This application is based upon and claims the benefit of priority from prior patent application EP 03077697.5, filed Aug. 29, 2003, and prior patent application EP 03078585.1, filed Nov. 14, 2003, the entire contents of each which are expressly incorporated herein by reference.
I. Technical Field
The present invention relates to a methods and systems for providing a visualization graph on a computer.
II. Background Information
Visualization graphs are tools that allow data to be handled and displayed on a display device according to certain criteria. The primary objective of navigation graphs is to display systems of complex interrelationships between entities, such as in a database or on the World Wide Web. Visualization graphs can be based on a semantic net including all entity types that occur where the considered entities are linked to each other by various kinds of relations. A visualization graph represents entities as boxes, often referred to as “nodes” of the graph, and relations as lines between the boxes.
A common way of solving the problem of graphical layout is to apply a physical simulation where all entities are treated as masses repulsing each other and the relations are treated as elastic lines trying to pull connected entities together. By double-clicking on a box, other entities that are directly related to the corresponding entity (but which may not yet in the graph) and their relations to other entities in the graph are included. In some implementations the double-clicked entity then moves to the center of the graph (it becomes the “focus” entity) and other nodes, which are too distant (measured in number of relations on the shortest path) from it are removed from the graph.
However, conventional visualization graphs suffer drawbacks. One problem with conventional visualization graphs using a non-deterministic approach is that entities are arranged in a random. Thus, the orientation within the graph is not optimal.
Consistent with the present invention, a method of providing a visualization graph on a computer comprises storing data corresponding to a plurality of entities having a particular type, wherein a semantic net includes the entities and wherein the entities are linked to each other by a plurality of relations; in response to a query with respect to an entity selected from the plurality of entities, providing a visualization graph having a plurality of sectors representing the results of the query; and allocating the entities to a predetermined sector of the graph depending on their entity type. By allocating entities to a predetermined sector of the graph depending on their entity type, the location of the entity types can be predicted.
Consistent with the present invention, a computer for providing a visualization graph comprises a storage medium having recorded therein processor readable code processable to provide a visualization graph; a database for storing data corresponding to a plurality of entities having a particular type, wherein a semantic net includes the entities and wherein the entities are linked to each other by a plurality of relations; a query interface adapted, so that in response to a query with respect to an entity selected from the plurality of entities, a visualization graph is provided representing the results of the query, wherein the code comprises a plurality of attractor codes processable to attract the entities to a predetermined sector of the graph depending on their entity type.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only, and should not be considered restrictive of the scope of the invention, as described and claimed. Further, features and/or variations may be provided in addition to those set forth herein. For example, embodiments of the invention may be directed to various combinations and sub-combinations of the features described in the detailed description.
The accompanying drawings, which are incorporated in and constitute a part of this disclosure, illustrate various embodiments and aspects of the present invention. In the drawings:
The following detailed description refers to the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the following description to refer to the same or similar parts. While several exemplary embodiments and features of the invention are described herein, modifications, adaptations and other implementations are possible, without departing from the spirit and scope of the invention. For example, substitutions, additions or modifications may be made to the components illustrated in the drawings, and the exemplary methods described herein may be modified by substituting, reordering or adding steps to the disclosed methods. Accordingly, the following detailed description does not limit the invention. Instead, the proper scope of the invention is defined by the appended claims.
The entities 2 are typically modelled as a mass. There is a repulsive force exerted by a repulsor between each pair of entities. The repulsive force may be inversely proportional to the distance or the square of the distance, or any other inverse relationship. The relations between entities (not shown in
A first embodiment is based on a non-deterministic approach, using attractors and repulsors. A second embodiment is based on a deterministic approach using a dynamic, but deterministic, subdivision of the screen and screen areas into sectors and sub-sectors, wherein entity types are allocated to sectors and entity sub-types are allocated to sub-sectors, respectively.
The first non-deterministic embodiment is now described. To facilitate orientation certain kinds, that is types, of entities 2 are arranged to appear in the same sector 4 of the graph. Invisible attractors 3 that are not visible to a user of the graph are introduced for each entity type. In the example, shown in
It is seen in
It will be understood that the negotiation of sector size determined in accordance with the number of entities and how they are to be distributed causes the graph to have a particular fuzziness. As mentioned, this is achieved by the provision of the attractors 3. In contrast, in conventional graphs, there is no flexibility in the system to expand or contract a sector beyond or within its boundary, respectively, should the need arise when entities are either added or taken away from the sector.
The second deterministic embodiment is now described. The principle of the present invention may also be used to arrange nodes (refer to
In one embodiment, if an additional entity of a particular entity type is stored in the storing step, the location on the graph of the allocated entities is adapted in accordance with the additional entity. In this way, the graph becomes dynamic and more versatile.
The method may include the further step of providing attractors 3 which attract the entities to the predetermined sector in accordance with their entity types. In doing so, a so-called “360° Navigation Graph” is achieved, whereby the location of each entity can be predicted without having to carry out a complete, and thus, very complex deterministic approach.
Further, the method may include the further step of providing repulsors to repulse the entities allocated to the predetermined sector 4 from one another. This achieves an optimization of the distribution of entities 2 within a sector 4. Further, the location of an entity 2 on the graph 1 may be determined by the sum of the influence exerted on the entity 2 by the attractor 3 and the repulsors.
In a further embodiment, the method may include the steps of: dividing the graph into sectors 4, wherein an entity 2 is allocated to one of the sectors 4 according to its entity type, and dividing the sectors 4 into sub-sectors 7, wherein an entity 2 is allocated to one of the sub-sectors 7 in accordance with its entity sub-type, wherein the size of the sectors 4 and the sub-sectors 7 is determined in accordance with the number of entities of a particular type allocated to the sector 4 and the number of entities of a particular sub-type allocated to the sub-sector 7, respectively. By doing this, a deterministic approach is realized without the complexity of conventional deterministic approaches.
In a yet further embodiment, the method may include the step of: repeating the dividing steps if the number of entities 2 to be displayed on the graph 1 changes. By doing so, a dynamic deterministic approach is realized, which is adaptive and versatile.
As shown in
The common relations 8 may be explicitly assigned to each entity in a group, but they may also be abstractions of the individual relations 8. This embodiment is shown in
The selection code is dynamic resulting in a dynamic grouping of the entities. That is, depending on certain criteria such as the context, the selection and abstraction, if applied, may at different times provide different groupings. In a preferred embodiment, the method comprises the further step of selecting those entities from the plurality of entities having at least one common relation 8 and storing the selected entities as a plurality of groups, representing the groups on the graph as a plurality of nodes 9, and representing only those relations 8 which all of the nodes 9 have in common. By grouping of entities with common relations 8 and displaying the group as one node 9 (represented as an ellipse rather than a box in
In a preferred embodiment, a selecting step includes abstracting the relations 8 to find the common relation 8. By abstracting the relations 8, characteristics are used to identify common relations 8. In such a way that an even distribution of nodes in the graph is achieved.
In a further embodiment, to further improve the predictability of the selection, facets are introduced. In particular, in order to increase the predictability with regard to what common relation 8 will be chosen as criterion to form groups, the user may define facets for each entity type. Facets are predefined groups that are characterized by the entity type of their elements or the kind of relation 8 that connects their elements to the focus entity.
In the example, the following facets have been defined for product properties knowledge, products, technologies, persons, life cycle phases, companies, ideas, insights, facts, concepts, approaches, activities. If facets are defined, all entities related to the focus entity will be sorted into the corresponding facets (groups) and the dynamic grouping algorithm is used only to subdivide these facets into smaller groups (if possible).
As mentioned, in contrast to conventional visualization graphs, an aspect of the present invention allows the formation of groups in a 2D visualization graph whilst keeping it clear. According to an embodiment of the present invention this is achieved by keeping the space required for the nodes minimal and the origin of the added nodes traceable. Further, the graph is rearranged in a smooth way to avoid confusion of the user.
According to an embodiment of the invention, the following steps are taken. Before exploding, the group node increases repulsive force proportionally to the number of entities to be inserted in order to make room for the new nodes. The actual insertion begins, when the neighbor nodes have moved sufficiently far away. Although the new nodes inserted into to the graph have a direct relation 8 to the “focus” node 10, this relation 8 is only displayed indirectly: the new entities are connected to the group node which remains in the graph as “bundler” without label and establishes the relation 8 to the “focus” node 10. Thus the number of lines connected to the center node 10 remains low.
While a group “bundler” node 11 doesn't have a label in order to save space, the group's characteristics are shown when the user moves the mouse pointer over the “bundler” node 11, in the same way as shown in
Double-clicking a “bundler” node 11 causes group to collapse again into one node. The recursive explosion and collapsing of subgroups 18 is also possible (FIG. 7,8). The resulting representation looks and behaves similar to a “tree view control”. The main difference is that a tree view represents an existing hierarchical structure, whereas the group nodes in the graph dynamically create a hierarchy-like structure in order to get a clearer graph layout. Also the problem of finding a 2D graph layout does not exist for conventional tree view controls.
In a particular embodiment, the method may include step of: representing a plurality of entities 2 having a common relation 8 as a first node 9 on the visualization graph 1, and in response to a predetermined stimulus causing the entities 2 comprised at the first node 9 to be displayed, and in response to a further predetermined stimulus causing the graph to restructure so that the entities displayed are replaced by the node 9. By providing the possibility to explode such groups (i.e. to display all group entities as separate nodes in the graph) by double-clicking and to put them back into the group again, links between nodes representing relations 8 are kept to a minimum which optimizes the energy in the graph. Further, it becomes easier for the user to orientate within the graph, thus, improving his navigation of the information represented in the graph.
In a preferred embodiment, in response to the first predetermined stimulus, the node 9 remains in the graph to represent the common relation 8. As a result even in the “exploded” state, the “group node” is kept in the graph and represents the common relations 8, while the single group members (entities) have a link to the group node. Further, the entities may be linked to a further entity or node via a link which represents a relation 8 which may not be common to all entities linked to the first node 9. By providing links that may not be common to all members of the group (linked by a common relation 8 to the first node), the user has access to further navigable information.
As mentioned, in contrast to conventional visualization graphs, certain embodiments of the present invention provide a visualization graph layout such that the number of nodes is kept low without missing out potentially relevant information.
According to an embodiment of the present invention this is achieved in the following way: when the focus of a graph changes, new related entities are inserted, and therefore other entities have to be removed. In conventional visualization graphs, only nodes in the graph are kept which have a distance d<dmax from the focus node, where the distance is the number of relations 8 on the shortest path between a node and the focus node. Since the number of nodes usually increases exponentially with dmax, a value of 1 or 2 is appropriate for most purposes.
To enhance navigation of the visualization graph, entities of certain types may be included in the graph even if they are far more distant to the focus, if they are considered to be of special interest in the current context either due to their entity type or due to the kind of relations 8 linking them to the focus node.
The context information in this case can be made up, but is not limited, from the following components current user's general preferences, context information attached to the “focus” node, and current user's current role and/or session history. In
According to a particular embodiment, the method may comprise the further steps of: storing 24 data corresponding to a plurality of entities and/or nodes 2, 9, wherein a semantic net includes the entities and/or nodes 2, 9 and wherein the entities and/or nodes 2, 9 are linked to each other by a plurality of relations 8, generating a query, performing the query on the data, and outputting at least two of the plurality of data in the form of a visualization graph 1 representing the results of the query, wherein the graph 1 has a focus entity or node 10 defined by a user or the query, and using context information to determine at least one entity and/or node to be output in the results which is indirectly related to the focus 10.
By providing the possibility to display entities that are indirectly related to the “focus” entity based on the current context and user preferences, the user is able to collect additional information even if there is no direct relationship between entities. Thus, allowing the user to “jump” from context to context within the graph. This embodiment of the present invention allows a user to find how large amounts of data are related. The user is able to navigate and explore knowledge domains in a visual way.
The allocator code may further comprise dividing code processable to divide the graph into sectors, wherein an entity is allocated to one of the sectors according to its entity type, and further dividing code processable to further divide the sectors into sub-sectors, wherein an entity is allocated to one of the sub-sectors in accordance with its entity sub-type, wherein the size of the sectors and the sub-sectors is determined in accordance with the number of entities of a particular type allocated to the sector and the number of entities of a particular sub-type allocated to the sub-sector, respectively.
The allocator code may also include repeater code processable to activate the dividing code if the number of entities to be displayed on a graph changes. The processable code may further comprise selection code processable to select those entities from the plurality of entities having a common relation 8 and storing the selected entities as a plurality of groups, representation code processable to represent the groups on the graph as a plurality of nodes, wherein only those relations 8 which all of the nodes have in common are represented.
In further embodiments of the present invention, the code may also include representation code processable to represent a plurality of entities having a common relation 8 as a node on a visualization graph, and in response to a predetermined stimulus causing the entities comprised at the node to be displayed, and in response to a further predetermined stimulus causing a graph to restructure so that the entities displayed are replaced by the node. Also provided is a display device 30, such as a screen, for displaying a visualization graph 1.
The user may use a keyboard 40, mouse 42 or other operating device to communicate with the computer 20 and to instruct the computer to perform a query. The query may be generated automatically or by a user. Context information may be defined in the query. Alternatively, it may not form part of the query, and may be defined in some other way, for example, by user preferences.
In one embodiment, a computer 20 is provided for providing a visualization graph 1, the computer 20 may comprise: a database 24, 60 for storing data corresponding to a plurality of entities and/or nodes 2, 9, wherein a semantic net includes the entities and/or nodes 2, 9 and wherein the entities and/or nodes 2, 9 are linked to each other by a plurality of relations 8, a storage medium 22 having recorded therein processor readable code processable to provide a visualization graph 1, the code including a query code processable to perform a query on the database, an output device 30 for outputting at least two of the plurality of data in the form of a visualization graph 1 representing the results of the query, wherein the graph 1 has a focus entity or node 10 defined by a user or the query, wherein the code further includes context code processable to express context information which is processable to determine at least one entity and/or node to be output in the results which is indirectly related to the focus 10.
Further, the context code may be processable to allow at least one entity 2 and/or node 9 to be output in the results that are indirectly related by more than two relations 8. The context code may also be processable to enable identification of at least one entity and/or node 2, 9 having a particular interest with respect to the focus 10, and/or may be processable to identify a particular interest on the basis of an entity 2 or node 9 type or due to the relations 8 linking the entity and/or node 2, 9 to the focus 10. Further, the context code may be determined by any or a combination of: at least one predetermined user preference, information associated with the focus, or a user's current role and/or session history query.
In one embodiment, the database 24 in which data for building the graph is stored, may be located locally at the computer 20. Alternatively or in addition, the database 60 or an additional database may be located remotely from the computer 20. In such an embodiment, the computer is provided with means to remotely access a remote database. For example, using a modem 26 connected via the Internet 50 or other network or communications link to the remote database 60. Although the embodiment shown in
In the embodiments of the present invention described above, the visualization graph is concerned with aspects of company dealing with personal hygiene products. However, the invention is not limited in this respect. The present invention finds application in any sphere where data is to be navigated. In particular, where complex interrelationships of data are to be navigated. Further applications are found where data in one or more databases is somehow related to one another. Further applications include Internet applications, where metadata is accessed and used. The expression “visualization graph” is intended to cover visual representations, such as navigation graphs and other such tools.
While certain features and embodiments of the invention have been described, other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the embodiments of the invention disclosed herein. Furthermore, although embodiments of the present invention have been described as being associated with data stored in memory and other storage mediums, one skilled in the art will appreciate that these aspects can also be stored on or read from other types of computer-readable media, such as secondary storage devices, like hard disks, floppy disks, or a CD-ROM, or other forms of RAM or ROM. Further, the steps of the disclosed methods may be modified in any manner, including by reordering steps and/or inserting or deleting steps, without departing from the principles of the invention.
It is intended, therefore, that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims and their full scope of equivalents.
Number | Date | Country | Kind |
---|---|---|---|
03077697 | Aug 2003 | EP | regional |
03078585 | Nov 2003 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
5590250 | Lamping et al. | Dec 1996 | A |
5619632 | Lamping et al. | Apr 1997 | A |
5740440 | West | Apr 1998 | A |
5777622 | Lehr | Jul 1998 | A |
6144962 | Weinberg et al. | Nov 2000 | A |
6154213 | Strausfeld et al. | Nov 2000 | A |
6154220 | Xiaoing et al. | Nov 2000 | A |
6216134 | Heckerman et al. | Apr 2001 | B1 |
6263339 | Hirsch | Jul 2001 | B1 |
6266805 | Nwana et al. | Jul 2001 | B1 |
6285951 | Gaskins et al. | Sep 2001 | B1 |
6356285 | Burkwald et al. | Mar 2002 | B1 |
6369819 | Pitkow et al. | Apr 2002 | B1 |
6373484 | Orell et al. | Apr 2002 | B1 |
6377287 | Hao et al. | Apr 2002 | B1 |
6434556 | Levin et al. | Aug 2002 | B1 |
6480843 | Li | Nov 2002 | B2 |
6496832 | Chi et al. | Dec 2002 | B2 |
6556983 | Altschuler et al. | Apr 2003 | B1 |
6583794 | Wattenberg | Jun 2003 | B1 |
6646652 | Card et al. | Nov 2003 | B2 |
6654761 | Tenev et al. | Nov 2003 | B2 |
6714936 | Nevin, III | Mar 2004 | B1 |
6789054 | Makhlouf | Sep 2004 | B1 |
6792400 | Alden et al. | Sep 2004 | B2 |
6795825 | Rishe | Sep 2004 | B2 |
6868525 | Szabo | Mar 2005 | B1 |
6888548 | Gallivan | May 2005 | B1 |
6897885 | Hao et al. | May 2005 | B1 |
6901555 | Hida et al. | May 2005 | B2 |
6981228 | Chen et al. | Dec 2005 | B1 |
7089266 | Stolte et al. | Aug 2006 | B2 |
7167865 | Tharp et al. | Jan 2007 | B1 |
7203701 | Packebush et al. | Apr 2007 | B1 |
7421665 | Molesky et al. | Sep 2008 | B2 |
7468727 | Wong et al. | Dec 2008 | B2 |
7549309 | Beringer et al. | Jun 2009 | B2 |
7574659 | Szabo | Aug 2009 | B2 |
7617185 | Werner et al. | Nov 2009 | B2 |
20020087275 | Kim et al. | Jul 2002 | A1 |
20020130907 | Chi et al. | Sep 2002 | A1 |
20020133392 | Angel et al. | Sep 2002 | A1 |
20020154175 | Abello et al. | Oct 2002 | A1 |
20020158918 | Feibush et al. | Oct 2002 | A1 |
20020196292 | Itoh et al. | Dec 2002 | A1 |
20030011601 | Itoh et al. | Jan 2003 | A1 |
20030085931 | Card et al. | May 2003 | A1 |
20030167324 | Farnham et al. | Sep 2003 | A1 |
20030220928 | Durand et al. | Nov 2003 | A1 |
20040024533 | Ohta | Feb 2004 | A1 |
20040030741 | Wolton et al. | Feb 2004 | A1 |
20040059521 | Han et al. | Mar 2004 | A1 |
20040088678 | Litoiu et al. | May 2004 | A1 |
20040111255 | Huerta et al. | Jun 2004 | A1 |
20040113953 | Newman | Jun 2004 | A1 |
20040133433 | Lee et al. | Jul 2004 | A1 |
20040150644 | Kincaid et al. | Aug 2004 | A1 |
20040243938 | Weise et al. | Dec 2004 | A1 |
20050114802 | Beringer et al. | May 2005 | A1 |
20050116953 | Liongosari et al. | Jun 2005 | A1 |
20060037019 | Austin et al. | Feb 2006 | A1 |
20060044319 | Molesky et al. | Mar 2006 | A1 |
20060106847 | Eckardt et al. | May 2006 | A1 |
20060288311 | Heer et al. | Dec 2006 | A1 |
20070124291 | Hassan et al. | May 2007 | A1 |
20090265324 | Mordvinov et al. | Oct 2009 | A1 |
Number | Date | Country |
---|---|---|
1050829 | Nov 2000 | EP |
WO 9211724 | Jul 1992 | WO |
WO 0188751 | Nov 2001 | WO |
WO 02069192 | Sep 2002 | WO |
WO 03069506 | Aug 2003 | WO |
WO 2007062885 | Jun 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20050114384 A1 | May 2005 | US |