2008 A1
20080208025 Shults et al. Aug 2008 A1
20080214915 Brister et al. Sep 2008 A1
20080214918 Brister et al. Sep 2008 A1
20080228051 Shults et al. Sep 2008 A1
20080228054 Shults et al. Sep 2008 A1
20080242961 Brister et al. Oct 2008 A1
20080262330 Reynolds et al. Oct 2008 A1
20080262469 Brister et al. Oct 2008 A1
20080269673 Butoi et al. Oct 2008 A1
20080275313 Brister et al. Nov 2008 A1
20080283396 Wang et al. Nov 2008 A1
20080287764 Rasdal et al. Nov 2008 A1
20080287765 Rasdal et al. Nov 2008 A1
20080287766 Rasdal et al. Nov 2008 A1
20080294096 Uber et al. Nov 2008 A1
20080296155 Shults et al. Dec 2008 A1
20080300476 Stafford Dec 2008 A1
20080306368 Goode, Jr. et al. Dec 2008 A1
20080306434 Dobbles et al. Dec 2008 A1
20080306435 Kamath et al. Dec 2008 A1
20080306444 Brister et al. Dec 2008 A1
20090005659 Kollias et al. Jan 2009 A1
20090012377 Jennewine et al. Jan 2009 A1
20090012379 Goode, Jr. et al. Jan 2009 A1
20090018424 Kamath et al. Jan 2009 A1
20090030294 Petisce et al. Jan 2009 A1
20090036758 Brauker et al. Feb 2009 A1
20090036763 Brauker et al. Feb 2009 A1
20090036915 Karbowniczek et al. Feb 2009 A1
20090043181 Brauker et al. Feb 2009 A1
20090043182 Brauker et al. Feb 2009 A1
20090043525 Brauker et al. Feb 2009 A1
20090043541 Brauker et al. Feb 2009 A1
20090043542 Brauker et al. Feb 2009 A1
20090045055 Rhodes et al. Feb 2009 A1
20090054866 Teisen-Simony et al. Feb 2009 A1
20090062633 Brauker et al. Mar 2009 A1
20090062635 Brauker et al. Mar 2009 A1
20090069658 Say et al. Mar 2009 A1
20090069750 Schraga Mar 2009 A1
20090076356 Simpson et al. Mar 2009 A1
20090076359 Peyser Mar 2009 A1
20090076360 Brister et al. Mar 2009 A1
20090076361 Kamath et al. Mar 2009 A1
20090082693 Stafford Mar 2009 A1
20090088614 Taub Apr 2009 A1
20090088787 Koike et al. Apr 2009 A1
20090099436 Brister et al. Apr 2009 A1
20090102678 Mazza et al. Apr 2009 A1
20090105569 Stafford Apr 2009 A1
20090124877 Goode et al. May 2009 A1
20090124878 Goode et al. May 2009 A1
20090124879 Brister et al. May 2009 A1
20090124964 Leach et al. May 2009 A1
20090124979 Raymond et al. May 2009 A1
20090131768 Simpson et al. May 2009 A1
20090131769 Leach et al. May 2009 A1
20090131776 Simpson et al. May 2009 A1
20090131777 Simpson et al. May 2009 A1
20090131860 Nielsen May 2009 A1
20090137886 Shariati et al. May 2009 A1
20090137887 Shariati et al. May 2009 A1
20090143659 Li et al. Jun 2009 A1
20090143660 Brister et al. Jun 2009 A1
20090156919 Brister et al. Jun 2009 A1
20090156924 Shariati et al. Jun 2009 A1
20090163790 Brister et al. Jun 2009 A1
20090163791 Brister et al. Jun 2009 A1
20090171182 Stafford Jul 2009 A1
20090178459 Li et al. Jul 2009 A1
20090182217 Li et al. Jul 2009 A1
20090192366 Mensinger et al. Jul 2009 A1
20090192380 Shariati et al. Jul 2009 A1
20090192722 Shariati et al. Jul 2009 A1
20090192724 Brauker et al. Jul 2009 A1
20090192745 Kamath et al. Jul 2009 A1
20090192751 Kamath et al. Jul 2009 A1
20090198215 Chong et al. Aug 2009 A1
20090203981 Brauker et al. Aug 2009 A1
20090204341 Brauker et al. Aug 2009 A1
20090212766 Olson et al. Aug 2009 A1
20090216103 Brister et al. Aug 2009 A1
20090240120 Mensinger et al. Sep 2009 A1
20090240128 Mensinger et al. Sep 2009 A1
20090240193 Mensinger et al. Sep 2009 A1
20090242399 Kamath et al. Oct 2009 A1
20090242425 Kamath et al. Oct 2009 A1
20090247855 Boock et al. Oct 2009 A1
20090247856 Boock et al. Oct 2009 A1
20090259118 Feldman et al. Oct 2009 A1
20090259201 Hwang et al. Oct 2009 A1
20090259202 Leeflang et al. Oct 2009 A1
20090270765 Ghesquire et al. Oct 2009 A1
20090287073 Boock et al. Nov 2009 A1
20090287074 Shults et al. Nov 2009 A1
20090292184 Funderburk et al. Nov 2009 A1
20090292185 Funderburk et al. Nov 2009 A1
20090299155 Yang et al. Dec 2009 A1
20090299156 Simpson et al. Dec 2009 A1
20090299162 Brauker et al. Dec 2009 A1
20090299167 Seymour Dec 2009 A1
20090299276 Brauker et al. Dec 2009 A1
20100004597 Gryn et al. Jan 2010 A1
20100010324 Brauker et al. Jan 2010 A1
20100010331 Brauker et al. Jan 2010 A1
20100010332 Brauker et al. Jan 2010 A1
20100016687 Brauker et al. Jan 2010 A1
20100016698 Rasdal et al. Jan 2010 A1
20100022855 Brauker et al. Jan 2010 A1
20100030038 Brauker et al. Feb 2010 A1
20100030053 Goode, Jr. et al. Feb 2010 A1
20100030484 Brauker et al. Feb 2010 A1
20100030485 Brauker et al. Feb 2010 A1
20100036215 Goode, Jr. et al. Feb 2010 A1
20100036216 Goode, Jr. et al. Feb 2010 A1
20100036222 Goode, Jr. et al. Feb 2010 A1
20100036223 Goode, Jr. et al. Feb 2010 A1
20100036225 Goode, Jr. et al. Feb 2010 A1
20100041971 Goode, Jr. et al. Feb 2010 A1
20100045465 Brauker et al. Feb 2010 A1
20100049014 Funderburk et al. Feb 2010 A1
20100049024 Saint et al. Feb 2010 A1
20100063373 Kamath et al. Mar 2010 A1
20100069728 Funderburk et al. Mar 2010 A1
20100076283 Simpson et al. Mar 2010 A1
20100081908 Dobbles et al. Apr 2010 A1
20100081910 Brister et al. Apr 2010 A1
20100087724 Brauker et al. Apr 2010 A1
20100096259 Zhang et al. Apr 2010 A1
20100099970 Shults et al. Apr 2010 A1
20100099971 Shults et al. Apr 2010 A1
20100100113 Iio et al. Apr 2010 A1
20100106088 Yodfat et al. Apr 2010 A1
20100113897 Brenneman et al. May 2010 A1
20100119693 Tapsak et al. May 2010 A1
20100121169 Petisce et al. May 2010 A1
20100168677 Gabriel et al. Jul 2010 A1
20100174157 Brister et al. Jul 2010 A1
20100174158 Kamath et al. Jul 2010 A1
20100174163 Brister et al. Jul 2010 A1
20100174164 Brister et al. Jul 2010 A1
20100174165 Brister et al. Jul 2010 A1
20100174166 Brister et al. Jul 2010 A1
20100174167 Kamath et al. Jul 2010 A1
20100174168 Goode et al. Jul 2010 A1
20100179401 Rasdal et al. Jul 2010 A1
20100179402 Goode et al. Jul 2010 A1
20100179404 Kamath et al. Jul 2010 A1
20100179408 Kamath et al. Jul 2010 A1
20100179409 Kamath et al. Jul 2010 A1
20100185065 Goode et al. Jul 2010 A1
20100185069 Brister et al. Jul 2010 A1
20100185070 Brister et al. Jul 2010 A1
20100185071 Simpson et al. Jul 2010 A1
20100185072 Goode et al. Jul 2010 A1
20100185075 Brister et al. Jul 2010 A1
20100191082 Brister et al. Jul 2010 A1
20100198033 Krulevitch et al. Aug 2010 A1
20100198035 Kamath et al. Aug 2010 A1
20100198036 Kamath et al. Aug 2010 A1
20100204653 Gryn et al. Aug 2010 A1
20100212583 Brister et al. Aug 2010 A1
20100214104 Goode et al. Aug 2010 A1
20100217105 Yodfat et al. Aug 2010 A1
20100217557 Kamath et al. Aug 2010 A1
20100223013 Kamath et al. Sep 2010 A1
20100223022 Kamath et al. Sep 2010 A1
20100223023 Kamath et al. Sep 2010 A1
20100228109 Kamath et al. Sep 2010 A1
20100228497 Kamath et al. Sep 2010 A1
20100240975 Goode et al. Sep 2010 A1
20100240976 Goode et al. Sep 2010 A1
20100261987 Kamath et al. Oct 2010 A1
20100262201 He et al. Oct 2010 A1
20100274107 Boock et al. Oct 2010 A1
20100280341 Boock et al. Nov 2010 A1
20100286496 Simpson et al. Nov 2010 A1
20100298684 Leach et al. Nov 2010 A1
20100324403 Brister et al. Dec 2010 A1
20100331642 Bruce et al. Dec 2010 A1
20100331644 Neale et al. Dec 2010 A1
20100331647 Shah et al. Dec 2010 A1
20100331648 Kamath et al. Dec 2010 A1
20100331656 Mensinger et al. Dec 2010 A1
20100331657 Mensinger et al. Dec 2010 A1
20110004085 Mensinger et al. Jan 2011 A1
20110009727 Mensinger et al. Jan 2011 A1
20110021889 Hoss et al. Jan 2011 A1
20110024043 Boock et al. Feb 2011 A1
20110024307 Simpson et al. Feb 2011 A1
20110027127 Simpson et al. Feb 2011 A1
20110027453 Boock et al. Feb 2011 A1
20110027458 Boock et al. Feb 2011 A1
20110028815 Simpson et al. Feb 2011 A1
20110028816 Simpson et al. Feb 2011 A1
20110040256 Bobroff et al. Feb 2011 A1
20110040263 Hordum et al. Feb 2011 A1
20110046456 Hordum et al. Feb 2011 A1
20110046467 Simpson et al. Feb 2011 A1
20110077490 Simpson et al. Mar 2011 A1
20110118579 Goode et al. May 2011 A1
20110118580 Goode et al. May 2011 A1
20110124992 Brauker et al. May 2011 A1
20110124997 Goode et al. May 2011 A1
20110125410 Goode et al. May 2011 A1
20110130970 Goode et al. Jun 2011 A1
20110130971 Goode et al. Jun 2011 A1
20110130998 Goode et al. Jun 2011 A1
20110137257 Gyrn et al. Jun 2011 A1
20110144465 Shults et al. Jun 2011 A1
20110178378 Brister et al. Jul 2011 A1
20110178461 Chong et al. Jul 2011 A1
20110190614 Brister et al. Aug 2011 A1
20110201910 Rasdal et al. Aug 2011 A1
20110201911 Johnson et al. Aug 2011 A1
20110218414 Kamath et al. Sep 2011 A1
20110231107 Brauker et al. Sep 2011 A1
20110231140 Goode et al. Sep 2011 A1
20110231141 Goode et al. Sep 2011 A1
20110231142 Goode et al. Sep 2011 A1
20110253533 Shults et al. Oct 2011 A1
20110257895 Brauker et al. Oct 2011 A1
20110263958 Brauker et al. Oct 2011 A1
20110270062 Goode et al. Nov 2011 A1
20110270158 Brauker et al. Nov 2011 A1
20110275919 Petisce et al. Nov 2011 A1
20110290645 Brister et al. Dec 2011 A1
20110313543 Brauker et al. Dec 2011 A1
20110319739 Kamath et al. Dec 2011 A1
20110320130 Valdes et al. Dec 2011 A1
20120035445 Boock et al. Feb 2012 A1
20120040101 Tapsak et al. Feb 2012 A1
20120046534 Simpson et al. Feb 2012 A1
20120078071 Bohm et al. Mar 2012 A1
20120108934 Valdes et al. May 2012 A1
20120108983 Banet et al. May 2012 A1
20120123385 Edwards et al. May 2012 A1
20120296327 Hutchins et al. Nov 2012 A1
Foreign Referenced Citations (68)
Number Date Country
2291105 Dec 1998 CA
4401400 Jul 1995 DE
0098592 Jan 1984 EP
0127958 Dec 1984 EP
0320109 Jun 1989 EP
0353328 Feb 1990 EP
0390390 Oct 1990 EP
0396788 Nov 1990 EP
0286118 Jan 1995 EP
1048264 Nov 2000 EP
1177802 Feb 2002 EP
0987982 Jan 2007 EP
2060284 May 2009 EP
2201969 Jun 2010 EP
2327362 Jun 2011 EP
2335587 Jun 2011 EP
11-506629 Jun 1999 JP
2003-527138 Sep 2003 JP
2004-520103 Jul 2004 JP
2004-520898 Jul 2004 JP
2006-517804 Aug 2006 JP
WO-9639977 May 1996 WO
WO-9625089 Aug 1996 WO
WO-9635370 Nov 1996 WO
WO-9721457 Jun 1997 WO
WO-9835053 Aug 1998 WO
WO-9856293 Dec 1998 WO
WO-9933504 Jul 1999 WO
WO-9956613 Nov 1999 WO
WO-0049940 Aug 2000 WO
WO-0059370 Oct 2000 WO
WO-0078992 Dec 2000 WO
WO-0152935 Jul 2001 WO
WO-0154753 Aug 2001 WO
WO-0216905 Feb 2002 WO
WO-0250534 Jun 2002 WO
WO-02058537 Aug 2002 WO
WO-03028784 Apr 2003 WO
WO-03073936 Sep 2003 WO
WO-03076893 Sep 2003 WO
WO-03082091 Oct 2003 WO
WO-2004054445 Jul 2004 WO
WO-2004060436 Jul 2004 WO
WO-2004061420 Jul 2004 WO
WO-2005084534 Sep 2005 WO
WO-2005089103 Sep 2005 WO
WO-2006042811 Apr 2006 WO
WO-2006108809 Oct 2006 WO
WO-2007016399 Feb 2007 WO
WO-2007027788 Mar 2007 WO
WO-2007041069 Apr 2007 WO
WO-2007041070 Apr 2007 WO
WO-2007041248 Apr 2007 WO
WO-2007120363 Oct 2007 WO
WO-2007140783 Dec 2007 WO
WO-2007143225 Dec 2007 WO
WO-2008031106 Mar 2008 WO
WO-2008031110 Mar 2008 WO
WO-2008039944 Apr 2008 WO
WO-2008051920 May 2008 WO
WO-2008051924 May 2008 WO
WO-2008065646 Jun 2008 WO
WO-2008103620 Aug 2008 WO
WO-2008133702 Nov 2008 WO
WO-2008150917 Dec 2008 WO
WO-2009062675 May 2009 WO
WO-2010112521 Oct 2010 WO
WO-2011002815 Jan 2011 WO
Non-Patent Literature Citations (80)
Entry
Alcock, S. J., et al., “Continuous Analyte Monitoring to Aid Clinical Practice”, IEEE Engineering in Medicine and Biology Magazine, 1994, pp. 319-325.
Armour, J. C., et al., “Application of Chronic Intravascular Blood Glucose Sensor in Dogs”, Diabetes, vol. 39, 1990, pp. 1519-1526.
Aussedat, B., et al., “A User-Friendly Method for Calibrating a Subcutaneous Glucose Sensor-Based Hypoglycemic Alarm”, Biosensors & Bioelectronics, vol. 12, No. 11, 1997, pp. 1061-1071.
Bennion, N., et al., “Alternate Site Glucose Testing: A Crossover Design”, Diabetes Technology & Therapeutics, vol. 4, No. 1, 2002, pp. 25-33.
Bindra, D. S., et al., “Design and in Vitro Studies of a Needle-Type Glucose Sensor for Subcutaneous Monitoring”, Analytical Chemistry, vol. 63, No. 17, 1991, pp. 1692-1696.
Blank, T. B., et al., “Clinical Results From a Non-Invasive Blood Glucose Monitor”, Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring II, Proceedings of SPIE, vol. 4624, 2002, pp. 1-10.
Bobbioni-Harsch, E., et al., “Lifespan of Subcutaneous Glucose Sensors and Their Performances During Dynamic Glycaemia Changes in Rats”, Journal of Biomedical Engineering, vol. 15, 1993, pp. 457-463.
Brooks, S. L., et al., “Development of an On-Line Glucose Sensor for Fermentation Monitoring”, Biosensors, vol. 3, 1987/88, pp. 45-56.
Cass, A. E., et al., “Ferrocene-Medicated Enzyme Electrode for Amperometric Determination of Glucose”, Analytical Chemistry, vol. 56, No. 4, 1984, 667-671.
Csoregi, E., et al., “Design and Optimization of a Selective Subcutaneously Implantable Glucose Electrode Based on ‘Wired’ Glucose Oxidase”, Analytical Chemistry, vol. 67, No. 7, 1995, pp. 1240-1244.
Feldman, B., et al., “A Continuous Glucose Sensor Based on Wired Enzyme™ Technology—Results from a 3-Day Trial in Patients with Type 1 Diabetes”, Diabetes Technology & Therapeutics, vol. 5, No. 5, 2003, pp. 769-779.
Feldman, B., et al., “Correlation of Glucose Concentrations in Interstitial Fluid and Venous Blood During Periods of Rapid Glucose Change”, Abbott Diabetes Care, Inc. Freestyle Navigator Continuous Glucose Monitor Pamphlet, 2004.
Gregg, B. A., et al., “Cross-Linked Redox Gels Containing Glucose Oxidase for Amperometric Bionsensor Applications”, Analytical Chemistry, vol. 62, No. 3, 1990, pp. 258-263.
Gunasingham, et al., “Electrochemically Modulated Optrode for Glucose”, Biosensors & Bioelectronics, vol. 7, 1992, pp. 353-359.
Harrison, D. J., et al., “Characterization of Perfluorosulfonic Acid Polymer Coated Enzyme Electrodes and a Miniatureized Integrated Potentiostat for Glucose Analysis in Whole Blood”, Analytical Chemistry, vol. 60, No. 19, 1988, pp. 2002-2007.
Heller, A., “Electrical Connection Enzyme Redox Centers to Electrodes”, Journal of Physical Chemistry, vol. 96, No. 9, 1990, pp. 3579-3587.
Ikeda, T., et al., “Artificial Pancreas—Investigation of the Stability of Glucose Sensors Using a Telemetry System” (English language translation of abstract), Jpn. J. Artif. Organs, vol. 19, No. 2, 1990, pp. 889-892.
Isermann, R., “Supervision, Fault-Detection and Fault-Diagnosis Methods—An Introduction”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 639-652.
Isermann, R., et al., “Trends in the Application of Model-Based Fault Detection and Diagnosis of Technical Processes”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 709-719.
Johnson, K. W., et al., “In vivo Evaluation of an Electroenzymatic Glucose Sensor Implanted in Subcutaneous Tissue”, Biosensors & Bioelectronics, vol. 7, 1992, pp. 709-714.
Johnson, P. C., “Peripheral Circulation”, John Wiley & Sons, 1978, pp. 198.
Jungheim, K., et al., “How Rapid Does Glucose Concentration Change in Daily Life of Patients with Type 1 Diabetes?”, 2002, pp. 250.
Jungheim, K., et al., “Risky Delay of Hypoglycemia Detection by Glucose Monitoring at the Arm”, Diabetes Care, vol. 24, No. 7, 2001, pp. 1303-1304.
Kaplan, S. M., “Wiley Electrical and Electronics Engineering Dictionary”, IEEE Press, 2004, pp. 141, 142, 548, 549.
Lortz, J., et al., “What is Bluetooth? We Explain the Newest Short-Range Connectivity Technology”, Smart Computing Learning Series, Wireless Computing, vol. 8, Issue 5, 2002, pp. 72-74.
Maidan, R., et al., “Elimination of Electrooxidizable Interferant-Produced Currents in Amperometric Biosensors”, Analytical Chemistry, vol. 64, No. 23, 1992, pp. 2889-2896.
Malin, S. F., et al., “Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectoscopy”, Clinical Chemistry, vol. 45, No. 9, 1999, pp. 1651-1658.
Mastrototaro, J. J., et al., “An Electroenzymatic Glucose Sensor Fabricated on a Flexible Substrate”, Sensors and Actuators B, vol. 5, 1991, pp. 139-144.
McGarraugh, G., et al., “Glucose Measurements Using Blood Extracted from the Forearm and the Finger”, TheraSense, Inc., 2001, 16 Pages.
McGarraugh, G., et al., “Physiological Influences on Off-Finger Glucose Testing”, Diabetes Technology & Therapeutics, vol. 3, No. 3, 2001, pp. 367-376.
McKean, B. D., et al., “A Telemetry-Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors”, IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, 1988, pp. 526-532.
Minimed Technologies, “Tape Tips and Other Infusion Site Information”, 1995.
Moatti-Sirat, D., et al., “Towards Continuous Glucose Monitoring: In Vivo Evaluation of a Miniaturized Glucose Sensor Implanted for Several Days in Rat Subcutaneous Tissue”, Diabetologia, vol. 35, 1992, pp. 224-330.
Ohara, T. J., et al., “Glucose Electrodes Based on Cross-Linked [Os(bpy)2C1]+/2+ Complexed Poly(1-Vinylimidazole) Films”, Analytical Chemistry, vol. 65, No. 23, 1993, pp. 3512-3517.
Pickup, J., et al., “Implantable Glucose Sensors: Choosing the Appropriate Sensing Strategy”, Biosensors, vol. 3, 1987/88, pp. 335-346.
Pickup, J., et al., “In Vivo Molecular Sensing in Diabetes Mellitus: An Implantable Glucose Sensor with Direct Electron Transfer”, Diabetologia, vol. 32, 1989, pp. 213-217.
Pishko, M. V., et al., “Amperometric Glucose Microelectrodes Prepared Through Immobilization of Glucose Oxidase in Redox Hydrogels”, Analytical Chemistry, vol. 63, No. 20, 1991, pp. 2268-2272.
Poitout, V., et al., “In Vitro and In Vivo Evaluation in Dogs of a Miniaturized Glucose Sensor”, ASAIO Transactions, vol. 37, No. 3, 1991, pp. M298-M300.
Quinn, C. P., et al., “Kinetics of Glucose Delivery to Subcutaneous Tissue in Rats Measured with 0.3-mm Amperometric Microsensors”, The American Physiological Society, 1995, E155-E161.
Reach, G., et al., “Can Continuous Glucose Monitoring Be Used for the Treatment of Diabetes?”, Analytical Chemistry, vol. 64 No. 6, 1992, pp. 381-386.
Rebrin, K., et al., “Automated Feedback Control of Subcutaneous Glucose Concentration in Diabetic Dogs”, Diabetologia, vol. 32, 1989, pp. 573-576.
Roe, J. N., et al., “Bloodless Glucose Measurements”, Critical Review in Therapeutic Drug Carrier Systems, vol. 15, Issue 3, 1998, pp. 199-241.
Sakakida, M., et al., “Development of Ferrocene-Mediated Needle-Type Glucose Sensor as a Measure of True Subcutaneous Tissue Glucose Concentrations”, Artificial Organs Today, vol. 2, No. 2, 1992, pp. 145-158.
Sakakida, M., et al., “Ferrocene-Mediated Needle-Type Glucose Sensor Covered with Newly Designed Biocompatible Membrane”, Sensors and Actuators B, vol. 13-14, 1993, pp. 319-322.
Salehi, C., et al., “A Telemetry-Instrumentation System for Long-Term Implantable Glucose and Oxygen Sensors”, Analytical Letters, vol. 29, No. 13, 1996, pp. 2289-2308.
Schmidt, F. J., et al., “Calibration of a Wearable Glucose Sensor”, The International Journal of Artificial Organs, vol. 15, No. 1, 1992, pp. 55-61.
Schmidtke, D. W., et al., “Measurement and Modeling of the Transient Difference Between Blood and Subcutaneous Glucose Concentrations in the Rat After Injection of Insulin”, Proceedings of the National Academy of Sciences, vol. 95, 1998, pp. 294-299.
Shaw, G. W., et al., “In Vitro Testing of a Simply Constructed, Highly Stable Glucose Sensor Suitable for Implantation in Diabetic Patients”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 401-406.
Shichiri, M., et al., “Glycaemic Control in Pancreatectomized Dogs with a Wearable Artificial Endocrine Pancreas”, Diabetologia, vol. 24, 1983, pp. 179-184.
Shichiri, M., et al., “In Vivo Characteristics of Needle-Type Glucose Sensor—Measurements of Subcutaneous Glucose Concentrations in Human Volunteers”, Hormone and Metabolic Research Supplement Series, vol. 20, 1988, pp. 17-20.
Shichiri, M., et al., “Membrane Design for Extending the Long-Life of an Implantable Glucose Sensor”, Diabetes Nutrition and Metabolism, vol. 2, 1989, pp. 309-313.
Shichiri, M., et al., “Needle-type Glucose Sensor for Wearable Artificial Endocrine Pancreas”, Implantable Sensors for Closed-Loop Prosthetic Systems, Chapter 15, 1985, pp. 197-210.
Shichiri, M., et al., “Telemetry Glucose Monitoring Device With Needle-Type Glucose Sensor: A Useful Tool for Blood Glucose Monitoring in Diabetic Individuals”, Diabetes Care, vol. 9, No. 3, 1986, pp. 298-301.
Shichiri, M., et al., “Wearable Artificial Endocrine Pancreas With Needle-Type Glucose Sensor”, The Lancet, 1982, pp. 1129-1131.
Shults, M. C., et al., “A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors”, IEEE Transactions on Biomedical Engineering, vol. 41, No. 10, 1994, pp. 937-942.
Sternberg, R., et al., “Study and Development of Multilayer Needle-Type Enzyme-Based Glucose Microsensors”, Biosensors, vol. 4, 1988, pp. 27-40.
Thompson, M., et al., “In Vivo Probes: Problems and Perspectives”, Clinical Biochemistry, vol. 19, 1986, pp. 255-261.
Turner, A., et al., “Diabetes Mellitus: Biosensors for Research and Management”, Biosensors, vol. 1, 1985, pp. 85-115.
Updike, S. J., et al., “Principles of Long-Term Fully Implanted Sensors with Emphasis on Radiotelemetric Monitoring of Blood Glucose from Inside a Subcutaneous Foreign Body Capsule (FBC)”, Biosensors in the Body: Continuous in vivo Monitoring, Chapter 4, 1997, pp. 117-137.
Velho, G., et al., “Strategies for Calibrating a Subcutaneous Glucose Sensor”, Biomedica Biochimica Acta, vol. 48, 1989, pp. 957-964.
Wilson, G. S., et al., “Progress Toward the Development of an Implantable Sensor for Glucose”, Clinical Chemistry, vol. 38, No. 9, 1992, pp. 1613-1617.
Ye, L., et al., “High Current Density ‘Wired’ Quinoprotein Glucose Dehydrogenase Electrode”, Analytical Chemistry, vol. 65, No. 3, 1993, pp. 238-241.
European Patent Application No. EP-07842173.2, Examination Report dated Mar. 21, 2013.
European Patent Application No. EP-07842173.2, Extended European Search Report dated Dec. 29, 2010.
PCT Application No. PCT/US2007/078065, International Search Report and Written Opinion of the International Searching Authority dated Apr. 11, 2008.
U.S. Appl. No. 11/530,472, Advisory Action dated Apr. 20, 2009.
U.S. Appl. No. 11/530,472, Advisory Action dated Apr. 21, 2010.
U.S. Appl. No. 11/530,472, Notice of Allowance dated Aug. 17, 2012.
U.S. Appl. No. 11/530,472, Office Action dated Dec. 14, 2010.
U.S. Appl. No. 11/530,472, Office Action dated Feb. 2, 2010.
U.S. Appl. No. 11/530,472, Office Action dated Jan. 14, 2008.
U.S. Appl. No. 11/530,472, Office Action dated Jun. 1, 2012.
U.S. Appl. No. 11/530,472, Office Action dated May 14, 2009.
U.S. Appl. No. 11/530,472, Office Action dated May 18, 2011.
U.S. Appl. No. 11/530,472, Office Action dated Nov. 21, 2008.
U.S. Appl. No. 11/530,472, Office Action dated Sep. 28, 2011.
U.S. Appl. No. 13/717,501, Advisory Action dated Jun. 26, 2014.
U.S. Appl. No. 13/717,501, Notice of Allowance dated Aug. 27, 2014.
U.S. Appl. No. 13/717,501, Office Action dated Apr. 10, 2014.
U.S. Appl. No. 13/717,501, Office Action dated Jan. 10, 2014.
Related Publications (1)
Number Date Country
20150018639 A1 Jan 2015 US
Continuations (2)
Number Date Country
Parent 13717501 Dec 2012 US
Child 14498895 US
Parent 11530472 Sep 2006 US
Child 13717501 US