This invention relates generally to turbomachinery, and, more specifically, to methods and systems for providing cooling for internal structures of gas turbine components.
In at least some known gas turbines, an internal structure of a component that is exposed to hot combustion gases is cooled using a cooling fluid that is channeled through passages defined within the component. In components such as stator vanes and rotor blades that extend substantially radially with respect to an axis of a gas turbine, at least some of the cooling passages likewise extend substantially radially. At least some further passages extend below and substantially parallel to at least a portion of an outer surface of the component. Cooling fluid is supplied to the passages from a source of cooling fluid coupled to the component.
Moreover, in at least some known gas turbines that include multiple rotor and stator stages, trailing-edge areas of airfoils of first-stage stator nozzle vanes, and first-stage rotor blades as well, experience temperatures and corresponding thermal loads that are amongst the highest that are encountered within a gas turbine. Accordingly, there is a tendency for a designer to increase a thickness of an airfoil, to provide a structural volume that is sufficiently large to facilitate defining cooling passages therein. However, there is a competing pressure on designers to reduce airfoil thickness, particularly in the trailing-edge areas, as trailing-edge thickness is a factor that exerts significant influence on aerodynamic efficiency of an airfoil.
Accordingly, it is desirable to improve airfoil aerodynamic efficiency by reducing trailing-edge thickness, while simultaneously facilitating enhanced cooling of trailing-edge structures.
In one aspect, a method for providing a cooling system for a turbine component is provided. The method includes defining a turbine component body, wherein the turbine component body includes a region to be cooled. The method also includes defining a recess within the region to be cooled, wherein the recess includes an inner face. The method also includes defining at least one support projection extending from the inner face, wherein the at least one support projection includes a free end. The method also includes coupling a cover to the region to be cooled of the turbine component body, such that an inner surface of the cover is coupled to the free end of the at least one support projection, such that at least one cooling passage is defined within the region to be cooled.
In another aspect, a system for providing cooling of a turbine component is provided. The system includes a turbine component body that includes a region to be cooled. The system also includes a recess defined within the region to be cooled, wherein the recess includes an inner face. The system also includes at least one support projection extending from the inner face, wherein the at least one support projection includes a free end. The system also includes a cover coupled to the region to be cooled of the turbine component body, such that an inner surface of the cover is coupled to the free end of the at least one support projection, such that at least one cooling fluid passage is defined within the region to be cooled.
In still another aspect, a gas turbine system is provided. The gas turbine system includes a compressor section. The gas turbine system further includes a combustion system coupled in flow communication with the compressor section. The gas turbine system also includes a turbine section coupled in flow communication with the combustion system. The turbine section includes a turbine component body that includes a region to be cooled. The turbine section also includes a recess defined within the region to be cooled, wherein the recess includes an inner face. The turbine section also includes at least one support projection extending from the inner face, wherein the at least one support projection includes a free end. The turbine section also includes a cover coupled to the region to be cooled, such that an inner surface of the cover is coupled to the free end of the at least one support projection, such that at least one cooling fluid passage is defined within the region to be cooled.
As used herein, the terms “axial” and “axially” refer to directions and orientations extending substantially parallel to a longitudinal axis of a gas turbine engine. Moreover, the terms “radial” and “radially” refer to directions and orientations extending substantially perpendicular to the longitudinal axis of the gas turbine engine. In addition, as used herein, the terms “circumferential” and “circumferentially” refer to directions and orientations extending arcuately about the longitudinal axis of the gas turbine engine.
After casting, trailing-edge region 40 of airfoil body 39 includes a sacrificial region 46 (shown in broken lines). Material within sacrificial region 46 is removed, using any suitable material-removal method, including but not limited to cutting tool-based machining and/or milling, EDM (electrical discharge machining), water machining, laser machining, and/or any other material removal method that enables system 100 to function as described herein.
Removal of material from sacrificial region 46 defines a plurality of individual support projections or pins 48, collectively referred to as a pin-bank 50, extending from an inner face 53 of a recess or lip 52. Pins 48 project outwardly from lip 52 of trailing-edge region 40. In the exemplary embodiment, pins 48 are monolithically defined with lip 52. In the exemplary embodiment, pins 48 have any suitable cross-sectional configuration, spacing, and dimensions that enable system 100 to function as described herein. Although eight pins 48 are shown in
In an alternative embodiment, pins 48 are defined during the initial casting process of defining airfoil body 39. More specifically, if defined by casting, trailing-edge region 40 is initially cast as a notch 55 bounded by shoulder 58 and tip 56, with pins 48 cast in situ, projecting away from inner face 53. In so doing, pins 48 are arranged on inner face 53 in any pattern suitable that enables system 100 to function as described herein. In the exemplary embodiment, whether pins 48 are defined by material removal, casting, or other method, each pin 48 is defined with a free end 49.
Pins 48 define a plurality of gaps 70 which, together with similar gaps in adjacent rows of pins 48 (not shown) define a plurality of flow paths 72 through airfoil 34. In the exemplary embodiment, flow paths 72 are coupled to cooling supply passage 24, to provide cooling fluid to trailing-edge region 40 of airfoil 34.
The exemplary embodiment illustrated in
During turbine operation, cooling air from an interior cooling air plenum 81 is channeled into porous metal foam layer 88 via an inlet 83 and defines a cooling air exhaust 85 at an exhaust region 86 defined between lip 79 and braze layer 84. Likewise, cooling air from plenum 81 is channeled into porous metal foam layer 77 via an inlet 76, and exhausted from porous metal foam layer 77 via an exit opening 89.
The invention described herein provides several advantages over known systems and methods for providing cooling of turbine trailing-edge structures. Specifically, the systems described herein facilitate defining cooling passages within trailing-edge regions of airfoils, in particular in relatively thin areas of airfoils near or at the actual trailing-edge of the airfoil. Moreover, the systems described herein facilitate the defining of cooling passages in areas of an airfoil that are not amenable to other methods for defining cooling passages, such as casting. Specifically, the systems described herein address spatial limitations to provide internal cooling passages within a trailing-edge region of an airfoil. In addition, the systems described herein facilitate defining a pin-bank such that the pins are located in any desired pattern, size, shape and/or spacing suitable to enable the cooling passages to function as described herein.
Exemplary embodiments of a method and a system for providing cooling of turbine components are described above in detail. The method and system are not limited to the specific embodiments described herein, but rather, components of systems and/or steps of the methods may be utilized independently and separately from other components and/or steps described herein. For example, the method may also be used in combination with other turbine components, and are not limited to practice only with the gas turbine nozzle vanes as described herein. Rather, the exemplary embodiment can be implemented and utilized in connection with many other gas turbine applications.
Although specific features of various embodiments of the invention may be shown in some drawings and not in others, this is for convenience only. In accordance with the principles of the invention, any feature of a drawing may be referenced and/or claimed in combination with any feature of any other drawing.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
5626462 | Jackson et al. | May 1997 | A |
5820337 | Jackson et al. | Oct 1998 | A |
5957657 | Akita et al. | Sep 1999 | A |
6602047 | Barreto et al. | Aug 2003 | B1 |
6638639 | Burke et al. | Oct 2003 | B1 |
6890154 | Cunha | May 2005 | B2 |
7008179 | Rinck et al. | Mar 2006 | B2 |
7080971 | Wilson | Jul 2006 | B2 |
7867628 | Ozbaysal | Jan 2011 | B2 |
7900458 | James et al. | Mar 2011 | B2 |
8210815 | Bezencon et al. | Jul 2012 | B2 |
8348614 | Piggush et al. | Jan 2013 | B2 |
8714909 | Propheter-Hinckley | May 2014 | B2 |
8734111 | Lomas | May 2014 | B2 |
20110110771 | Morgan et al. | May 2011 | A1 |
20120201653 | Moga | Aug 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20150096305 A1 | Apr 2015 | US |