The invention relates in general to voice and data communications, and in particular to a system and method to conduct authentication in a hybrid wireless network.
A typical wireless network is composed of two sub-networks: a Radio Access Network (RAN) which handles radio related issues such as assigning radio resources to a mobile terminal (or “mobile” in short) upon request for services, and a Core Network (CN) which links the mobile user to wireline networks. Current specifications of wireless networks require that the RAN and CN have the same wireless technology in order to provide wireless services. These networks may be referred to as “homogeneous networks.” For instance, a GSM mobile will only operate in a wireless network which its RAN and CN are both GSM wireless technology based.
The GSM RAN 102 includes a GSM Mobile Station (MS) 106 that communicates to a GSM Base Station System (BSS) 108 through a GSM radio channel 110. The GSM BSS 108 includes a GSM Base Transceiver Station (BTS) 110 and GSM Base Station Controller (BSC) 112.
The GSM Core Network (CN) 104 includes a GSM Mobile Switching Center (MSC) 120 that is connected to the GSM BSC 112 as well as a GSM Gateway MSC (GMSC) 122 by using SS7 ISUP communications 124. The GSM GMSC 122 is also connected to the Public Switched Telephone Network (PSTN) 126 by using SS7 ISUP communications 124. In this figure, a telephone 128 is shown to be connected to the PSTN as an illustration of a calling/called party. In addition, a Serving General Packet Radio Service Node (GPRS) (SGSN) 130 is shown to also be connected to the GSM BSC 112. Moreover, a GSM Short Message Service Center (SMS-C) 132, a GSM Home Location Register (HLR) 134 and a GSM Authentication Center (AuC) 136 are all shown to be connected the GSM MSC 120 and the SGSN 130. Further, a GSM Service Control Point (SCP) 138 connects a GSM Billing System 140 to the GSM MSC 120 and the GSM HLR 134. The connection from the GSM Billing System 140 and the GSM MSC 120 utilizes IP. Additionally, a Packet Data Network (PDN) 142 is shown connected to the GSM CN 104 through a Gateway GPRS Node (GGSN) 144 utilizing IP communications.
A disadvantage of this configuration is that, given many wireless technologies that exist today and considering new ones being defined for the future, this is a serious limitation in the wireless service provision to deal with a situation in which a mobile compatible with one wireless technology moves into a wireless network of different technology. Such a configuration prevents the mobile from getting services and limits the mobile's geographical service area to networks that support a specific wireless technology. The same limitation applies to wireless networks that are CDMA wireless technology based.
The CDMA2000 CN 212 connects to the CDMA2000 RAN 201 by the CDMA2000 BSC 208 connecting to the CDMA200 MSC 214. The CDMA2000 MSC 214 is connected to an IS-41 SMS-C 216, an IS-41 HLR 218, an IS-41 AuC 220 and an IS-41 SCP 222. The IS-41 SCP 222 in turn is also connected to the IS-41 HLR 218 and a Store and Forward Service 224, which in turn is connected to an IS-41 Billing System 226. In addition, a Packet Data Serving Node (PDSN) 228 is connected to the PCF 210 of the CDMA2000 RAN 200 and a PDN 230. Moreover, the CDMA2000 MSC 214 connects the CDMA2000 CN 212 to the PSTN 232 and a phone 234.
A hybrid wireless network is a wireless network composed of a RAN and a CN of different technologies linked.
For example, in most wireless networks, wireless services are granted to a mobile after it is authenticated. This process is known as the authentication of a mobile. Different wireless technologies use different procedures and algorithms to perform such an authentication process. For instance, a CDMA mobile operating in a CDMA network generates authentication parameters which are quite different from those generated by a GSM mobile operating in a GSM network. There are currently no known solutions to provide authentication of a mobile operating in a hybrid wireless network.
What is needed, therefore, is a method and system for providing a solution to pass information and parameters to and from a mobile in a hybrid wireless network in which the RAN technology is CDMA2000 1xEV-DO before the authentication or other procedures requiring certain information from the network is invoked.
The present disclosure provides a method and system for passing information required by a wireless procedure in a hybrid wireless network before the procedure is invoked, the hybrid wireless network having at least one radio access network based on a first technology and a core network based on a second technology. The hybrid network implements a special mobile switching center to be a “double agent” passing information between the mobile terminal and entities in its core network. In the context of messaging, the message contents may be encoded, packaged, and decoded appropriately. The present disclosure does not introduce any changes to telecommunication standards such as the GSM and CDMA standards governing the messaging process.
For the purposes of the present disclosure, various acronyms are used, the definitions of which are listed below:
Various aspects of the present invention provide a unique system and method for providing authentication of a mobile device in a hybrid wireless network. This patent application is based off of U.S. Provisional Patent 60/372,529 which is hereby incorporated by reference in its entirety. It is understood, however, that the following disclosure provides many different embodiments, or examples, for implementing different features of the invention. Specific examples of components, signals, messages, protocols, and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to limit the invention from that described in the claims. Well-known elements are presented without detailed description in order not to obscure the present invention in unnecessary detail. For the most part, details unnecessary to obtain a complete understanding of the present invention have been omitted inasmuch as such details are within the skills of persons of ordinary skill in the relevant art.
The example network architecture shown in
Similarly, in the CDMA2000 1xEV-DO RAN 306, a CDMA2000 mobile phone 320 communicates with a CDMA 1xEV-DO BTS 322 over a CDMA radio link 324. The CDMA 1xEV-DO BTS 322 typically communicates with a CDMA BSC 326 using a wired link 328. Typically, for voice communications, the CDMA BSC 326 communicates with the HMSC 308 over a link 330 using a variety of protocols, including A1, A2, A5, A8, and A9. The CDMA BSC 326 transfers data to a PCF 332 over a link 334 using A8 and A9 protocols. Thus, data is usually sent by the PCF 332 to the HMSC 308 over a link 336 using the A10 and A11 protocols.
Similarly, in the CDMA2000 1xRTT RAN 307, a CDMA2000 mobile phone 364 communicates with a CDMA 1xRTT BTS 366 over a CDMA radio link 368. The CDMA1xRTT BTS 366 typically communicates with a CDMA BSC 370 using a wired link 372. Typically, for voice communications, the CDMA BSC 370 communicates with the HMSC 308 over a link 374 using a variety of protocols, including A1, A2, A5, A8, and A9. The CDMA BSC 370 transfers data to a PCF 377 over a link 376 using A8 and A9 protocols. Thus, data is usually sent by the PCF 332 to the HMSC 308 over a link 378 using the A10 and A11 protocols.
If the core network is a GSM network, as in the illustrative network 300, the HMSC 308 communicates with the other GSM network components in much the same way a typical MSC would communicate with the GSM network components. For instance, the HMSC 308 may establish links with a GMSC 340, a SCP 342, an HLR 344, a AuC 346, a PDN 347, a GGSN 348, and/or a SMS-C 350. Similarly, the GMSC 340 may communicate with a PSTN 352 through a T1 link 354 using a SS7 ISUP protocol. The SCP 342 may establish a link 356 with a billing system 358, and the GGSN 348 may establish a link 360 with the PDN 347, where the links 356 and 360 uses an IP protocol. Thus, for each connection,
Thus, for calls established with the GSM mobile 310, the HMSC 308 acts like a GSM MSC 110 as depicted in
The HMSC 308 can support voice and packet data call services from mobiles in any type of RAN to any other type of network. For instance the mobile 310 in the GSM RAN 304 can make a call to another mobile (not shown) operating in the CDMA RAN 306, a telephone 362 connected to the PSTN 352, or an entity as part of the PDN 347 and other networks that are not illustrated nor discussed in this disclosure for reasons of simplicity and clarity. The HMSC 308 is shown in communication with two RANs of different technologies, however as would be clear to one skilled in the art, the present invention also applies in situations where the HMSC 308 is in communication with one or more RANs of same technology.
Wireless services are granted to a mobile phone after the mobile phone is “authenticated.” Different wireless technologies use different procedures and algorithms to perform such an authentication process. For instance, the GSM mobile phone 310 operating in the GSM RAN 304 generates authentication parameters which are different from those generated by the CDMA mobile phone 320 operating in the CDMA RAN 306. Thus, one aspect of the present invention solves this problem by providing for a method of authentication of a mobile terminal in a hybrid wireless network, the hybrid wireless network having at least one radio access network (RAN) based on a first technology (e.g. CDMA) and a core network (CN) based on a second technology (e.g., GSM). Generally, the method comprises: requesting a registration of the mobile terminal from the RAN; passing predetermined parameters for the authentication by the CN through a HMSC to the mobile terminal using messages conforming to the first technology, the parameters conforming to the second technology; invoking an authentication process by the mobile terminal using the passed parameters; and informing the HMSC of the CN for the authentication of the mobile terminal.
A one-way hash function generates a fixed-length number output—called the hash value—given an arbitrary input. Secure one-way hash functions have the character that it is unfeasible to determine their input given their output. A key-dependent one-way hash function requires a key to calculate the hash value from the input. A typical use of a key dependent secure one-way hash function would be to verify the authenticity of a communicating entity. For instance, if entity A and entity B both know a private key and a key dependent secure one-way hash function, entity A can verify the authenticity of entity B by sending an arbitrary input to B and requesting entity B to return the hash value of this input calculated using the mutually known key dependent secure one-way hash function and the mutually known private key. Upon receiving the hash value from entity B, entity A calculates the hash value for itself and compares its hash value to the hash value from entity B. If the hash values are identical, entity A knows entity B is authentic, because only entity A and entity B know the private key (or others trusted by A and B to share the knowledge of the private key) and this is essential to calculating the correct hash value. If a spurious entity B′ were to attempt to pass itself off as the true entity B it would fail the authentication because it would not know the private key and hence could not calculate the appropriate hash value.
As is known in the art, a GSM authentication checks the validity of the subscribers subscriber identification module (SIM) card and then decides whether the mobile station should be allowed on a particular network. In a typical GSM network, the authentication process begins when a BSS/MSC/VLR sends the RAND and a GSM Cipering Key sequence (“Kc”), to the mobile unit. The SIM card in the mobile unit uses the RAND, its own private identifier Ki, and the A3 key-dependent secure one-way hash function to generate a signed response (SRES), which is then sent back to the BSS/MSC/VLR. The BSS/MSC/VLR compares the value of SRES received from the AuC with the value of SRES it has received from the mobile station. If the two values of SRES match, authentication is successful and the subscriber joins the network
This simple GSM authentication scenario does not cover all practical scenarios of authentication in a hybrid network given that the RAN technologies are not always the same as the CN technology. There are special cases to consider including roaming from a RAN of a first type of technology into a RAN of a second type of technology, roaming from a RAN of a second type of technology into a RAN of a first type of technology. Given that the CN only accepts GSM-based authentication parameters, a method is needed to pass the GSM-based parameters between the mobile and the CN over any type of RAN technology. In addition, the present invention introduces a new concept to achieve the appropriate goal. By doing so, scenarios as failed authentication using correct values of RAND (in which case service is denied), and failed authentication using incorrect values of RAND (in which retry procedures are invoked) are considered as well. All of these cases will be discussed in detail below.
Turning to
Turning now to
Turning now to
Turning now to
Turning now to
Turning now to
In the present disclosure, the messages CHAP Response and Access Request are used to carry the necessary GSM information from the mobile to the network, and the message Access Accept, Access Reject, CHAP Success, and CHAP Failure are used to carry the information from the network to the mobile. In this patent application “pass-through messages means that the information encapsulated in these messages is carried transparently over the 1xEv-DO RAN. That is, none of the entities in the RAN act upon the information encapsulated in these messages, but simply forward them to the next entity until the mobile is reached or the HMSC is reached. In this patent application “encapsulate” means to intercalate information within a message, thereby to make the message carry information additional to the mere message type. In this patent application the term “packaging” may be used in the same sense defined above for the term “encapsulate,” and hence “packaging” and “encapsulating” may substitute for one another from place to place in this patent application.
The above disclosure provides many different embodiments, or examples, for implementing the disclosure. However, specific examples, and processes are described to help clarify the disclosure. These are, of course, merely examples and are not intended to limit the disclosure from that described in the claims. For instance, even if a CHAP Challenge message and procedure is used to describe the disclosure, the present disclosure still applies to any scenario or event that can occur in the wireless network and that causes the mobile or the network to initiate the authentication procedure.
Additionally, although a dual-mode mobile that can support voice and packet data is used to describe the disclosure, the present disclosure still applies to any multi-mode mobile. Additionally, GSM and CDMA are used as examples to describe the disclosure. It is understood that the disclosure still applies to any authentication scenario between two wireless networks that have the same CN technology but different RAN technologies.
The present disclosure as described above thus provides an economical method and system for providing an authentication solution to a multi-mode mobile operating in a hybrid network. The present disclosure does not introduce any changes to the GSM and CDMA standards that define the protocols used to communicate between all network entities. Also, the disclosure does not introduce any change to any entity between the HMSC and the mobile.
In addition, the present disclosure provides a cost effective solution given that it does not introduce any change to existing architectures in the RAN and CN. This is a significant advantage for a network operator or service provider because there is no need for investing capital in upgrading existing equipment. The migration of the services to be supported by the new network can be achieved in a much shorter time and at a lower cost. The method and system described in the present disclosure increases the wireless coverage to operators exponentially, speeds up deployment phase, minimizes deployment expenses, eliminates core network operation expenses and provides higher quality of service for the mobile end user, therefore attracting more subscribers to operators.
Also, the present disclosure presents a solution to deploy a new radio technology into wireless networks without introducing any change to the core network. This creates a huge advantage for network operators that looking to expand their wireless service coverage of a new radio technology. The present disclosure needs very low cost and short deployment time considering that the core network does not have to be changed whatsoever. By deploying a new radio technology over an existing core network of existing technologies, major advantages are achieved at the radio access network such as higher bit rates. Other advantages are higher network capacity and increase in spectrum efficiency on the radio which leads to the ability of supporting larger number of subscribers and introducing better quality of service to the mobile user end. This means providing larger service coverage area and higher revenues to network operators.
Moreover, because no changes are made to the existing core network, the present disclosure allows the delivery of all existing CN services to any mobile in its serving area.
It will also be understood by those skilled in the art that one or more (including all) of the elements/steps of the present disclosure may be implemented using software and hardware to develop the HMSC, which will then be deployed in a wireless network at appropriate locations with the proper connections.
Furthermore, while the disclosure has been particularly shown and described with reference to the preferred embodiment thereof, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the disclosure, as set forth in the following claims.
The present application claims the benefit of the filing date of U.S. provisional patent application Ser. No. 60/372,529, attorney docket no. 29981.37, filed on 15 Apr. 2002.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US03/11573 | 4/14/2003 | WO | 7/29/2005 |
Number | Date | Country | |
---|---|---|---|
60372529 | Apr 2002 | US |