The present invention generally relates to mobile communication. More specifically, the invention relates to handling mobile communication while roaming.
Roaming traffic contributes a significant percentage of an operator's revenue and even a better percentage of the operator's margin. With increasing competition and regulatory control, operators are being more pressured to increase their roaming revenue. Over the last few years, revenues to the network operators from home subscribers have consistently declined due to increased competition and resulting pricing pressures. On the other hand, revenues from roamers have consistently grown in the same period due to increased mobile penetration in local markets and an increase in travel.
As the global mobile roaming market business model is evolving, the industry understands the strategic importance of roaming to operator's revenues and profit margins and is adapting various newly proposed regulations. The operators understand that they must develop strategies for driving the number of roamers and roaming usage, while lowering tariff rates.
Amongst the roaming business, the average margins on inbound roaming revenue is around 80% and the average margins on outbound roaming revenue is around 20%. The key challenge lying before the operators is to maximize the outbound roaming revenues. While analyzing the outbound roaming revenues, it should be noted that on an average 40% of the outbound roaming revenues are contributed from Mobile Originated (MO) calls made by outbound roamers. Of these MO calls, almost 70% calls are back home and 10% are to other markets outside the current roaming destination of the subscribers. The revenue earned by the operator from these calls is minimal considering the revenue distribution between the current roaming network of the roamers and the destination network to where the call is made.
The roaming charges levied to a roamer for the outgoing calls made also constitute Inter Operator Tariffs and retail markups. The operators are increasingly coming under price pressure to offer better retail rates compared to wholesale tariff. The IOTs carry about 80% margin today whereas retail roaming charges carry only 20% margin. While the operators rely heavily on IOT discounting while setting up roaming agreements to maximize their roaming margins, the exception to the rule is outgoing international calls to other networks, the international outgoing calls continue to be expensive.
The key drivers constituting outbound roaming revenue are hence the Inter Operator Tariff, Termination Rates and Retail Markup. The operator can leverage the retail markup by selecting a “preferred partner” network that offers lesser IOT and lesser termination fees. There could also be an ecosystem of such preferred partner networks who offer each other discounted tariffs.
In accordance with the foregoing, there is a need in the art of a system, a method, for creating a solution that gives an operator the ways to leverage the ecosystem of preferred partner networks to enable a subscriber use a preferred network's IMSI while roaming, with the aim of maximizing the margin that accrues to the home operator. While the focus of the invention is on roaming, the methods can also be applied similarly to international calls too.
The present invention is directed towards a method and system for mobile communication where upon detecting a change in registration of a subscriber of a client network at a visited operator, the subscriber's client network's IMSI is switched to a hub operator's IMSI. The hub operator is selected from a cloudSIM hub ecosystem, depending on the location of the subscriber. Thereafter, a cloudSIM hub converts between the signaling on the hub operator's IMSI to signaling on the client operator's IMSI. Further, the cloudSIM hub relays the converted signaling between the visited operator and the client operator.
The present invention provides a cloudSIM service that is an ecosystem that leverages mobile operators to offer discounted tariff to partner networks and client networks which have subscribed to the cloudSIM service and are a part of cloudSIM ecosystem. Each cloudSIM hub allocates a series of IMSIs which can be allocated by the client operator to its subscribers. Each client operator subscriber opting for this service is allocated a special multi-IMSI SIM card which consists of the client operator IMSI and a series of roaming IMSIs of hub partner operators of cloudSIM ecosystem as selected by the client operators. The roaming IMSIs are pre-provisioned in multi-IMSI SIM card.
The system and method of the present invention, in its various embodiments also facilitate addition of any additional IMSIs by downloading them using OTA platform. The additional IMSIs can also be added through a SIM applet (STK) that intelligently selects the right network for the service without any manual intervention from the end subscriber thus making the entire roamer experience seamless.
The system and method of the present invention, in its various embodiments provide the cloudSIM ecosystem that has multiple hub partner networks and client networks that subscribe to the cloudSIM service. The service offering that leverages Roamware's partnership with leading signaling and voice service providers around the world, to re-route the call via a cloudSIM hub that is deployed within the carrier cloud either in each hub operator or a central location for a group of hub operators. The subscriber's client network IMSI is switched with an IMSI from a hub operator depending on the location of the subscriber. The user experience for the roaming subscriber is not affected in any way, and he continues to enjoy normal roaming service while traveling.
In the drawings, the same or similar reference numbers identify similar elements or acts.
In the following description, for purposes of explanation, specific numbers, materials and configurations are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one having ordinary skill in the art that the present invention may be practiced without these specific details. In some instances, well-known features may be omitted or simplified, so as not to obscure the present invention. Furthermore, reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic, described in connection with the embodiment, is included in at least one embodiment of the present invention. The appearance of the phrase “in an embodiment”, in various places in the specification, does not necessarily refer to the same embodiment.
The present invention provides a system and a method for facilitating mobile communication for a subscriber of a Home Public Mobile Network (HPMN) roaming in a Visited Public Mobile Network (VPMN). In accordance with various embodiments, the present invention provides a method and system providing the subscriber a facility to use IMSI of a different operator other than his home operator's IMSI to offer better tariffs.
The HPMN 104 subscribes to the cloudSIM service as client operator to enable provisioning of multiple IMSIs to its subscriber 102. The visited operator in VPMN 106 is the current location of the subscriber. The multiple IMSIs that are provisioned on subscriber's SIM belong to a hub PMN that is a part of cloudSIM ecosystem. In this embodiment, hub PMN 116 provides its IMSI to subscriber's SIM. The hub PMN 116 includes a cloudSIM hub 118 that interfaces with international STP 3 120 to manage the signaling across networks. The hub operator is either an MVNO, an MNO having its own set of IMSIs.
It will be apparent to a person skilled in the art that cloudSIM hub 118 can be present either on-net hub PMN 116 or off-net hub PMN 116. In other words, the cloudSIM hub 118 can be deployed in hub PMN 116 or at a central location that is serving multiple hub PMNs that are a part of cloudSIM ecosystem.
The cloudSIM ecosystem service leverages Roamware's ecosystem of cloudSIM hubs to offer special discounted tariff to the client operators who want to be a part of cloudSIM ecosystem. Each cloudSIM hub allocates a series of IMSIs which can be allocated by the client operator to its subscribers. Each client operator subscriber opting for this service is allocated a special multi-IMSI SIM card which consists of the client operator IMSI and a series of roaming IMSIs corresponding to the cloudSIM hubs as selected by the client operators. The roaming IMSIs are pre-provisioned in SIM card but any additional IMSIs can also be downloaded using OTA platform, in cases where the subscriber wants to avail coverage offered by an additional cloudSIM hub.
In order to explain how subscriber's 102 call is managed by the cloudSIM service, we take a use case scenario. Assume that subscriber 102 from UK (HPMN) roams into a destination VPMN 106 as Belgium. Now, when subscriber registers into an operator in Belgium, the SIM Toolkit Application (STK) in subscriber's SIM card detects subscriber's location as Belgium and then selects the right roaming IMSI which works in Belgium and makes that IMSI as active IMSI of subscriber. In this case, the active roaming IMSI could be an EU network IMSI (e.g. Italy) provided by the cloudSIM Hub in EU region and that IMSI works in any country in EU region. As a result client operator (i.e., HPMN 104) of subscriber 102 gets benefit of EU regulation on regional roaming and gets a discounted wholesale roaming rate. Subsequently, all signaling for that roaming subscriber flows via the cloudSIM hub network and cloudSIM hub (deployed in cloud SIM hub network) takes care of swapping of EU IMSI (roaming IMSI) with home (UK) IMSI and relay the signaling to the client network's (HPMN 104) HLR or SMSC or SCP so that the subscriber can use all the relevant services offered by home network. The billing settlement between the client operator and the hub operator of the chosen roaming IMSI is brokered via Roamware. The hub operator can also do billing settlement with the visited network.
In accordance with various embodiments of the invention, cloudSIM hub 118 converts one or more signaling parameters of signaling associated with the hub operator's IMSI to one or more signaling parameters of the signaling associated with the client operator's IMSI. The one or more signaling parameter could include MSISDN of the subscriber. In some cases, the subscriber's MSISDN is changed while communicating with the visited operator. Other signaling parameters include MAP signaling, call signaling, subscriber's MSISDN, CAMEL/SIP/TCAP transaction, data sessions and data traffic.
In accordance with another embodiment of the invention, subscriber 102 may also register directly with a cloudSIM hub operator rather than a visited operator.
The special multi-IMSI SIM cards are typically pre-provisioned with a set of roaming IMSIs for a set of destinations as chosen by the client operator initially. Now, if the client operator wants to offer few more destinations to its subscriber, the client operator just needs to update the contract with Roamware with additional destinations and Roamware can do an OTA campaign to download additional IMSIs in cloudSIM subscribers' SIM cards. This avoids the issues for SIM swapping.
In some cases, the subscriber's IMSI is changed to a default IMSI via the configuration file. The default IMSI is selected from a sequence of IMSIs in preference order or random order, until one IMSI is successfully registered with the visited network. In accordance with an embodiment of the present invention, the configuration file indicates to dynamically obtain an IMSI. In this case, the SIM is first registered with the default IMSI for the roaming location and then the SIM will request an IMSI via a USSD or SMS or other bearer channel (e.g. WiFi, GPRS, LTE etc.) for a dynamically assigned IMSI for the roaming location. The request then comes to the default IMSI hub, which then consults a central worldwide system or a system responsible for the IMSI assignment of the location (corresponding with the home IMSI) for a dynamically assigned IMSI for the roaming location for the subscriber. Thereafter, the IMSI is sent via OTA via USSD, SMS or other bearer channel in response to the IMSI request. The SIM then re-registers with the newly assigned IMSI.
In order to manage the billing, the cloudSIM service is set up a wholesale broker by Roamware, whose IMSI hub partners' IMSI and rates are resold with markup to client operators (including MNO, MVNO, and MVNE etc.). The subscriber is billed based on rates received from the hub operator of cloudSIM ecosystem. In order to handle billing for TAP and NRTRDE, cloudSIM hub charges a markup for the leg from the roaming partner IMSI to cloudSIM hub IMSI with roaming partner rate. Further for the leg from cloudSIM hub IMSI to client operator with markup from cloudSIM hub.
In accordance with various embodiments of the present invention, cloudSIM hub performs the following activities to provision cloudSIM service.
In accordance with various embodiments of the present invention, the client operator requires the following logistic requirements in order to provision cloudSIM service to its subscriber.
In addition to the above, the client operator needs to enable SIM logistics that includes:
The cloudSIM service is essentially a SIM-based solution, which manages multiple IMSIs for the subscriber. The home IMSI is used in the subscriber's home country, and when roaming to any country where the operator has a bilateral agreement in place. The international IMSI is used when abroad for connection to the cloudSIM Hub or allowed bilateral roaming relationship of cloudSIM Hub. The switching between the two IMSIs is handled automatically by an intelligent application residing on the SIM Card, depending on location of the subscriber.
The SIM card is provisioned with multiple IMSI, with IMSI containing relevant information pertaining to supported networks (PLMNs), Access Control Class, Service Provider Name, Service Provider Display Information and Short Message Service Parameters etc. The SIM card is usually provisioned with the dual IMSI applet and home IMSI. It is also possible to download the dual IMSI applet using OTA. OTA is used as well to add/delete foreign IMSIs with their corresponding characteristics to enable usage abroad in selected networks. The OTA campaign is required whenever the subscriber opts for a new destination or opts out of existing supported destinations. The campaign can also be scheduled by the home operator depending on their rules and preference.
Each SIM card contains three standardized files used during location update while roaming. These files are
Once the handset is powered on and the current location/network is detected, the SIM Card receives the necessary events from the mobile phone equipment informing the current location of the subscriber. Based on this location, the applet loaded on SIM processes the files provisioned to select the appropriate IMSI and subsequently use that IMSI to register with the appropriate network. In case, the coverage to appropriate network is lost, the file is re-scanned by the applet and the re-selection of appropriate network/IMSI combination is done. However if none of the available network is provisioned to be selected by foreign IMSIs the applet restores the identity to the home IMSI and uses the home IMSI to access the available network.
All throughout the user experience is seamless and non-intrusive. All the operations pertaining to SIM card management, applet download and IMSI management as well as network selection are transparent to the user thus making the entire roaming experience very easy. It will be apparent to a person skilled in the art that all services are available on home number and hence user experience does not change. In addition to this, in selected countries, subject to local regulations, local numbers may be available along with IMSIs which can be used by the end user of the service.
The cloudSIM ecosystem help the cloudSIM client networks to provide services to its outbound roamers across international borders at the costs much lower than incurred during traditional roaming arrangements. This is done by leveraging use of local/regional IMSIs made available through Roamware's global cloudSIM alliance. The operators are also benefited
The cloudSIM ecosystem also helps the cloudSIM hub operators on following parameters:
The additional benefits from cloudSIM ecosystem for the cloudSIM hub operators are given below:
It will be apparent to a person skilled in the art, that the present invention can also be applied to Code Division Multiple Access (CDMA)/American National Standards Institute #41D (ANSI-41D), and various other technologies such as, but not limited to, VoIP, WiFi, 3GSM and inter-standard roaming. In one exemplary case, a CDMA outbound roamer travels with an HPMN CDMA handset. In another exemplary case, the CDMA outbound roamer travels with an HPMN GSM SIM and a GSM handset. In yet another exemplary case, GSM outbound roamer travels with an HPMN CDMA RUIM and a CDMA handset. To support these variations, system 100 will have a separate SS7 and network interfaces, corresponding to both the HPMN and VPMN networks. It will also be apparent to a person skilled in the art that these two interfaces in different directions may not have to be the same technologies. Moreover, there could be multiple types of interface in both directions.
An exemplary list of the mapping between GSM MAP and ANSI-41D is described in the table below as a reference.
The present invention can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment containing both hardware and software elements. In accordance with an embodiment of the present invention, software, including but not limited to, firmware, resident software, and microcode, implements the invention.
Furthermore, the invention can take the form of a computer program product, accessible from a computer-usable or computer-readable medium providing program code for use by, or in connection with, a computer or any instruction execution system. For the purposes of this description, a computer-usable or computer readable medium can be any apparatus that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device.
The medium can be an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system (or apparatus or device) or a propagation medium. Examples of a computer-readable medium include a semiconductor or solid state memory, magnetic tape, a removable computer diskette, a random access memory (RAM), a read-only memory (ROM), a rigid magnetic disk and an optical disk. Current examples of optical disks include compact disk-read only memory (CDROM), compact disk-read/write (CD-R/W) and Digital Versatile Disk (DVD).
The components of present system described above include any combination of computing components and devices operating together. The components of the present system can also be components or subsystems within a larger computer system or network. The present system components can also be coupled with any number of other components (not shown), such as other buses, controllers, memory devices, and data input/output devices, in any number of combinations. In addition, any number or combination of other processor-based components may be carrying out the functions of the present system.
It should be noted that the various components disclosed herein may be described using computer aided design tools and/or expressed (or represented), as data and/or instructions embodied in various computer-readable media, in terms of their behavioral, register transfer, logic component, transistor, layout geometries, and/or other characteristics. Computer-readable media in which such formatted data and/or instructions may be embodied include, but are not limited to, non-volatile storage media in various forms (e.g., optical, magnetic or semiconductor storage media) and carrier waves that may be used to transfer such formatted data and/or instructions through wireless, optical, or wired signaling media or any combination thereof.
Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of “including, but may not be limited to.” Words using the singular or plural number also include the plural or singular number respectively. Additionally, the words “herein,” “hereunder,” “above,” “below,” and words of similar import refer to this application as a whole and not to any particular portions of this application. When the word “or” is used in reference to a list of two or more items, it covers all of the following interpretations: any of the items in the list, all of the items in the list and any combination of the items in the list.
The above description of illustrated embodiments of the present system is not intended to be exhaustive or to limit the present system to the precise form disclosed. While specific embodiments of, and examples for, the present system are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the present system, as those skilled in the art will recognize. The teachings of the present system provided herein can be applied to other processing systems and methods. They may not be limited to the systems and methods described above.
The elements and acts of the various embodiments described above can be combined to provide further embodiments. These and other changes can be made in light of the above detailed description.
Other Variations
Provided above for the edification of those of ordinary skill in the art, and not as a limitation on the scope of the invention, are detailed illustrations of a scheme for proactive roaming tests, discoveries of roaming partner services and discoveries of frauds in roaming using simulated roaming traffic. Numerous variations and modifications within the spirit of the present invention will of course occur to those of ordinary skill in the art in view of the embodiments that have been disclosed. For example, the present invention is implemented primarily from the point of view of GSM mobile networks as described in the embodiments. However, the present invention may also be effectively implemented on GPRS, 3G, CDMA, WCDMA, WiMax etc., or any other network of common carrier telecommunications in which end users are normally configured to operate within a “home” network to which they normally subscribe, but have the capability of also operating on other neighboring networks, which may even be across international borders.
The examples under the system of present invention detailed in the illustrative examples contained herein are described using terms and constructs drawn largely from GSM mobile telephony infrastructure. However, use of these examples should not be interpreted as limiting the invention to those media. The system and method can be of use and provided through any type of telecommunications medium, including without limitation: (i) any mobile telephony network including without limitation GSM, 3GSM, 3G, CDMA, WCDMA or GPRS, satellite phones or other mobile telephone networks or systems; (ii) any so-called WiFi apparatus normally used in a home or subscribed network, but also configured for use on a visited or non-home or non-accustomed network, including apparatus not dedicated to telecommunications such as personal computers, Palm-type or Windows Mobile devices; (iii) an entertainment console platform such as Sony Playstation, PSP or other apparatus that are capable of sending and receiving telecommunications over home or non-home networks, or even (iv) fixed-line devices made for receiving communications, but capable of deployment in numerous locations while preserving a persistent subscriber id such as the eye2eye devices from Dlink; or telecommunications equipment meant for voice over IP communications such as those provided by Vonage or Packet8.
In describing certain embodiments of the system under the present invention, this specification follows the path of a telecommunications call, from a calling party to a called party. For the avoidance of doubt, such a call can be a normal voice call, in which the subscriber telecommunications equipment is also capable of visual, audiovisual or motion-picture display. Alternatively, those devices or calls can be for text, video, pictures or other communicated data.
In the foregoing specification, specific embodiments of the present invention have been described. However, one of ordinary skill in the art will appreciate that various modifications and changes can be made without departing from the scope of the present invention as set forth in the claims below. Accordingly, the specification and the figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present invention. The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur, or to become more pronounced, are not to be construed as a critical, required, or essential feature or element of any or all of the claims.
GSM 902 on MAP specification
Digital cellular telecommunications system (Phase 2+)
Mobile Application Part (MAP) Specification
(3GPP TS 09.02 version 7.9.0 Release 1998)
GSM 340 on SMS
Digital cellular telecommunications system (Phase 2+)
Technical realization of the Short Message Service (SMS)
(GSM 03.40 version 7.4.0 Release 1998)
GSM 378 on CAMEL,
GSM 978 on CAMEL Application Protocol,
GSM 379 on CAMEL Support of Optimal Routing (SOR),
GSM 318 on CAMEL Basic Call Handling
ITU-T Recommendation Q.1214 (1995), Distributed functional plane for intelligent network CS-1,
ITU-T Recommendation Q.1218 (1995), Interface Recommendation for intelligent network CS-1,
ITU-T Recommendation Q.762 (1999), Signaling system No. 7—ISDN user part general functions of messages and signals,
ITU-T Recommendation Q.763 (1999), Signaling system No. 7—ISDN user part formats and codes,
ITU-T Recommendation Q.764 (1999), Signaling system No. 7—ISDN user part signaling procedures,
ITU-T Recommendation Q.765 (1998), Signaling system No. 7—Application transport mechanism,
ITU-T Recommendation Q.766 (1993), Performance objectives in the integrated services digital network application,
ITU-T Recommendation Q.769.1 (1999), Signaling system No. 7—ISDN user part enhancements for the support of Number Portability
This application is a National Stage entry of International Application PCT/US2012/050952 filed Aug. 15, 2012, which claims priority to U.S. Provisional Patent Application 61/523,731 entitled “Dual IMSI Ecosystem”, filed Aug. 15, 2011. The disclosures of each of these prior applications being hereby incorporated in their entirety by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2012/050952 | 8/15/2012 | WO | 00 | 7/28/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/025806 | 2/21/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20100048197 | Jiang | Feb 2010 | A1 |
20100128685 | Jiang | May 2010 | A1 |
20100136967 | Du et al. | Jun 2010 | A1 |
20100185537 | Bari | Jul 2010 | A1 |
Number | Date | Country |
---|---|---|
WO 9802011 | Jan 1998 | WO |
WO 2004075579 | Sep 2004 | WO |
WO 2011036484 | Mar 2011 | WO |
WO 2011041913 | Apr 2011 | WO |
Entry |
---|
International Search Report, International Application No. PCT/US2012/050952 mailing date Oct. 23, 2012. |
European Search Report issued on May 18, 2015; Application No. 12824113.0. |
Number | Date | Country | |
---|---|---|---|
20150004967 A1 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
61523731 | Aug 2011 | US |