The present invention is directed, in general, to communication systems and, more specifically, to a multimedia system employable with a tiered wireless network architecture.
Recent improvements in wireless technologies have promoted the rapid adoption of cellular phones worldwide. A similar adoption of portable computing devices capable of multimedia services is currently under way. Practical and cost effective wireless networks to provide voice capacity have evolved over the recent decades. The wireless networks are designed to utilize scarce spectrum resources to provide service across the broadest possible geographic areas for the greatest number of users. The multimedia services employ substantially more bandwidth to deliver a product that is acceptable to the users, which is further complicated by a need to achieve reasonable network performance. At the same time, delivering a system that is economically feasible demands significantly more spectrum than is now feasible.
In parallel to the aforementioned trends, a standardization of protocols on a worldwide basis to support broadband services utilizing unlicensed spectrum is evolving. While this promotes a creation of portable network extensions within a home or office environment, it does not provide a platform for efficient or effective wide area public networks. While there are no prohibitions in the United States against the use of unlicensed spectrum portable network extensions in the public networks, there are severe limitations on the acceptable emissions which significantly reduces the coverage therefrom.
The use of point-to-multipoint radios may provide a solution to a back haul problem (i.e., the effective allocation of network resources to transmit wireless information such as voice or data communications from a user employing the laptop computer or the like over, for instance, the Internet), but it provides little improvement in network performance or manageability. Also, the manageability and reliability of the public networks is impaired if single points of failure are widely dispersed. Even if it were practical to have a large number of low cost radios blanketing a neighborhood or other localized area, from a practical standpoint, establishing a high quality service that penetrates the walls of buildings and still provides adequate throughput is very difficult at these lower emission levels.
Accordingly, what is needed in the art is a multimedia system capable of providing broadband multimedia services to users employing, preferably, wireless devices such as cellular phones, portable computing devices, or the like employable with a tiered wireless network architecture that addresses concerns such as back haul problems and limitations of available spectrum and overcomes the deficiencies in the prior art.
These and other problems are generally solved or circumvented, and technical advantages are generally achieved, by advantageous embodiments of the present invention which includes a wireless router access point for use with a mesh network employing a mesh protocol and a point-to-multipoint network employing a point-to-multipoint protocol, and a method of operating the same. In one embodiment, the wireless router access point includes a mesh access point subsystem configured to translate between a point-to-multipoint protocol and a mesh protocol to communicate with the mesh network. The wireless router access point also includes a point-to-multipoint access point subsystem configured to translate between a mesh protocol and a point-to-multipoint protocol to communicate with a user of the point-to-multipoint network.
In another aspect, the present invention provides a multimedia system for use with a mesh network employing a mesh protocol and a point-to-multipoint network employing a point-to-multipoint protocol. The multimedia system includes a plurality of wireless router access points and a concentrator wireless router access point. In one embodiment, the wireless router access points includes a mesh access point subsystem configured to translate between a point-to-multipoint protocol and a mesh protocol to communicate with the mesh network. The wireless router access points also include a point-to-multipoint access point subsystem configured to translate between a mesh protocol and a point-to-multipoint protocol to communicate with a user of the point-to-multipoint network. The concentrator wireless router access point includes a wireless router access point subsystem configured to provide a wireless interface and functionality to communicate with one of the plurality of wireless router access points. The concentrator wireless router access point also includes a control/interface subsystem configured to provide control functions to manage the plurality of wireless router access points. The multimedia system may also include a cluster feeder configured to provide a bridging function between the user and ones of the plurality of wireless router access points or the concentrator wireless router access point.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures or processes for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.
For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
The making and using of the presently preferred embodiments are discussed in detail below. It should be appreciated, however, that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.
The present invention will be described with respect to preferred embodiments in a specific context, namely, a wireless router access point in the environment of a multimedia system and related methods of delivering broadband multimedia services. The principles of the present invention, however, may also be applied to other types of access points and controllers employable with tiered wireless network architectures. The advantages associated with the wireless router access point and multimedia system further exploit the benefits associated with wireless communications and can further exploit the advantages of growing the availability of the broadband multimedia services in a viral manner nationally or internationally. For purposes of clarity, devices capable of communicating wirelessly with a wireless network may be referred to as wireless devices.
Referring initially to
The back haul/aggregation networks 110 are connected to a regional/national data center 120 which aggregates the entire network and provides primary connectivity to a partner/customer network 130. The back haul/aggregation networks 110 include an aggregation network 140 and at least one area concentrator (one of which is designated 150). The number of area concentrators 150 depends on the areas served by the aggregation network 140 and can vary from a single unit to a multitude of units.
A plurality of clusters (one of which is designated 160) are connected to the area concentrator 150 and each cluster 160 forms a wireless local area network. The number of clusters 160 supported by each area concentrator 150 depends on a size and area distribution thereof. The clusters 160 serve users (one of which is designated 170) within a proximity of the cluster 160. As illustrated, the multimedia system is employable within an environment of a tiered wireless network architecture.
Turning now to
The partner/customer network 200 also includes corporate connections referred to as corporate A connection 240 and corporate B connection 250. The corporate A connection 240 is connected through one of the partner networks such as an Internet service provider 220 whereas the corporate B connection 250 is directly coupled to the regional/national data center 275. Those skilled in the art should understand that other network systems and connections may readily exist within the partner/customer network 200. The partner/customer network 200 also includes a cellular network 260 capable of providing, for instance, 2.5 G or 3 G data services. The regional/national data center 275 interfaces with the partner/customer network 200 providing communications to be initiated and terminated between the partner/customer network 200 and a back haul/aggregation network (see
Turning now to
The data center 300 includes a dynamic host configuration protocol and domain name system server (“DHCP/DNS”) 310, an authentication, authorization, and accounting server (“AAA Server”) 320, a file transfer protocol server (“FTP Server”) 330, and a system log (“SYSLOG”) 340. The data center 300 also includes a cellular gateway 350, a main router/switching function 360, a network management center (“NMC”) 370, and a subscriber and services management database 375. Of course, other systems such as security systems and virtual private networks are also typically employed with the data center 300. The connectivity to the data center 300 will typically be via a fiber ring or dedicated fiber lines although wireless connections are also comprehended.
The functionality of the data center 300 includes subscriber and provisioning services, virtual private network functions, security services, content delivery, value added services, quality of service management, traffic shaping and policing, connectivity to the Internet service providers and corporate customers, flow through provisioning, accounting and billing, fault management and fault correlation, performance management and operator security management. The aforementioned functions and methods to implement the functionality are well known in the art.
Turning now to
The area concentrator 410 includes an edge concentrator 420 functioning as a translator/router/switch and as the primary interface to the other back haul/aggregation network 440. The area concentrator 410 also includes a plurality of wireless point-to-multipoint base transceiver systems (designated “PTM BTS”) at distributed locations therein. The point-to-multipoint base transceiver systems PTM BTS may be sectored or configured as full 360 degree units and typically are mounted on relatively high locations such as the top of a building, water tower or existing radio towers, and cover an area with a radius typically from about two to six miles based primarily on a capacity and range capability of the wireless systems.
As an example, the point-to-multipoint base transceiver systems PTM BTS may be embodied in a Proxim Tsunami Multipoint Wireless Ethernet System (hereinafter “Proxim System”). The Proxim System provides from 20 to 60 megabits/sector employing up to six sectors per base station. The Proxim System, and other analogous systems, are capable of wirelessly aggregating the traffic from multiple clusters within the aforementioned two to six mile radius into a single location whereby the traffic can be routed into a larger back haul/aggregation network. While the Proxim System employs a 5725 to 5825 gigahertz unlicensed band, other unlicensed bands or licensed bands may also be employed.
The point-to-multipoint base transceiver systems PTM BTS provide wireless connections to point-to-multipoint subscriber units (designated “PTM SU”), which are coupled to a cluster (one of which is designated 430). The clusters 430 have two connections to the point-to-multipoint base transceiver systems PTM BTS for redundancy such that there is no single point failure between any cluster 430 and the area concentrator 410. While only two clusters 430 are shown, the number of clusters 430 served by an area concentrator 410 can vary from at least one to a multitude (e.g., 50 to 75) of clusters 430 depending upon demographics and topographies. In the illustrated embodiment, the clusters 430 are designed to be located at specific areas of high user traffic such as strip shopping malls, commercial areas where shops and other places of business are located, commercial parks, or multiple dwelling units. The specific number of clusters 430 as well as the size thereof may vary depending on the size and concentration of covered establishments.
Regarding the structure, the clusters 430 include a multimedia system formed by wireless router access points (designated as “WRAPs”), concentrator wireless router access points (designated as “cWRAPs”) and cluster feeders (not shown). The wireless router access points WRAPs and the concentrator wireless router access points cWRAPs form a mesh network of individual point-to-multipoint access points (e.g., 802.11 access points) to a well defined area designated as the cluster 430. In the context herein, reference to 802.11 refers to any 802.11 based communication protocol and service as promulgated by the Institute of Electrical and Electronic Engineers. Specifically, the 802.11 type wireless local area network service is offered to individual users in this manner. The clusters 430 need not be contiguous, but exist where justified due to traffic and density of users and business establishments.
Within the cluster 430 is at least one concentrator wireless router access point cWRAP. The concentrator wireless router access point cWRAP is basically a wireless router access point WRAP with additional control capability to collect traffic to and from the wireless router access points WRAPs and to connect to the point-to-multipoint subscriber units PTM SUs. Multiple concentrator wireless router access points cWRAPs are often used for redundancy to eliminate single point failures at this junction. The remaining area of the cluster 430 is generally serviced with wireless router access points WRAPs and also cluster feeders. The specific number of wireless router access points WRAPs, concentrator wireless router access points cWRAPs and cluster feeders to support a cluster 430 generally depends on the area of the cluster 430, the specific geometry of the cluster 430 as related to density and obstacles, and the traffic load of the cluster 430. While the service to be offered to users is generally 802.11b, the principles of this invention are equally applicable to other existing, improved, enhanced and new versions of 802.11 (e.g., 802.11a, 802.11g) as well as other point-to-multipoint services based on other wireless standards consistent with physical propagation, federal communication commission specifications, and interference within the cluster 430.
Turning now to
The cluster includes a multimedia system designed for the purpose of providing a customer interface, establishing interconnecting mesh communications and connecting to an area concentrator (see
In general, a wireless router access point 520 is wirelessly connected to other wireless router access points 520 or concentrator wireless router access points 530 to which a wireless mesh interface can be established. In the event of a single wireless router access point 520 failure, the mesh network will realign and the integrity of the rest of the network will be maintained. As a result, a cluster does not experience catastrophic failure due to a single point failure with a wireless router access point 520. It should be understood, however, that a wireless router access point 520 can connect with any wireless router access point 520 or concentrator wireless router access point 530 wherein a wireless connection can be established. As mentioned above, the concentrator wireless router access points 530 are basically wireless router access points 520 with additional control capabilities to act as traffic concentrators for the cluster. The concentrator wireless router access points 530 are also prime connection points to an area concentrator. While at least one concentrator wireless router access point 530 is located in each cluster, additional concentrator wireless router access points 530 may be included in a cluster to handle higher traffic and to provide redundancy therein.
The cluster feeders 540 act in a bridging or “gap-filling” fashion to provide point-to-multipoint coverage to areas of the cluster that are not directly accessible by the wireless router access points 520 or the concentrator wireless router access points 530. Due to the geometry or other factors of the commercial establishment 510, a cluster may need a significant number of cluster feeders 540, whereas other clusters may not need any cluster feeders 540. The cluster feeders 540 may be externally mounted or internally mounted with respect to the commercial establishment 510.
A multimedia system according to the principles of the present invention embodied in the cluster provides an architecture that delivers reliable point-to-multipoint services (e.g., 802.11 services) to users in an area of commercial establishments 510. The architecture integrates a natural back haul redundancy with the ability to add wireless router access points 520, concentrator wireless router access points 530 and cluster feeders 540 for the purpose of adding capacity and improving coverage integrity. The mesh interconnection among the wireless router access points 520 and the concentrator wireless router access points 530 allows for a self management network loading and substantially eliminates the need for extensive network planning prior to initial installation of a network and complex replanning due to changing traffic patterns within the cluster. Exemplary features of the architecture include fail soft functionality, ease of adding wireless router access points 520 and therefore cluster capacity, and efficient routing of traffic within the cluster.
Turning now to
The wireless router access points 610 connect to other wireless router access points and the concentrator wireless router access points via a mesh network. The wireless router access points 610 connect to the cluster feeder via the mesh network or a point-to-multipoint network (e.g., a 802.11 network). The wireless router access points 610 connect to the users 630 via the point-to-multipoint network. The cluster feeder 620, which may be internally or externally mounted, provides a bridging connection between a user 630 and the mesh network to improve indoor or blocked coverage therefor. Without the cluster feeders 620, the user 630 may have no connection or a poor connection to the mesh network. The cluster feeders 620 enable a user 630 to be connected or allow a highly localized area to be covered that would otherwise be unavailable. The user 630 represents a wireless device (e.g., as a personal digital assistant or laptop computer), a desktop computer, a router, a switch, a hub or similar device with connectivity to multiple versions of the above.
Turning now to
As hereinafter discussed, the wireless router access point includes a mesh access point subsystem and a point-to-multipoint access point subsystem. The mesh access point subsystem translates between the point-to-multipoint protocol and the mesh protocol to communicate with the mesh network. The point-to-multipoint access point subsystem translates between the mesh protocol and the point-to-multipoint protocol to communicate with the point-to-multipoint network. Additionally, there are a wide variety of radio protocols at different frequencies that might be used for the mesh network operating in the cluster. If the same frequencies are used in the mesh network as the radio from the wireless access points (or repeater) to the user, radio interference and traffic congestion may be an issue. Using a higher bandwidth technology for the mesh network than for the point-to-multipoint network provides a better opportunity for better throughput to the users.
A bi-directional wireless router access point is illustrated in
An output of the mesh conditioning input/output filter 710 is coupled to a mesh bi-directional amplifier 715, which amplifies signals for a mesh access point subsystem 720 associated with the mesh network. The mesh access point subsystem 720 includes communication circuitry and control elements normally associated with an access point for a mesh network. The mesh access point subsystem 720 provides functionality that allows the wireless router access point to communicate with other wireless router access points in a cluster. The mesh access point subsystem 720 is coupled to a point-to-multipoint access point subsystem (also referred to as a “PTM access point subsystem;” e.g., a 802.11 access point subsystem) 725 employing, for instance, a transmission control protocol/Internet protocol. The point-to-multipoint access point subsystem 725 provides functionality for servicing users over a point-to-multipoint network such as a 802.11 network directly or via cluster feeders as described above. The point-to-multipoint access point subsystem 725 is coupled to a point-to-multipoint bi-directional amplifier 730, which is coupled to a point-to-multipoint conditioning input/output filter 735 and a point-to-multipoint antenna 740. The point-to-multipoint bi-directional amplifier 730, the point-to-multipoint conditioning input/output filter 735 and the point-to-multipoint antenna 740 provide amplification, filtering and interface functions to the point-to-multipoint network. The wireless router access point is contained within an environmental case and also includes other ancillary support subsystems such as a battery 743 (for battery back-up power), protection subsystems (for system protection functionality such as a lightning arrestor 746), and a power conditioning supply 749 (for conditioning the power to operate the wireless router access point).
Another embodiment of a wireless router access point is illustrated in
A connection is made to the point-to-multipoint network such as a 802.11 network via a point-to-multipoint receive antenna 786 (for receiving signals from the point-to-point network), which is coupled to a point-to-multipoint receive conditioning filter 782 (for filtering the signals) and a point-to-multipoint receive amplifier 776 (for amplifying the signals). The point-to-multipoint receive amplifier 776 is coupled to the point-to-multipoint access point subsystem 775. With respect to the point-to-multipoint transmission path, the point-to-multipoint access point subsystem 775 provides an input to a point-to-multipoint transmit amplifier 778 which amplifies signals for a point-to-multipoint transmit conditioning filter 784 that filters signals for a point-to-multipoint transmit antenna 788. The wireless router access point is contained within an environmental case and also includes other ancillary support subsystems such as a battery 793 (for battery back-up power), protection subsystems (for system protection functionality such as a lightning arrestor 796), and a power conditioning supply 799 (for conditioning the power to operate the wireless router access point).
Turning now to
Referring to
Referring to
While the wireless router access points and the concentrator wireless router access points have been described with respect to a single structure, it is well within the broad scope of the present invention to separate portions thereof into multiple units coupled together via, for instance, wired connections. For example, a mesh access point subsystem and the related components may be mounted in an enclosure at a different location of a site embodying the wireless router access point or the concentrator wireless router access point from the point-to-multipoint access point subsystem and connected via a wired connection. In any event, a physical separation of the respective subsystems does not detract from the concepts discussed above.
Furthermore, the antennas referenced above with respect to the illustrated embodiments include single elements for clarity. It is fully comprehended, however, that an antenna function may also consist of multiple elements configured to achieve diversity wherein a plurality of antennas are configured to be of sufficient number of wavelengths apart, usually around ten, or of different polarities so that the signals to and from an element are decorrelated from that of another. For those cases where diversity is employed, the transceiver function of the wireless router access points is employable therewith. In addition to diversity, different polarizations such as horizontal, vertical, or circular may be employed to improve a performance of the wireless router access points and the concentrator wireless router access points in specific conditions usually related to multipath or interference conditions.
Turning now to
Referring to
Turning now to
Turning now to
In the same manner, a third antenna 1035 accepts a signal employing a point-to-multipoint protocol that is amplified by the third amplifier 1030 and a fourth amplifier 1040 with the amplified signal being relaunched by a fourth antenna 1045. Further, an output of the third amplifier 1030 is sampled by another signal sense and gain module 1050 which reduces the gain of the first amplifier 1010 in the presence of signal incident at the third antenna 1020 and thus substantially eliminates harmful positive feedback in the reverse direction as well. A radio frequency barrier 1052 is provided to substantially eliminate harmful crosstalk and isolate the two signal paths.
Referring to
The channel sense and select module 1070 determines a channel selected by the first PTM network transceiver 1060 and selects a quality substantially non-interfering channel to be used by the second PTM network transceiver 1065. A typical method for performing the aforementioned function is to employ a look-up table, however, other approaches are valid and fall within the broad scope of the present invention. The second point-to-multipoint network transceiver 1065 interfaces with a second antenna 1075 to provide wideband coverage within a single or small concentrated environment of users such as, but not limited to, an office, restaurant, or apartment.
Referring to
A first antenna 1080 connects to a mesh network transceiver 1085 and thereby establishes a communication link with a cluster via a mesh network. The mesh network transceiver 1085 is connected to a point-to-multipoint network transceiver 1090, which provides a primary interface to provide wideband coverage to a single or small group of users via signals launched from and received by a second antenna 1095. A channel sense and select module 1098 of the channel feeder selects a quality substantially non-interfering channel to be used by point-to-multipoint network transceiver 1090. One method of performing the aforementioned function is to have the point-to-multipoint network transceiver 1090 survey all available channels and provide both existence and relative strength to the channel sense/select module 1098. Then, via a decision tree or look-up table, the quality channel is selected and communicated to the point-to-multipoint network transceiver 1090.
In yet another embodiment, a cluster feeder may be embodied in a point-to-multipoint repeater, whereby packets are received and transmitted according to an appropriate point-to-multipoint specification across a cluster feeder boundary. While the present embodiments of the cluster feeders are disclosed in a single structure, it should be understood that portions of the cluster feeders may be separated into multiple units connected via, for instance, a wired connection. For example, portions of the cluster feeders that perform external communicating functions may be mounted at a different location from the portions of the cluster feeder that perform internal communicating functions. In any event, a physical separation of the respective subsystems of the cluster feeders does not detract from the concepts discussed above.
Furthermore, the antennas referenced above with respect to the illustrated embodiments include single elements for clarity. It is fully comprehended, however, that an antenna function may also consist of multiple elements configured to achieve diversity wherein a plurality of antennas are configured to be of sufficient number of wavelengths apart, usually around ten, or of different polarities so that the signals to and from an element are decorrelated from that of another. For those cases where diversity is employed, the transceiver function of the cluster feeders is employable therewith. In addition to diversity, different polarizations such as horizontal, vertical, or circular may be employed to improve a performance of the wireless router access points and the concentrator wireless router access points in specific conditions usually related to multipath or interference conditions.
Turning now to
By way of background, the complexity of most enterprise applications has led to confusion, misunderstanding, and skepticism within the information technology departments of organizations and among potential users. Many mobile enterprise applications have failed to meet the expectations of the organizations or the users because the applications failed to operate properly, and the applications were not robust or reliable. With the proper network architecture, however, many of the shortcomings can be overcome. Whether the application is field force automation, fleet management and dispatch, or intranet access for mobile employees, there are three key attributes that are almost uniformly necessary for success, namely, coverage, security, and cost-effectiveness, which are not mutually exclusive.
For instance, the amount and type of coverage and the performance of the network within a coverage area will drive the cost of the network and the resulting price of the access service. Also, the way in which the security is provided can significantly impact the cost of the service and the ease of use by the mobile workers. To achieve a balance that provides good network coverage with good throughput and performance, an integrated approach using a wireless local area network for broadband access in high-density areas and the general packet radio service network for medium bandwidth access across a wide coverage area is believed to provide a robust solution. Transparent mobility between similar networks is very complex and may become more difficult when mobility between different types of networks is desired.
Referring to
Referring to
With the transmission control protocol, packets sent over the network are acknowledged and retransmitted in the case of packet errors or loss, which becomes a very important issue in wireless networks that exhibit fading and other impairments. The transmission control protocol is designed to assure performance in a wired network and actually degrades performance in a wide area wireless network. Layer five introduces a new protocol developed specifically for the general packet radio service network, namely, a general packet radio service tunneling protocol (generally designated “GTP”).
Tunneling is a mechanism for transporting Internet protocol packets between two similar endpoints over an interconnecting but dissimilar network (e.g., an inter-public land mobile network backbone). Tunneling is achieved by encapsulating packets coming from the transmission control protocol/user datagram protocol layer into another packet with a new header including an Internet protocol address. The original packet becomes the payload for the new combined encapsulated packet structure. In addition to solving the potential incompatibilities between the end networks (e.g., general packet radio service networks) and the connecting network (e.g., inter-public land mobile networks), the tunnel also provides a degree of security since the original data packet is not ‘seen’ by the connecting network.
The general packet radio service tunneling protocol carries the user data and signaling between the visited and home networks to support terminal identification and authentication as well as mobility management functions such as general packet radio service attach or detach and packet data protocol context activation and deactivation (i.e., a data session). The general packet radio service tunneling protocol is implemented on a serving general packet radio service support node (generally designated “SGSN”) and the gateway general packet radio service network support node and has little relevance outside of the Gp interface and the Gi interface. The general packet radio service tunneling protocol establishes a tunnel on a demand basis between a connecting general packet radio service support node pair to carry traffic therebetween.
An enterprise customer with a mobile station running a virtual private network client on an end-to-end basis also may create a secure tunnel and likely use a transmission control protocol. As discussed above, this can cause significant degradation in performance. To support cost effective and secure access for corporate users, a server providing a pivot/anchor function is a logical solution.
In summary, the need for an enterprise to deploy mobile applications to improve their competitive position has never been greater. Corporate security and a reasonable expectation of success are the overriding factors for deciding what, when, and how these applications will be deployed. While there have been many attempts to create a viable mobile data market, for the first time there are non-proprietary wide area data networks, broadband wireless local area networks, and small high performance wireless devices available to support the whole range of possible applications.
The network architecture described herein deploys point-to-multipoint networks and interfaces the point-to-multipoint networks with greater mobile networks. There have been many attempts to service wireless local area network hotspots. The previous network architectures, however, do not scale beyond single areas or single served market segments. The tiered wireless network architecture achieves scale and scope by deploying a network to meet the needs of multiple market segments all sharing a common architecture. It is easily scalable from a local neighborhood to full nationwide coverage.
Thus, a tiered wireless network architecture has been introduced that concentrates a cluster of wireless router access points to concentrator wireless router access points to achieve much better economies of scale and a better balanced traffic load from the concentrator wireless router access point within the back haul/aggregation network. A wireless mesh technology connects wireless router access points within a cluster to service a local area and offer a number of significant advantages. For instance, mesh networks are unique in their ability to be self-healing. This fail-soft feature allows the network to provide reasonable performance even when a single access point has failed. In addition, a total capacity of the network available to any single user can be greater because the user can be served by more than one wireless router access point or through more than one path.
There are a wide variety of radio protocols at different frequencies that might be used for the mesh network operating in the cluster. If the same frequencies are used in the mesh network as the radio from the wireless router access points (or repeater) to the user, radio interference and traffic congestion may be an issue. Using a higher bandwidth technology for the mesh network than for the point-to-multipoint network provides a better opportunity for better throughput to the users. Capturing the signal at the window or wall of a commercial establishment and repeating the signal at permissible low power levels inside the establishment can also improve providing adequate service to the user. This service extending function can include all of the functionality found in the wireless router access point or a reduced set of functions if appropriate.
Additionally, the tiered wireless network architecture as described herein functions in an independent and autonomous mode when serving either local fixed customers or ad hoc users. Roaming within a cluster is handled in a totally transparent manner, as a part of the point-to-multipoint protocol design, and the network requires little, if any, modification. While there may be many clusters in a neighborhood, the clusters need not be contiguous and users who do not have a dual mode capability (e.g., 802.11 and general packet radio service or other wide area protocol) will reinitiate their session when migrating from one cluster to another.
For the users with dual mode capability, authentication, authorization and accounting functions will be performed within a partner/customer function by a cellular partner in a home network when the multimedia system is serving customers of a participating cellular partner. A throughput of the network described herein is significantly higher than a wide area network and a corporate application pivot server, through a caching function, can increase a performance of the applications and adjust for the difference in bandwidth and persistence.
Additionally, exemplary embodiments of the present invention have been illustrated with reference to specific electronic components. Those skilled in the art are aware, however, that components may be substituted (not necessarily with components of the same type) to create desired conditions or accomplish desired results. For instance, multiple components may be substituted for a single component and vice-versa. The principles of the present invention may be applied to a wide variety of network topologies.
Although the present invention has been described in detail, those skilled in the art should understand that they can make various changes, substitutions and alterations herein without departing from the spirit and scope of the invention in its broadest form.
This application is a continuation of U.S. patent application Ser. No. 10/794,507, filed on Mar. 5, 2004, entitled “Method and System for Providing Broadband Multimedia Services,” which claims the benefit of U.S. Provisional Application No. 60/452,371, filed on Mar. 6, 2003, entitled “A Method and System for Providing Broadband Multimedia Services,” both of which applications are hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60452371 | Mar 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10794507 | Mar 2004 | US |
Child | 12258278 | US |