The present disclosure relates to the use of gestures and feedback to facilitate gathering experience and/or applause events with natural, social ambience. For example, audio feedback responsive to participant action may swell and diminish in response to intensity and social aspects of participant participation and each participant can have unique sounds or other feedback assigned to represent their actions to create a social ambience.
Many people enjoy attending live events at physical venues or watching games at stadiums because of the real experience and fun in engaging with other participants or fans, as illustrated in
However, factors, such as cost, convenience etc., may limit the frequency that ordinary people could attend live events or watch live games at stadiums.
Alternatively, people may choose to communicate with each other through Internet or watch broadcasted games on TVs or computers, which is illustrated in
There is not really much that has been done to date regarding human to human gestural communications assisted by technology, as illustrated by
In consequence, the present inventors have recognized that there is value and need in providing interfaces and/or platforms for online participants of live events or games to interact with each other through gestures, such as applause and cheers, and in gaining a unique experience by acting collectively.
These and other objects, features and characteristics of the present disclosure will become more apparent to those skilled in the art from a study of the following detailed description in conjunction with the appended claims and drawings, all of which form a part of this specification. In the drawings:
Various examples of the invention will now be described. The following description provides specific details for a thorough understanding and enabling description of these examples. One skilled in the relevant art will understand, however, that the invention may be practiced without many of these details. Likewise, one skilled in the relevant art will also understand that the invention can include many other obvious features not described in detail herein. Additionally, some well-known structures or functions may not be shown or described in detail below, so as to avoid unnecessarily obscuring the relevant description.
The present disclosure discloses a variety of methods and systems for applause events and gathering experiences. An “applause event” is broadly defined to include events where one or more participants express emotions such as approval or disapproval via any action suitable for detection. Feedback indicative of the applause event is provided to at least one participant. In some embodiments, audio feedback swells and diminishes as a function of factors such as a quantity or number of active participants, and an intensity of the participation. Each participant may have a unique sound associated with his or her various expressions (such as a clapping gesture). The applause event may be enhanced by the system to provide a variety of social aspects.
Participation from a participant in an applause event typically corresponds to the participant performing one or more suitable actions which can be detected by the system. For example, a participant may indicate approval via a clapping gesture made with a portable device held in one hand, the clapping gesture being detected by sensors in the portable device. Alternatively, the participant may literally clap, and a system using a microphone can detect the clapping. A plurality of participants may be participating in the applause event through a variety of gestures and/or actions, some clapping, some cheering, some jeering, and some booing. In some embodiments, the portable device may include two or more disparate sensors. The portable device may further include one or more processors to identify a gesture (e.g. clapping, booing, cheering) made by a participant holding the portable device by analyzing information from the two or more disparate sensors with suitable algorithms. The two or more disparate sensors may include location sensors, an accelerometer, a gyroscope, a motion sensor, a pressure sensor, a thermometer, a barometer, a proximity sensor, an image capture device, and an audio input device etc.
In some embodiments, the system may provide social experience to a plurality of participants. The system may be configured to determine a variety of responses and activities from a specific participant and facilitate an applause event that swells and diminishes in response to the responses and activities from the specific participant. In some embodiments, social and inter-social engagement of a particular activity may be measured by togetherness within a window of the particular activity. In some implementations, windows of a particular activity may vary according to the circumstances. In some implementations, windows of different activities may be different.
In some embodiments, social and inter-social engagements of a specific participant may be monitored and analyzed. Varying participation experiences or audio feedback may be provided to the specific participant depending on the engagement level of the specific participant. In some implementations, as the specific participant increases frequency and/or strength of clapping, the audio feedback may swell, having a nonlinear increase in volume and including multiple and possibly distinct clapping noises. As the specific participant slows down, the audio feedback may diminish in a nonlinear manner. In some implementations, the specific participant may be provided a particular clapping sound depending on the characteristics of the specific participant, e.g. geographic location, physical venue, gender, age etc. In some implementations, the specific participant may be provided clapping sounds with different rhythms or timbres. In some implementations, the specific participant may be provided with a unique clapping sound, a clap signature, or a unique identify that is manifested during the applause process or in past clapping patterns.
Some embodiments may provide methods instantiated on a local computer and/or a portable device. In some implementations, methods may be distributed across local devices and remote devices in the cloud computing service.
In some embodiments, the screens and the devices may be coupled to the environment through a plurality of sensors, including, an accelerometer, a gyroscope, a motion sensor, a pressure sensor, a temperature sensor, etc. In addition the one or more personal devices may have computing capabilities, including storage and processing power. In some embodiments, the screens and the devices may be connected to the internet via wired or wireless network(s), which allows participants to interact with each other using those public or private environments. Exemplary personal experience computing environments may include sports bars, arenas or stadiums, trade show settings etc.
In some embodiments, a portable device in the personal experience computing environment of
In some embodiments, the portable device may work independently to sense participant participation in an applause event, and provide corresponding applause event feedback. Alternatively, the portable device may be a component of a system in which elements work together to facilitate the applause event.
In some embodiments, the system 400 may provide a social experience for a variety of participants. As the participants engage in the social experience, the system 400 may ascertain the variety of participant responses and activity. As the situation merits, the system may facilitate an applause event that swells and diminishes in response to the participants actions. Each participant may have unique feedback associated with their actions, such as each participant having a distinct sound corresponding to their clapping gesture. In this way, the applause event has a social aspect indicative of a plurality of participants.
A variety of other social aspects may be integrated into the applause event. For example, participants may virtually arrange themselves with respect to other participants, with the system responding by having those participants virtually closer sounding louder. Participants could even block out the effects of other participants, or apply a filter or other transformation to generate desired results.
At step 520, the aspects of social and inter-social engagement of each participant may be analyzed. Social and inter-social engagements of participants within the window of a specific activity are monitored, analyzed, and normalized. In some implementations, different types of engagements may be compared. Depending on the engagement level of participants, varying participant experiences or feedback may be provided to each participant, at step 530. For example, in case of applause, a single clap may be converted into crowd-like applause. In some embodiments, a specific participant may have a particular applause sound depending on the geographical location, venue, gender, age, etc of the specific participant. In some implementations, the specific participant may have a unique sound of applause, a clap signature, or a unique identify that is manifested during the applause process. In some implementations, the specific participant's profile, activities, and clap patterns may be monitored, recorded and analyzed.
In some embodiments, the rate and loudness of clapping sounds from a specific participant may be automatically adjusted according to specific activities involved, the specific participant's engagement level and/or past clapping patterns. Audio feedback from a specific participant may swell and diminish in response to the intensity of the specific participant's clapping. In some implementations, the specific participant may manually vary the rate and loudness of clapping sounds perceived by other participants. In some embodiments, clapping sounds with different rhythms and/or timbres may be provided to each participant.
As will be appreciated by one of ordinary skill in the art, the gesture method 500 may be instantiated locally, e.g. on a local computer or a portable device, and may be distributed across a system including a portable device and one or more other computing devices. For example, the method 500 may determine that the available computing power of the portable device is insufficient or that additional computer power is needed, and may offload certain aspects of the method to the cloud.
The method 600 begins in a start block 601, where any required initialization steps can take place. For example, the specific participant may register or log in to an application that facilitates or includes an applause event. The applause event may be associated with a particular media event such as a group video viewing or experience. However, the method 600 may be stand alone application simply responsive to the specific participant's actions irrespective of other activity occurring. In any event, a step 610 may detect clapping and/or clapping gestures made by the specific participant. As will be appreciated, any suitable means for detecting clapping may be used. For example, a microphone may capture participant-generated clapping sounds, a portable device may be used to capture a clapping gesture, remote sensors may be used to capture the clapping gesture, etc.
A step 620 may continuously monitor the intensity of the participant's clapping. Intensity may include clapping frequency, the strength or volume of the clapping, etc. A step 630 may provide feedback to the participant according to the intensity of the participant's clapping. For example, slow clapping may result in a one-to-one clap to clapping noise feedback at a moderate volume. As the participant increases frequency and/or strength of clapping, the feedback may swell, having a nonlinear increase in volume and including multiple and possibly distinct clapping noises. Fast but soft clapping may produce a plurality of distinct clapping noises, but at a subdued volume. As the participant slows down, the feedback may diminish in a nonlinear manner. In addition or alternative to audio feedback, tactile and/or visual feedback can be provided. For example, a vibration mechanism on a cell phone could be activated, or flashing lights could be activated.
As will be appreciated, the method 600 of
While the method 600 of
The method 700 of
In some embodiments, the experience service platform may include a plurality of personal experience computing environments, as illustrated in
In some embodiments, services implementing experience dimensions may be implemented in a distributed manner across the devices and the data center. In some embodiments, the devices may have a very thin experience agent with little functionality beyond a minimum API and sentio codec, and the bulk of the services and thus composition and direction of the experience may be implemented within the data center.
In some embodiments, the experience service platform may further include a platform core that provides the various functionalities and core mechanisms for providing various services. The platform core may include service engines, which in turn are responsible for content (e.g., to provide or host content) transmitted to the various devices. The service engines may be endemic to the platform provider or may include third-party service engines. In some embodiments, the platform core may also include monetization engines for performing various monetization objectives. Monetization of the service platform can be accomplished in a variety of manners. For example, the monetization engine may determine how and when to charge the experience provider for use of the services, as well as tracking for payment to third-parties for use of services from the third-party service engines. Additionally, the service platform may also include capacity-provisioning engines to ensure provisioning of processing capacity for various activities (e.g., layer generation, etc.).
In some embodiments, the experience service platform (or, in some implementations, the platform core) may include one or more of the following: a plurality of service engines, third party service engines, etc. In some embodiments, each service engine has a unique, corresponding experience agent. In other embodiments, a single experience can support multiple service engines. The service engines and the monetization engines can be instantiated on one server, or can be distributed across multiple servers. In some implementations, the service engines may correspond to engines generated by the service provider and provide services such as audio remixing, gesture recognition (e.g. clapping etc), and other services referred to in the context of dimensions above, etc. Third-party service engines are services included in the experience service platform provided by other parties. The experience service platform may have the third-party service engines instantiated directly therein, or within the experience service platform.
As illustrated in
In some embodiments, the composition engine may be defined and controlled by the experience provider to compose and direct the experience for one or more participants utilizing devices. Direction and composition is accomplished, in part, by merging various content layers and other elements into dimensions generated from a variety of sources such as the service provider, the devices, content servers, and/or the experience service platform. In some embodiments, the data center may include an experience agent for communicating with, for example, the various devices, the platform core, etc. The data center may also comprise service engines and/or connections to one or more virtual engines for the purpose of generating and transmitting the various layer components. The experience service platform, platform core, data center, etc. can be implemented on a single computer system, or more likely distributed across a variety of computer systems, and at various locations.
In some embodiments, the experience service platform, the data center, the various devices, etc. may include at least one experience agent and an operating system, as illustrated in
Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense (i.e., to say, in the sense of “including, but not limited to”), as opposed to an exclusive or exhaustive sense. As used herein, the terms “connected,” “coupled,” or any variant thereof means any connection or coupling, either direct or indirect, between two or more elements. Such a coupling or connection between the elements can be physical, logical, or a combination thereof. Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, refer to this application as a whole and not to any particular portions of this application. Where the context permits, words in the above Detailed Description using the singular or plural number may also include the plural or singular number respectively. The word “or,” in reference to a list of two or more items, covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.
The above Detailed Description of examples of the invention is not intended to be exhaustive or to limit the invention to the precise form disclosed above. While specific examples for the invention are described above for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize. While processes or blocks are presented in a given order in this application, alternative implementations may perform routines having steps performed in a different order, or employ systems having blocks in a different order. Some processes or blocks may be deleted, moved, added, subdivided, combined, and/or modified to provide alternative or sub-combinations. Also, while processes or blocks are at times shown as being performed in series, these processes or blocks may instead be performed or implemented in parallel, or may be performed at different times. Further any specific numbers noted herein are only examples. It is understood that alternative implementations may employ differing values or ranges.
The various illustrations and teachings provided herein can also be applied to systems other than the system described above. The elements and acts of the various examples described above can be combined to provide further implementations of the invention.
Any patents and applications and other references noted above, including any that may be listed in accompanying filing papers, are incorporated herein by reference. Aspects of the invention can be modified, if necessary, to employ the systems, functions, and concepts included in such references to provide further implementations of the invention.
These and other changes can be made to the invention in light of the above Detailed Description. While the above description describes certain examples of the invention, and describes the best mode contemplated, no matter how detailed the above appears in text, the invention can be practiced in many ways. Details of the system may vary considerably in its specific implementation, while still being encompassed by the invention disclosed herein. As noted above, particular terminology used when describing certain features or aspects of the invention should not be taken to imply that the terminology is being redefined herein to be restricted to any specific characteristics, features, or aspects of the invention with which that terminology is associated. In general, the terms used in the following claims should not be construed to limit the invention to the specific examples disclosed in the specification, unless the above Detailed Description section explicitly defines such terms. Accordingly, the actual scope of the invention encompasses not only the disclosed examples, but also all equivalent ways of practicing or implementing the invention under the claims.
While certain aspects of the invention are presented below in certain claim forms, the applicant contemplates the various aspects of the invention in any number of claim forms. For example, while only one aspect of the invention is recited as a means-plus-function claim under 35 U.S.C. §112, sixth paragraph, other aspects may likewise be embodied as a means-plus-function claim, or in other forms, such as being embodied in a computer-readable medium. (Any claims intended to be treated under 35 U.S.C. §112, ¶6 will begin with the words “means for.”) Accordingly, the applicant reserves the right to add additional claims after filing the application to pursue such additional claim forms for other aspects of the invention
In addition to the above mentioned examples, various other modifications and alterations of the invention may be made without departing from the invention. Accordingly, the above disclosure is not to be considered as limiting and the appended claims are to be interpreted as encompassing the true spirit and the entire scope of the invention.
This application claims the benefit of priority under 35 U.S.C. 119(e) to U.S. Provisional Patent Application No. 61/499,567, which was filed on Jun. 21, 2011, entitled METHOD AND SYSTEM FOR APPLAUSE EVENTS WITH SWELL, DIMINISH, AND SOCIAL ASPECTS,” the contents of which are expressly incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61499567 | Jun 2011 | US |