Claims
- 1. A coating composition comprising a bioactive agent in combination with a plurality of polymers, including a first polymer component comprising at least one polyalkyl(meth)acrylate or aromatic poly(meth)acrylate polymer and a second polymer component comprising poly(ethylene-co-vinyl acetate).
- 2. A composition according to claim 1 wherein the first polymer composition comprises a polymer selected from the group consisting of polyaryl(meth)acrylates, polyaralkyl(meth)acrylates, and polyaryloxyalkyl(meth)acrylates.
- 3. A composition according to claim 1 wherein the first polymer component is selected from the group consisting of: polyaryl(meth)acrylates, polyaralkyl(meth)acrylates, and polyaryloxyalkyl(meth)acrylates with aryl groups having from 6 to 16 carbon atoms, having a weight average molecular weight of about 50 to about 900 kilodaltons.
- 4. A composition according to claim 2 wherein the polyaryl(meth)acrylates are selected from the group consisting of poly-9-anthracenylmethacrylate, polychlorophenylacrylate, polymethacryloxy-2-hydroxybenzophenone, polymethacryloxybenzotriazole, polynaphthylacrylate, polynaphthylmethacrylate, poly-4-nitrophenylacrylate, polypentachloro(bromo, fluoro)acrylate and methacrylate, polyphenylacrylate and methacrylate, the polyaralkyl(meth)acrylates are selected from the group consisting of polybenzylacrylate and methacrylate, poly-2-phenethylacrylate and methacrylate, poly-1-pyrenylmethylmethacrylate, and the polyaryloxyalkyl(meth)acrylates are selected from the group consisting of polyphenoxyethylacrylate and methacrylate, polyethyleneglycolphenylether acrylates and methacrylates.
- 5. A composition according to claim 2 wherein the second polymer component is selected from the group consisting of poly(ethylene-co-vinyl acetate) polymers having vinyl acetate concentrations of between about 8% and about 90% by weight.
- 6. A composition according to claim 5 wherein the vinyl acetate concentrations are between about 20% and about 40% by weight.
- 7. A composition according to claim 1 wherein the composition is provided in a form selected from the group of solution, emulsion, mixture, dispersion or blend.
- 8. A composition according to claim 7 wherein the total combined concentrations of both polymers in the composition is between about 0.05% and about 70% by weight.
- 9. A composition according to claim 2 wherein the first polymeric component has a weight average molecular weight of from about 100 kilodaltons to about 500 kilodaltons and the poly(ethylene-co-vinyl acetate) has a vinyl acetate content of from about 20% to about 40% by weight.
- 10. A composition according to claim 9 wherein the bioactive agent is dissolved or suspended in the coating composition at a concentration of about 0.01% to about 90% by weight and is selected from the group consisting of thrombin inhibitors, antithrombogenic agents, thrombolytic agents, fibrinolytic agents, vasospasm inhibitors, calcium channel blockers, vasodilators, antihypertensive agents, antimicrobial agents, antibiotics, inhibitors of surface glycoprotein receptors, antiplatelet agents, antimitotics, microtubule inhibitors, anti secretory agents, actin inhibitors, remodeling inhibitors, antisense nucleotides, anti metabolites, antiproliferatives, anticancer chemotherapeutic agents, anti-inflammatory steroid or non-steroidal anti-inflammatory agents, immunosuppressive agents, growth hormone antagonists, growth factors, dopamine agonists, radiotherapeutic agents, peptides, proteins, enzymes, extracellular matrix components, inhibitors, free radical scavengers, chelators, antioxidants, anti polymerases, antiviral agents, photodynamic therapy agents, and gene therapy agents.
- 11. A method of coating a device with a bioactive agent, the method comprising the steps of providing a composition according to claim 1 and applying the composition to the device.
- 12. A method according to claim 11 wherein the coating is provided upon a surface of an implanted medical device under conditions in which humidity is controlled either by controlling the humidity at which the device is coated with the composition and/or by controlling the water content of the coating or coated composition itself.
- 13. A method according to claim 11 wherein the composition is provided upon a surface of an implanted medical device and comprises a plurality of coating compositions, each independently coated under conditions of controlled humidity.
- 14. A method according to claim 11 wherein the device is one that undergoes flexion and/or expansion in the course of implantation or use in vivo.
- 15. A method according to claim 11 wherein the first polymer component is selected from the group consisting of: polyaryl(meth)acrylates, polyaralkyl(meth)acrylates, and polyaryloxyalkyl(meth)acrylates with aryl groups having from 6 to 16 carbon atoms, having a weight average molecular weight of about 50 to about 900 kilodaltons.
- 16. A method according to claim 15 wherein the polyaryl(meth)acrylates are selected from the group consisting of poly-9-anthracenylmethacrylate, polychlorophenylacrylate, polymethacryloxy-2-hydroxybenzophenone, polymethacryloxybenzotriazole, polynaphthylacrylate, polynaphthylmethacrylate, poly-4-nitrophenylacrylate, polypentachloro(bromo, fluoro)acrylate and methacrylate, polyphenylacrylate and methacrylate, the polyaralkyl(meth)acrylates are selected from the group consisting of polybenzylacrylate and methacrylate, poly-2-phenethylacrylate and methacrylate, poly-1-pyrenylmethylmethacrylate, and the polyaryloxyalkyl(meth)acrylates are selected from the group consisting of polyphenoxyethylacrylate and methacrylate, polyethyleneglycolphenylether acrylates and methacrylates.
- 17. A method according to claim 12 wherein the coating composition is coated onto the device under relative humidity controlled at a level of between about 0% and about 95% relative humidity.
- 18. A method according to claim 11 wherein the second polymer component is selected from the group consisting of poly(ethylene-co-vinyl acetate) polymers having vinyl acetate concentrations of between about 8% and about 90% by weight.
- 19. A method according to claim 18 wherein the vinyl acetate concentrations are between about 20% and about 40% by weight.
- 20. A method according to claim 11 wherein the composition is provided in a form selected from the group of solution, emulsion, mixture, dispersion or blend.
- 21. A method according to claim 20 wherein the total combined concentrations of both polymers in the composition is between about 0.05% and about 70% by weight.
- 22. A method according to claim 20 wherein the first polymeric component has a weight average molecular weight of from about 100 kilodaltons to about 500 kilodaltons and the poly(ethylene-co-vinyl acetate) has a vinyl acetate content of from about 20% to about 40% by weight.
- 23. A method according to claim 22 wherein the first polymeric component has a weight average molecular weight of from about 200 kilodaltons to about 400 kilodaltons and the poly(ethylene-co-vinyl acetate) has a vinyl acetate content of from about 30% to about 34% by weight.
- 24. A method according to claim 11 wherein the bioactive agent is dissolved or suspended in the coating composition at a concentration of about 0.01% to about 90% by weight.
- 25. A method according to claim 24 wherein the bioactive agent is selected from the group consisting of thrombin inhibitors, antithrombogenic agents, thrombolytic agents, fibrinolytic agents, vasospasm inhibitors, calcium channel blockers, vasodilators, antihypertensive agents, antimicrobial agents, antibiotics, inhibitors of surface glycoprotein receptors, antiplatelet agents, antimitotics, microtubule inhibitors, anti secretory agents, actin inhibitors, remodeling inhibitors, antisense nucleotides, anti metabolites, antiproliferatives, anticancer chemotherapeutic agents, anti-inflammatory steroid or non-steroidal anti-inflammatory agents, immunosuppressive agents, growth hormone antagonists, growth factors, dopamine agonists, radiotherapeutic agents, peptides, proteins, enzymes, extracellular matrix components, inhibitors, free radical scavengers, chelators, antioxidants, anti polymerases, antiviral agents, photodynamic therapy agents, and gene therapy agents.
- 26. A method according to claim 12 wherein the bioactive agent is dissolved or suspended in the coating composition at a concentration of about 0.01% to about 90% by weight.
- 27. A method according to claim 26 wherein the bioactive agent is selected from the group consisting of thrombin inhibitors, antithrombogenic agents, thrombolytic agents, fibrinolytic agents, vasospasm inhibitors, calcium channel blockers, vasodilators, antihypertensive agents, antimicrobial agents, antibiotics, inhibitors of surface glycoprotein receptors, antiplatelet agents, antimitotics, microtubule inhibitors, anti secretory agents, actin inhibitors, remodeling inhibitors, antisense nucleotides, anti metabolites, antiproliferatives, anticancer chemotherapeutic agents, anti-inflammatory steroid or non-steroidal anti-inflammatory agents, immunosuppressive agents, growth hormone antagonists, growth factors, dopamine agonists, radiotherapeutic agents, peptides, proteins, enzymes, extracellular matrix components, inhibitors, free radical scavengers, chelators, antioxidants, anti polymerases, antiviral agents, photodynamic therapy agents, and gene therapy agents.
- 28. A method according to claim 18 wherein the bioactive agent is dissolved or suspended in the coating composition at a concentration of about 0.01% to about 90% by weight.
- 29. A method according to claim 28 wherein the bioactive agent is selected from the group consisting of thrombin inhibitors, antithrombogenic agents, thrombolytic agents, fibrinolytic agents, vasospasm inhibitors, calcium channel blockers, vasodilators, antihypertensive agents, antimicrobial agents, antibiotics, inhibitors of surface glycoprotein receptors, antiplatelet agents, antimitotics, microtubule inhibitors, anti secretory agents, actin inhibitors, remodeling inhibitors, antisense nucleotides, anti metabolites, antiproliferatives, anticancer chemotherapeutic agents, anti-inflammatory steroid or non-steroidal anti-inflammatory agents, immunosuppressive agents, growth hormone antagonists, growth factors, dopamine agonists, radiotherapeutic agents, peptides, proteins, enzymes, extracellular matrix components, inhibitors, free radical scavengers, chelators, antioxidants, anti polymerases, antiviral agents, photodynamic therapy agents, and gene therapy agents.
- 30. A combination comprising a device coated with a composition according to the method of claim 11, the combination being adapted to provide controlled release of the bioactive agent when positioned in an aqueous environment.
- 31. A combination according to claim 30 wherein the device is an implantable medical device that that undergoes flexion and/or expansion in the course of implantation or use in vivo, and the surface is coated with a plurality of coating compositions, each independently coated under conditions of controlled humidity.
- 32. A combination according to claim 30 wherein the first polymer component is selected from the group consisting of polyaryl(meth)acrylates, polyaralkyl(meth)acrylates, and polyaryloxyalkyl(meth)acrylates with aryl groups having from 6 to 16 carbon atoms, having a weight average molecular weight of about 50 to about 900 kilodaltons, and the second polymer component is selected from the group consisting of poly(ethylene-co-vinyl acetate) polymers having vinyl acetate concentrations of between about 8 % and about 90% by weight.
- 33. A combination according to claim 32 wherein the total combined concentrations of both polymers in the composition is between about 0.05% and about 70% by weight, and the bioactive agent is dissolved or suspended in the coating composition at a concentration of about 0.01% to about 90% by weight.
- 34. A combination according to claim 33 wherein the device is selected from the group consisting of catheters and stents.
- 35. A combination according to claim 34 wherein the catheter is selected from the group consisting of urinary catheters and intravenous catheters.
- 36. A combination according to claim 30 wherein the weight of the coating attributable to the bioactive agent is in the range of about one microgram to about 10 mg of bioactive agent per cm2 of the gross surface area of the device.
- 37. A combination according to claim 36 wherein the weight of the coating attributable to the bioactive agent is between about 0.01 mg and about 0.5 mg of bioactive agent per cm2 of the gross surface area of the device, and the coating thickness of the composition is in the range of about 0.1 micrometers to about 100 micrometers.
- 38. A method of using a combination of claim 30, the method comprising the steps of positioning the device in vivo under aqueous conditions suitable to permit the device to release the bioactive agent in situ.
- 39. A method according to claim 38 wherein the first polymer component is selected from the group consisting of polyaryl(meth)acrylates, polyaralkyl(meth)acrylates, and polyaryloxyalkyl(meth)acrylates with aryl groups having from 6 to 16 carbon atoms, having a weight average molecular weight of about 50 to about 900 kilodaltons, and the second polymer component is selected from the group consisting of poly(ethylene-co-vinyl acetate) polymers having vinyl acetate concentrations of between about 8 % and about 90% by weight.
- 40 A method according to one of claims 11, 24, or 38 wherein the composition further comprises a solvent in which the polymers form a true solution.
- 41. A method according to one of claims 11, 24 or 38 wherein the device comprises a biomaterial selected from the group consisting of acrylics, vinyls, nylons, polyurethanes, polycarbonates, polyamides, polysulfones, poly(ethylene terephthalate), polylactic acid, polyglycolic acid, polydimethylsiloxanes, and polyetheretherketones, natural organic materials, metals, ceramics, glass, silica, and sapphire.
- 42. A method according to claim 41 wherein the acrylics are selected from methyl acrylate, methyl methacrylate, hydroxyethyl methacrylate, hydroxyethyl acrylate, acrylic acid, methacrylic acid, glyceryl acrylate, glyceryl methacrylate, methacrylamide, and acrylamide, the vinyls are selected from ethylene, propylene, styrene, vinyl chloride, vinyl acetate, vinyl pyrrolidone, and vinylidene difluoride, the nylons are selected from polycaprolactam, polylauryl lactam, polyhexamethylene adipamide, and polyhexamethylene dodecanediamide, the organic materials are selected from human tissue, wood, cellulose, compressed carbon, and rubber, the metals are selected from titanium, stainless steel, cobalt chromium, gold, silver, copper, and platinum and their alloys, and the ceramics are selected from silicon nitride, silicon carbide, zirconia, and alumina, including combinations of such biomaterials.
- 43. A method according to one of claims 11, 24 or 38 wherein the device is selected from the group consisting of vascular devices, orthopedic devices, dental devices, drug delivery devices, ophthalmic devices, glaucoma drain shunts, urological devices, synthetic prostheses, dialysis tubing and membranes, blood oxygenator tubing and membranes, blood bags, sutures, membranes, cell culture devices, chromatographic support materials, and biosensors.
- 44. A method according to claim 43 wherein the vascular devices are selected from grafts, stents, catheters, valves, artificial hearts, and heart assist devices, the orthopedic devices are selected from joint implants, fracture repair devices, and artificial tendons, the dental devices are selected from dental implants and fracture repair devices, and the urological devices are selected from penile, sphincter, urethral, bladder, and renal devices.
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] The present application is a continuation in part of U.S. patent application filed Nov. 11, 2001 and assigned Ser. No. 09/989,033 which is a divisional of U.S. patent application filed Oct. 20, 2000 and assigned Ser. No. 09/693,771, which is a divisional of U.S. patent application filed Apr. 15, 1999 and assigned Ser. No. 09/292,510, which is a continuation-in-part of provisional US patent application filed Apr. 27, 1998 and assigned Serial No. 60/083,135, the entire disclosure of which is incorporated herein by reference.
Divisions (1)
|
Number |
Date |
Country |
Parent |
09693771 |
Oct 2000 |
US |
Child |
09989033 |
Nov 2001 |
US |
Continuations (1)
|
Number |
Date |
Country |
Parent |
09292510 |
Apr 1999 |
US |
Child |
09693771 |
Oct 2000 |
US |
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
09989033 |
Nov 2001 |
US |
Child |
10175212 |
Jun 2002 |
US |