Method and system for providing identification tags in a memory system having indeterminate data response times

Information

  • Patent Grant
  • 8151042
  • Patent Number
    8,151,042
  • Date Filed
    Wednesday, August 22, 2007
    16 years ago
  • Date Issued
    Tuesday, April 3, 2012
    12 years ago
Abstract
A method and system for providing identification tags in a memory system having indeterminate data response times. An exemplary embodiment includes a memory controller in a memory system. The memory controller includes a mechanism for receiving data packets via an upstream channel, the data packets including upstream identification tags. The memory controller also includes a mechanism having instructions for facilitating determining if a received data packet is in response to a request from the memory controller. Input to the determining includes an upstream identification tag included in the received data packet. If the received data packet is determined to be in response to a request from the memory controller, then the received data packet is matched to the request, thereby allowing the memory controller to operate with indeterminate data response times.
Description
BACKGROUND OF THE INVENTION

This invention relates to memory systems comprised of hub devices connected to a memory controller by a daisy chained channel. The hub devices are attached to, or reside upon, memory modules that contain memory devices. More particularly, this invention relates to the flow control of read data and the identification of read data returned to the controller by each hub device.


Many high performance computing main memory systems use multiple fully buffered memory modules connected to a memory controller by one or more channels. The memory modules contain a hub device and multiple memory devices. The hub device fully buffers command, address and data signals between the memory controller and the memory devices. The flow of read data is controlled using either a leveled latency or position dependant latency technique. In both cases, the memory controller is able to predict the return time of read data requested from the memory modules and to schedule commands to avoid collisions as read data is merged onto the controller interface by each memory module.


In some cases, the memory controller is able to issue a read data delay adder along with the read command. This instructs the targeted hub device to add additional delay to the return of read data in order to simplify the issuing of commands and to avoid collisions. In all cases, the read data must be returned in the order in which it was requested. Further, the total read data latency must be completely predictable by the memory controller. During run time operations, these two restrictions result in additional gaps being added to packets of read data that are returned from the memory modules. This adds latency to the average read operation. In addition, hubs are not able to use indeterminate techniques to return read data faster or slower than normal. These techniques include, but are not limited to, caching read data locally, reading memory devices speculatively, independently managing memory device address pages, data compression, etc.


To optimize average read data latency under real workload conditions, and to enable advanced hub device capabilities, what is needed is a way to allow memory modules to return read data to the memory controller at an unpredicted time. This must be done in a way that does not corrupt read data and that allows the memory controller to identify each read data packet. Preventing data corruption by avoiding data collisions is especially complicated as hub devices merge local read data onto a cascaded memory controller channel.


BRIEF SUMMARY OF THE INVENTION

An exemplary embodiment includes a memory controller in a memory system. The memory controller includes a mechanism for receiving data packets via an upstream channel, the data packets including upstream identification tags. The memory controller also includes a mechanism having instructions for facilitating determining if a received data packet is in response to a request from the memory controller. Input to the determining includes an upstream identification tag included in the received data packet. If the received data packet is determined to be in response to a request from the memory controller, then the received data packet is matched to the request, thereby allowing the memory controller to operate with indeterminate data response times.


Another exemplary embodiment includes a method for providing indeterminate data response times in a memory system. The method includes receiving a data packet at an upstream device via an upstream channel in a memory system, the data packet including an upstream identification tag. It is determined if the received data packet is in response to a request from the upstream device, with input to the determining including the upstream identification tag. If the received data packet is determined to be in response to a request from the upstream device, then the received data packet is matched to the request. If the received data packet is determined not to be in response to a request from the upstream device, then the data packet is processed in response to contents of the upstream data tag. Thus, the memory system operates with indeterminate data response times and unrequested data packets.


Another exemplary embodiment includes a hub device in a memory system. The hub device includes a mechanism for creating a local data packet, the local data packet including an upstream identification tag for identifying contents of the data packet. The hub device also includes a mechanism for transmitting the local data packet to an upstream device. The hub device further includes a mechanism for receiving a data packet via an upstream channel, the received data packet including an upstream identification tag. A mechanism included on the hub device includes instructions for facilitating determining if the received data packet is in response to a request from the hub device. Input to the determining includes the upstream identification tag included in the received data packet. If the received data packet is determined to be in response to a request from the hub device, then the received data packet is matched to the request.





BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings wherein like elements are numbered alike in the several FIGURES:



FIG. 1 depicts an exemplary memory system with multiple levels of daisy chained memory modules with point-to-point connections;



FIG. 2 depicts an exemplary memory system with hub devices that are connected to a memory modules and to a memory controller by a daisy chained channel;



FIG. 3 depicts a hub logic device that may be utilized by exemplary embodiments;



FIG. 4 is a exemplary process flow implemented by the hub logic device in exemplary embodiments;



FIG. 5 is a read data format that may be utilized by exemplary embodiments;



FIG. 6 depicts a downstream identification tag in an embodiment;



FIG. 7 depicts an upstream identification tag in an embodiment



FIG. 8 depicts an upstream identification tag which may be utilized for an upstream data packet which is locally initiated without the receipt of a data request in an embodiment; and



FIG. 9 depicts an exemplary memory system that may be implemented by exemplary embodiments.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Exemplary embodiments utilize controller channel buffers (CCBs), read data frame formats with identification tags and a preemptive data merge technique to enable minimized and indeterminate read data latency. Exemplary embodiments allow memory modules to return read data to a memory controller at an unpredicted time. Identification tag information is added to the read data packet to indicate the read command that the data is a result of, as well as the hub where the data was read. The identification tag information is utilized by the controller to match the read data packet to the read commands issued by the controller. By using the identification tag information, read data can be returned in an order that is different from the issue order of the corresponding read commands.


Exemplary embodiments also provide a preemptive data merge process to prevent data collisions on the upstream channel when implementing the indeterminate read data latency. A CCB is added to the hub device to temporarily store read data. When a memory device on the memory module reads data, the data is transferred from the memory interface to the buffer. When the hub device detects that an upstream data packet (i.e., a data packet being sent to the controller from a hub device that is downstream from the detecting hub device) is not in the middle of being transferred into the detecting hub device via an upstream channel (it typically takes several transfers to send the entire data packet), the detecting hub device checks to see if there is a read data packet in its CCB that is waiting to be sent upstream. If the hub device detects a read data packet in the CCB it drives the read data packet from the CCB onto the upstream data bus. In the meantime, if a new upstream data packet is received via the upstream data bus, the data packet is stored in the CCB on the hub device. In this manner, data packets coming upstream do not collide with data packets being sent upstream from the CCB on the hub device. In the case where there is more than one data packet in the CCB, a variety of methods may be implemented to determine which data packet to send next (e.g., the data packet from the oldest read command may be sent first).


Exemplary embodiments apply to memory systems constructed of one or more memory modules 110 that are connected to a memory controller 102 by a daisy chained memory channel 114 as depicted in FIG. 1. The memory modules 110 contain both a hub device 112 that buffers commands, address and data signals to and from the controller memory channel 114 as well as one or more memory devices 108 connected to the hub device 112. The downstream portion of the memory channel 114, the downstream channel 104, transmits write data and memory operation commands to the hub devices 112. The upstream portion of the controller channel 114, the upstream channel 106, returns requested read data (referred to herein as upstream data packets).



FIG. 2 depicts an alternate exemplary embodiment that includes a memory system constructed of one or more memory modules 110 connected to hub devices 112 that are further connected to a memory controller 102 by a daisy chained memory channel 114. In this embodiment, the hub device 112 is not located on the memory module 110; instead the hub device 112 is in communication with the memory module 110. As depicted in FIG. 2, the memory modules 110 may be in communication with the hub devices 112 via multi-drop connections and/or point-to-point connections. Other hardware configurations are possible, for example exemplary embodiments may utilize only a single level of daisy chained hub devices 112 and/or memory modules 110.



FIG. 3 depicts a hub device 112 with flow control logic 308 utilized by exemplary embodiments to perform the processing described herein. The hub device 112 and the components within the hub device 112 may be implemented in hardware and/or software. The hub device 112 receives upstream data packets on the upstream channel 104 via the receiver logic 304 (also referred to herein as an upstream receiver). The upstream data packets are data packets being sent to the controller 102 from a hub device 112 that is downstream from the receiving hub device 112. An upstream data packet can be sent to the driver logic 306 (also referred to herein as the upstream driver) to be driven towards the controller 102 on the upstream channel 106 or, if the upstream channel 106 is busy, the upstream data packet can be temporarily stored in the CCB 310 on the hub device 112. The destination of the upstream data packet is determined by the flow control logic 308 and implemented by sending a signal to the local data mutliplexor 312.


In exemplary embodiments, CCBs 310, or buffer devices, reside in the hub device 112 and safely capture upstream data packet transfers (via the receiver logic 304) that are shunted into the CCB 310 while the hub device 112 is merging its local data packets onto the upstream channel 106. Local data packets are data packets that are read from memory devices 108 attached to the memory module 110 being directed by the hub device 112. These memory devices 108 are also referred to herein as local storage devices. The data read from the local storage devices, the local data packets, are formatted for return on an upstream controller interface via the upstream driver and stored in the CCB 310. The formatting includes serializing the local data packet into the proper frame format (e.g., see exemplary frame formats depicted in FIGS. 5), and inserting values into the identification tag (sourced from the read request, see example tag formats in FIGS. 7-8), first transfer field, and bus cyclical redundancy code (CRC) field. In exemplary embodiments, the formatting of the local data packet is performed as part of storing the local data packet into the CCB 310.


When a data packet is received at the memory interface 302, it is stored into the CCB 310 while the local data packets are waiting to be merged onto the upstream channel 106 (via the driver logic 306). The identification tag within the data packet allows the memory controller 102 to correlate a returned read data packet with its corresponding read data request command. The data packet also contains a small, easy to decode ‘start’, or first transfer (‘ft’) field (also referred to herein as a frame start indicator) delivered near the beginning of an upstream read data frame (data packets are formatted as read data frames) which indicates that a read data frame is present in the data packet. In an exemplary embodiment, this is used by the flow control logic 308 in the hub device 112 to monitor the channel read data activity.


When there is data in the CCBs 310 from either a local read operation or from a previously shunted read data packet from a downstream hub device (the data packets in the CCB are referred to herein as stored data packets), the hub device 112 will merge it onto the upstream channel 106 via the driver logic 306 as soon as it is allowed. The hub device 112 merges local data onto the upstream channel 106 whenever the upstream channel 106 is idle, or immediately following the last transfer of a data packet that is currently in progress. Read data frames will never be bisected using this method, but read data frames that are in flight on the upstream channel 106 that have not yet arrived at a hub device's 112 local data multiplexer 312 may be preempted and shunted into the CCB 310. This allows gaps in read data on the upstream channel 106 to be minimized which increases bus efficiency and results in reduced average read data latency under real world work load conditions.


When there are multiple read data packets present in the CCBs 310, the hub device 112 can be configured to send the read data packet corresponding to the earliest read command. This minimizes undue latency on read requests issued to hub devices 112 that are many daisy chain positions away from the memory controller 102. Other CCB 310 unload prioritization algorithms may also be implemented. For example, the identification tag field of the read data frame may contain a priority field. The priority field can be used to guide the unloading of the CCBs 310. Alternatively, priority information may be delivered as the read data is requested. Hub devices 112 can then compare the identification tag to previously recorded priority information to determine the location in the CCB 310 to send next. A method may also be employed that occasionally sends lower priority data before high priority data to ensure that low priority data is not completely stalled by requests that have been tagged with a higher priority.



FIG. 4 is a process flow that is facilitated by the flow control logic 308 located in the hub device 112 in exemplary embodiments. The process depicted in FIG. 4 performs preemptive local data merge and may be implemented by a mechanism including hardware and/or software instructions such as a finite state machine in the flow control logic 308. The process starts at block 402 and is repeated, in exemplary embodiments, on a periodic basis (e.g., after each controller channel transfer, or upstream channel cycle). At block 404 any local read data packets (i.e., from memory devices 108 on memory modules 110 attached to the hub device 112) in the memory interface 302 are loaded into the CCB 310. This insures that the flow control logic 308 is aware of and managing the upstream driving of local read data. At block 406, it is determined if there is data in the CCB 310. If there is no data in the CCB 310, then the data is routed from the receiver logic 304 to the driver logic 306 at block 412. The routing is directed by the flow control logic 308 by setting the local data multiplexer 312 to send the upstream data packet to the driver logic 306 for driving the upstream data packet onto the upstream channel 106 towards the controller 102. Processing then continues at 414, where processing is sent back to block 404 at the next upstream channel cycle.


If it is determined at block 406, that there is data in the CCB 310 then block 408 is performed to determine if an upstream channel operation is in process (i.e., is an upstream data packet or a local read data packet in the middle of being driven onto the upstream channel 106 via the driver logic 306). Processing continues at block 412 if an upstream channel operation is in process (i.e., the driver is busy). At block 412, upstream read data packets are routed from the receiver logic 304 to the driver logic 306 by setting the local data multiplexer 312 to send the upstream data packet to the driver logic 306. Alternatively, processing continues at block 410 if an upstream channel operation is not in process (i.e., the driver is idle) and there is data in the CCB 310. At block 410, data from the CCB 310 is driven onto the upstream channel 106 while any data packets received in the receiver logic 304 from the upstream channel 106 are shunted (stored) into the next available CCB 310 location. The shunting is performed by the flow control logic 308 directing the upstream data packets to be loaded into the CCB 310. Processing then continues at 414 which sends processing back to block 404 at the next upstream channel cycle.



FIG. 5 is an exemplary read data frame format for upstream data packets and local read data packets on the upstream channel 106. The frame format depicted in FIG. 5 uses twenty-one signal lanes and each packet includes sixteen transfers. It includes a one bit frame start indicator 502 and an identification tag 504, as well as 256 bits (32B) of read data 506 with bus CRC bits 508 for transmission error detection. Other combinations of signal lanes and transfer depths can be used to create frame formats that include a frame start indicator 502, read data identification tag 504 and read data 506 that are compatible with exemplary embodiments of the present invention.


In a memory system which includes the receipt of data packets at unpredicted times and/or the receipt of unrequested data transfers, an efficient and reliable method for the tagging of data is required to identify data received by a memory controller (or other processing device).


In an exemplary embodiment, such as that described herein, an upstream packet (or upstream frame) can be sent at any starting point when the bus is idle. Thus, upstream devices must be able to support the receipt of data at unpredicted times (also referred to as indeterminate data response times). This is different than memory controllers that support determinate data response times, where the upstream frames are scheduled to be sent on specific clock boundaries relative to previous (scheduled) data transfers, e.g. on 8, 12 or 16 cycle boundaries (modulo 8, modulo 12, etc.). When used in conjunction with the exemplary frame start indicator described in co-pending patent application Ser. No. 11/843,150, filed concurrently herewith, hereby incorporated by reference in its entirety, the exemplary identification tag 504 does not require data transfers to be initiated at known times and/or intervals.


In an exemplary embodiment, a data request initiated by an upstream device (e.g., a memory controller) includes a downstream identification tag. The upstream device generates the downstream identification tag to be included with the data request. As depicted in FIG. 6, an exemplary downstream identification tag 600 includes a source of the request field 602 (e.g. the memory controller or another hub device), a priority of the request field 604 (e.g. whether the information is needed immediately or the operation/response can be scheduled based on a pre-determined priority scheme allowing for multiple priorities such as “high”, “medium” or “low” priority), and a request identifier field 606 (comprised, for example, of a sequential count with a pre-defined wrap limit). These fields are intended to be examples as alternate embodiments may include a subset of these fields and/or additional fields. In an exemplary embodiment, the downstream identification tag 600 comprises 16 bits, but other sizes are possible (e.g., 4, 8, 12, 20). In addition, the length of the fields may vary based on application requirements.


In an exemplary embodiment, when a data packet is received in response to a data request (e.g., a read request) from an upstream device, the data packet includes an upstream identification tag 504 to correlate the data packet to the data request. For an upstream data packet that is received in response to a request from an upstream device) the exemplary upstream identification tag 504 will generally include the tag information from the original request to facilitate the correlation of the response data to the original request. In addition, the upstream identification tag 504 may include other data, such as that depicted in FIG. 7.



FIG. 7 depicts an upstream identification tag 700 which may be implemented by an exemplary embodiment. The upstream identification tag 700 depicted in FIG. 7 includes fields from the downstream identification tag 600: a source of the request field 704, a priority of the request field 706, and a request identifier field 708. In addition, the upstream identification tag 700 depicted in FIG. 7 includes a requested identifier bit 702 (to identify that the data was specifically requested), a continuation bit 710 (indicating that additional information has been pre-fetched by the hub device and that the data will be transmitted on subsequent transfers, based, for example, on the priority of other bus operations); a source of the read data field 712 (e.g., an identifier which uniquely defines the sending device), and a fault tolerant encoding field 714 (e.g., parity, CRC, ECC or other encoding means may be used to maximize the integrity of the data tag and/or the entire bus transfer, such as an upstream frame).


Depending on the number of requests that can be initiated prior to corresponding data responses, in conjunction with the number of memory modules and/or hub devices on a given channel, in addition to other information included in the upstream identification tag 700, the tag field may comprise 8, 12, 16, 24 or other numbers of bit positions in the upstream frame. As an increased tag size reduces the effective data bandwidth of the system, field size should be determined via analysis of the effective bandwidth for each tag field size, in conjunction with any performance benefits that result from improved efficiencies due to the transfer of unrequested data (e.g. as a result of hub-initiated pre-fetch operations, local caching or other hub-based functions which will require data tagging and frame identification to maximize the benefits of these local functions). These fields are intended to be examples as alternate embodiments may include a subset of these fields and/or additional fields. In addition, the length of the fields may vary based on application requirements (e.g. the requested identifier bit field 702 may be two or more bits).



FIG. 8 depicts an exemplary upstream identification tag 800 which may be utilized for an upstream data packet which is locally initiated (e.g., by a hub device) and for which a data request (command) was not received. In this case, the exemplary upstream identification tag 800 includes locally developed tag information, which is defined such that the data is properly comprehended by the receiving device. The upstream identification tag 800 depicted in FIG. 8 includes a requested identifier bit 702 (e.g., to identify that the data was not requested), a physical address range of the data field 804 (e.g., minus least significant bits or “LSBs” which are unnecessary based on the specified burst length for the device), a source of the data field 806 (e.g., the hub address or identifier, if not included in the above address field), a reason for the unrequested data field 808 (e.g., due to a pre-fetch of a subsequent address range, generally this information will be included as one or more bits depending on the number of reasons for which the unrequested data is being provided), a priority of the read data field 810 (e.g., low, medium or high priority, based on a pre-defined labeling method), a continuation bit 812 (indicating that additional information has been pre-fetched by the hub device and that the data will be transmitted on subsequent transfers, based, for example, on the priority of other bus operations), and a fault tolerant encoding field 814 (e.g., parity, CRC, ECC or other encoding means may be used to maximize the integrity of the data tag and/or the entire bus transfer, such as an upstream frame).


In an alternate exemplary embodiment, the continuation bit 812 in the upstream identification tag 800 spans several bits and includes the identifier of the access that resulted in the speculative pre-fetch. In yet a further alternate exemplary embodiment, the continuation bit 812 spans several bits and includes a count indicating the distance of the new address from the original address (e.g. +1, +2, +4 etc. addresses beyond the original access, or −1, −2, −4 prior to the original access).


As described previously, the hub devices include registers that are loaded with the requested and/or unrequested data, in conjunction with the data tag and any other information required to comprise a valid frame. In an exemplary embodiment, the information in the registers is placed on the upstream bus once the bus is determined to be idle using a method such as the one described previously herein.



FIG. 9 depicts an exemplary memory system that may be implemented by exemplary embodiments. FIG. 9 is similar to FIG. 1 and includes data transfer tag logic 904 in the memory controller 902. This provides the mechanism for the memory controller 902 to determine if a data packet received via an upstream channel is in response to a request from an upstream device (e.g., the memory controller 902). If the received data packet is in response to a request from an upstream device (which may be determined by the value stored in the requested identifier bit field 702), then the received data packet is matched to the request based on contents of the upstream identification tag 700. In an exemplary embodiment, the request from the upstream device includes a downstream identification tag 600 and the request identifier field 708 in the upstream identification tag 700 is matched to the request identifier field 606 in the downstream identification tag 600. If the data packet is not in response to a request from an upstream device (i.e., it is an unrequested data packet), then the contents of upstream identification tag 800 are read to determine what action to take with the unrequested data. In an exemplary embodiment, all or a subset of the contents of the unrequested data packet are stored in cache accessible by the memory controller 902. In this manner, the memory controller can support indeterminate data read including both requested and un-requested data frames.


As used herein the terms “mechanism” and “logic instructions” refer to circuitry and/or software instructions for implementing the described process.


Exemplary embodiments include a computing system with a processor(s) and an I/O unit(s) (e.g., requesters) interconnected to a memory system that contains a memory controller and memory devices. In exemplary embodiments, the memory system includes a processor or memory controller interfaced to a set of hub devices (also referred to as “hub chips”). The hub devices connect and interface to the memory devices. In exemplary embodiments the computer memory system includes a physical memory array with a plurality of memory devices for storing data and instructions. These memory devices may be connected directly to the memory controller and/or indirectly coupled to the memory controller through hub devices. In exemplary embodiments, the hub-based computer memory system has memory devices attached to a communication hub device that is connected to a memory control device (e.g., a memory controller). Also in exemplary embodiments, the hub device is located on a memory module (e.g, a single substrate or physical device) that includes two or more hub devices that are cascaded interconnected to each other (and possibly to another hub device located on another memory module) via the memory bus.


Hub devices may be connected to the memory controller through a multi-drop or point-to-point bus structure (which may further include a cascade connection to one or more additional hub devices). Memory access requests are transmitted by the memory controller through the bus structure (e.g., the memory bus) to the selected hub(s). In response to receiving the memory access requests, the hub device translates the memory access requests to control the memory devices to store write data from the hub device or to provide read data to the hub device. Read data is encoded into one or more communication packet(s) and transmitted through the memory bus(ses) to the memory controller.


In alternate exemplary embodiments, the memory controller(s) may be integrated together with one or more processor chips and supporting logic, packaged in a discrete chip (commonly called a “northblidge” chip), included in a multi-chip carrier with the one or more processors and/or supporting logic, or packaged in various alternative forms that best match the application/environment. Any of these solutions may or may not employ one or more narrow/high speed links to connect to one or more hub chips and/or memory devices.


The memory modules may be implemented by a variety of technology including a DIMM, a single in-line memory module (SIMM) and/or other memory module or card structures. In general, a DIMM refers to a small circuit board which is comprised primarily of random access memory (RAM) integrated circuits or die on one or both sides with signal and/or power pins on both sides of the board. This can be contrasted to a SIMM which is a small circuit board or substrate composed primarily of RAM integrated circuits or die on one or both sides and single row of pins along one long edge. The DIMM depicted in FIG. 1 includes 168 pins in the exemplary embodiment, whereas subsequent DIMMs have been constructed with pincounts ranging from 100 pins to over 300 pins. In exemplary embodiments described herein, memory modules may include two or more hub devices.


In exemplary embodiments, the memory bus is constructed using multi-drop connections to hub devices on the memory modules and/or using point-to-point connections. The downstream portion of the controller interface (or memory bus), referred to as the downstream bus, may include command, address, data and other operational, initialization or status information being sent to the hub devices on the memory modules. Each hub device may simply forward the information to the subsequent hub device(s) via bypass circuitry; receive, interpret and re-drive the information if it is determined to be targeting a downstream hub device; re-drive some or all of the information without first interpreting the information to determine the intended recipient; or perform a subset or combination of these options.


The upstream portion of the memory bus, referred to as the upstream bus, returns requested read data and/or error, status or other operational information, and this information may be forwarded to the subsequent hub devices via bypass circuitry; be received, interpreted and re-driven if it is determined to be targeting an upstream hub device and/or memory controller in the processor complex; be re-driven in part or in total without first interpreting the information to determine the intended recipient; or perform a subset or combination of these options.


In alternate exemplary embodiments, the point-to-point bus includes a switch or bypass mechanism which results in the bus information being directed to one of two or more possible hub devices during downstream communication (communication passing from the memory controller to a hub device on a memory module), as well as directing upstream information (communication from a hub device on a memory module to the memory controller), often by way of one or more upstream hub devices. Further embodiments include the use of continuity modules, such as those recognized in the art, which, for example, can be placed between the memory controller and a first populated hub device (i.e., a hub device that is in communication with one or more memory devices), in a cascade interconnect memory system, such that any intermediate hub device positions between the memory controller and the first populated hub device include a means by which information passing between the memory controller and the first populated hub device can be received even if the one or more intermediate hub device position(s) do not include a hub device. The continuity module(s) may be installed in any module position(s), subject to any bus restrictions, including the first position (closest to the main memory controller, the last position (prior to any included termination) or any intermediate position(s). The use of continuity modules may be especially beneficial in a multi-module cascade interconnect bus structure, where an intermediate hub device on a memory module is removed and replaced by a continuity module, such that the system continues to operate after the removal of the intermediate hub device. In more common embodiments, the continuity module(s) would include either interconnect wires to transfer all required signals from the input(s) to the corresponding output(s), or be re-driven through a repeater device. The continuity module(s) might further include a non-volatile storage device (such as an EEPROM), but would not include main memory storage devices.


In exemplary embodiments, the memory system includes one or more hub devices on one or more memory modules connected to the memory controller via a cascade interconnect memory bus, however other memory structures may be implemented such as a point-to-point bus, a multi-drop memory bus or a shared bus. Depending on the signaling methods used, the target operating frequencies, space, power, cost, and other constraints, various alternate bus structures may be considered. A point-to-point bus may provide the optimal performance in systems produced with electrical interconnections, due to the reduced signal degradation that may occur as compared to bus structures having branched signal lines, switch devices, or stubs. However, when used in systems requiring communication with multiple devices or subsystems, this method will often result in significant added component cost and increased system power, and may reduce the potential memory density due to the need for intermediate buffering and/or re-drive.


Although not shown in the Figures, the memory modules or hub devices may also include a separate bus, such as a ‘presence detect’ bus, an I2C bus and/or an SMBus which is used for one or more purposes including the determination of the hub device an/or memory module attributes (generally after power-up), the reporting of fault or status information to the system, the configuration of the hub device(s) and/or memory subsystem(s) after power-up or during normal operation or other purposes. Depending on the bus characteristics, this bus might also provide a means by which the valid completion of operations could be reported by the hub devices and/or memory module(s) to the memory controller(s), or the identification of failures occurring during the execution of the main memory controller requests.


Performances similar to those obtained from point-to-point bus structures can be obtained by adding switch devices. These and other solutions offer increased memory packaging density at lower power, while retaining many of the characteristics of a point-to-point bus. Multi-drop busses provide an alternate solution, albeit often limited to a lower operating frequency, but at a cost/performance point that may be advantageous for many applications. Optical bus solutions permit significantly increased frequency and bandwidth potential, either in point-to-point or multi-drop applications, but may incur cost and space impacts.


As used herein the term “buffer” or “buffer device” refers to a temporary storage unit (as in a computer), especially one that accepts information at one rate and delivers it another. In exemplary embodiments, a buffer is an electronic device that provides compatibility between two signals (e.g., changing voltage levels or current capability). The term “hub” is sometimes used interchangeably with the term “buffer.” A hub is a device containing multiple ports that is connected to several other devices. A port is a portion of an interface that serves a congruent I/O functionality (e.g., a port may be utilized for sending and receiving data, address, and control information over one of the point-to-point links, or busses). A hub may be a central device that connects several systems, subsystems, or networks together. A passive hub may simply forward messages, while an active hub, or repeater, amplifies and refreshes the stream of data which otherwise would deteriorate over a distance. The term hub device, as used herein, refers to a hub chip that includes logic (hardware and/or software) for performing memory functions.


Also as used herein, the term “bus” refers to one of the sets of conductors (e.g., wires, and printed circuit board traces or connections in an integrated circuit) connecting two or more functional units in a computer. The data bus, address bus and control signals, despite their names, constitute a single bus since each are often useless without the others. A bus may include a plurality of signal lines, each signal line having two or more connection points, that form a main transmission path that electrically connects two or more transceivers, transmitters and/or receivers. The term “bus” is contrasted with the term “channel” which is often used to describe the function of a “port” as related to a memory controller in a memory system, and which may include one or more busses or sets of busses. The term “channel” as used herein refers to a port on a memory controller. Note that this term is often used in conjunction with I/O or other peripheral equipment, however the term channel has been adopted by some to describe the interface between a processor or memory controller and one of one or more memory subsystem(s).


Further, as used herein, the term “daisy chain” refers to a bus wiring structure in which, for example, device A is wired to device B, device B is wired to device C, etc. The last device is typically wired to a resistor or terminator. All devices may receive identical signals or, in contrast to a simple bus, each device may modify one or more signals before passing them on. A “cascade” or cascade interconnect’ as used herein refers to a succession of stages or units or a collection of interconnected networking devices, typically hubs, in which the hubs operate as a logical repeater, further permitting merging data to be concentrated into the existing data stream. Also as used herein, the term “point-to-point” bus and/or link refers to one or a plurality of signal lines that may each include one or more terminators. In a point-to-point bus and/or link, each signal line has two transceiver connection points, with each transceiver connection point coupled to transmitter circuitry, receiver circuitry or transceiver circuitry. A signal line refers to one or more electrical conductors or optical carriers, generally configured as a single carrier or as two or more carriers, in a twisted, parallel, or concentric arrangement, used to transport at least one logical signal.


Memory devices are generally defined as integrated circuits that are composed primarily of memory (storage) cells, such as DRAMs (Dynamic Random Access Memories), SRAMs (Static Random Access Memories), FeRAMs (Ferro-Electric RAMs), MRAMs (Magnetic Random Access Memories), Flash Memory and other forms of random access and related memories that store information in the form of electrical, optical, magnetic, biological or other means. Dynamic memory device types may include asynchronous memory devices such as FPM DRAMs (Fast Page Mode Dynamic Random Access Memories), EDO (Extended Data Out) DRAMs, BEDO (Burst EDO) DRAMs, SDR (Single Data Rate) Synchronous DRAMs, DDR (Double Data Rate) Synchronous DRAMs or any of the expected follow-on devices such as DDR2, DDR3, DDR4 and related technologies such as Graphics RAMs, Video RAMs, LP RAM (Low Power DRAMs) which are often based on the fundamental functions, features and/or interfaces found on related DRAMs.


Memory devices may be utilized in the form of chips (die) and/or single or multi-chip packages of various types and configurations. In multi-chip packages, the memory devices may be packaged with other device types such as other memory devices, logic chips, analog devices and programmable devices, and may also include passive devices such as resistors, capacitors and inductors. These packages may include an integrated heat sink or other cooling enhancements, which may be further attached to the immediate carrier or another nearby carrier or heat removal system.


Module support devices (such as buffers, hubs, hub logic chips, registers, PLL's, DLL's, non-volatile memory, etc) may be comprised of multiple separate chips and/or components, may be combined as multiple separate chips onto one or more substrates, may be combined onto a single package or even integrated onto a single device—based on technology, power, space, cost and other tradeoffs. In addition, one or more of the various passive devices such as resistors, capacitors may be integrated into the support chip packages, or into the substrate, board or raw card itself, based on technology, power, space, cost and other tradeoffs. These packages may include an integrated heat sink or other cooling enhancements, which may be further attached to the immediate carrier or another nearby carrier or heat removal system.


Memory devices, hubs, buffers, registers, clock devices, passives and other memory support devices and/or components may be attached to the memory subsystem and/or hub device via various methods including solder interconnects, conductive adhesives, socket structures, pressure contacts and other methods which enable communication between the two or more devices via electrical, optical or alternate means.


The one or more memory modules (or memory subsystems) and/or hub devices may be electrically connected to the memory system, processor complex, computer system or other system environment via one or more methods such as soldered interconnects, connectors, pressure contacts, conductive adhesives, optical interconnects and other communication and power delivery methods. Connector systems may include mating connectors (male/female), conductive contacts and/or pins on one carrier mating with a male or female connector, optical connections, pressure contacts (often in conjunction with a retaining mechanism) and/or one or more of various other communication and power delivery methods. The interconnection(s) may be disposed along one or more edges of the memory assembly and/or placed a distance from an edge of the memory subsystem depending on such application requirements as ease-of-upgrade/repair, available space/volume, heat transfer, component size and shape and other related physical, electrical, optical, visual/physical access, etc. Electrical interconnections on a memory module are often referred to as contacts, or pins, or tabs. Electrical interconnections on a connector are often referred to as contacts or pins.


As used herein, the term memory subsystem refers to, but is not limited to: one or more memory devices; one or more memory devices and associated interface and/or timing/control circuitry; and/or one or more memory devices in conjunction with a memory buffer, hub device, and/or switch. The term memory subsystem may also refer to one or more memory devices, in addition to any associated interface and/or timing/control circuitry and/or a memory buffer, hub device or switch, assembled into a substrate, a card, a module or related assembly, which may also include a connector or similar means of electrically attaching the memory subsystem with other circuitry. The memory modules described herein may also be referred to as memory subsystems because they include one or more memory devices and hub devices


Additional functions that may reside local to the memory subsystem and/or hub device include write and/or read buffers, one or more levels of memory cache, local pre-fetch logic, data encryption/decryption, compression/decompression, protocol translation, command prioritization logic, voltage and/or level translation, error detection and/or correction circuitry, data scrubbing, local power management circuitry and/or reporting, operational and/or status registers, initialization circuitry, performance monitoring and/or control, one or more co-processors, search engine(s) and other functions that may have previously resided in other memory subsystems. By placing a function local to the memory subsystem, added performance may be obtained as related to the specific function, often while making use of unused circuits within the subsystem.


Memory subsystem support device(s) may be directly attached to the same substrate or assembly onto which the memory device(s) are attached, or may be mounted to a separate interposer or substrate also produced using one or more of various plastic, silicon, ceramic or other materials which include electrical, optical or other communication paths to functionally interconnect the support device(s) to the memory device(s) and/or to other elements of the memory or computer system.


Information transfers (e.g. packets) along a bus, channel, link or other naming convention applied to an interconnection method may be completed using one or more of many signaling options. These signaling options may include such methods as single-ended, differential, optical or other approaches, with electrical signaling further including such methods as voltage or current signaling using either single or multi-level approaches. Signals may also be modulated using such methods as time or frequency, non-return to zero, phase shift keying, amplitude modulation and others. Voltage levels are expected to continue to decrease, with 1.5V, 1.2V, 1V and lower signal voltages expected consistent with (but often independent of) the reduced power supply voltages required for the operation of the associated integrated circuits themselves.


One or more clocking methods may be utilized within the memory subsystem and the memory system itself, including global clocking, source-synchronous clocking, encoded clocking or combinations of these and other methods. The clock signaling may be identical to that of the signal lines themselves, or may utilize one of the listed or alternate methods that is more conducive to the planned clock frequency(ies), and the number of clocks planned within the various subsystems. A single clock may be associated with all communication to and from the memory, as well as all clocked functions within the memory subsystem, or multiple clocks may be sourced using one or more methods such as those described earlier. When multiple clocks are used, the functions within the memory subsystem may be associated with a clock that is uniquely sourced to the subsystem, or may be based on a clock that is derived from the clock related to the information being transferred to and from the memory subsystem (such as that associated with an encoded clock). Alternately, a unique clock may be used for the information transferred to the memory subsystem, and a separate clock for information sourced from one (or more) of the memory subsystems. The clocks themselves may operate at the same or frequency multiple of the communication or functional frequency, and may be edge-aligned, center-aligned or placed in an alternate timing position relative to the data, command or address information.


Information passing to the memory subsystem(s) will generally be composed of address, command and data, as well as other signals generally associated with requesting or reporting status or error conditions, resetting the memory, completing memory or logic initialization and other functional, configuration or related information. Information passing from the memory subsystem(s) may include any or all of the information passing to the memory subsystem(s), however generally will not include address and command information. This information may be communicated using communication methods that may be consistent with normal memory device interface specifications (generally parallel in nature), the information may be encoded into a ‘packet’ structure, which may be consistent with future memory interfaces or simply developed to increase communication bandwidth and/or enable the subsystem to operate independently of the memory technology by converting the received information into the format required by the receiving device(s).


Initialization of the memory subsystem may be completed via one or more methods, based on the available interface busses, the desired initialization speed, available space, cost/complexity objectives, subsystem interconnect structures, the use of alternate processors (such as a service processor) which may be used for this and other purposes, etc. In one embodiment, the high speed bus may be used to complete the initialization of the memory subsystem(s), generally by first completing a training process to establish reliable communication, then by interrogation of the attribute or ‘presence detect’ data associated the various components and/or characteristics associated with that subsystem, and ultimately by programming the appropriate devices with information associated with the intended operation within that system. In a cascaded system, communication with the first memory subsystem would generally be established, followed by subsequent (downstream) subsystems in the sequence consistent with their position along the cascade interconnect bus.


A second initialization method would include one in which the high speed bus is operated at one frequency during the initialization process, then at a second (and generally higher) frequency during the normal operation. In this embodiment, it may be possible to initiate communication with all of the memory subsystems on the cascade interconnect bus prior to completing the interrogation and/or programming of each subsystem, due to the increased timing margins associated with the lower frequency operation.


A third initialization method might include operation of the cascade interconnect bus at the normal operational frequency(ies), while increasing the number of cycles associated with each address, command and/or data transfer. In one embodiment, a packet containing all or a portion of the address, command and/or data information might be transferred in one clock cycle during normal operation, but the same amount and/or type of information might be transferred over two, three or more cycles during initialization. This initialization process would therefore be using a form of ‘slow’ commands, rather than ‘normal’ commands, and this mode might be automatically entered at some point after power-up and/or re-start by each of the subsystems and the memory controller by way of POR (power-on-reset) logic included in each of these subsystems.


A fourth initialization method might utilize a distinct bus, such as a presence detect bus (such as the one defined in U.S. Pat. No. 5,513,135 to Dell et al., of common assignment herewith), an I2C bus (such as defined in published JEDEC standards such as the 168 Pin DIMM family in publication 21-C revision 7R8) and/or the SMBUS, which has been widely utilized and documented in computer systems using such memory modules. This bus might be connected to one or more modules within a memory system in a daisy chain/cascade interconnect, multi-drop or alternate structure, providing an independent means of interrogating memory subsystems, programming each of the one or more memory subsystems to operate within the overall system environment, and adjusting the operational characteristics at other times during the normal system operation based on performance, thermal, configuration or other changes desired or detected in the system environment.


Other methods for initialization can also be used, in conjunction with or independent of those listed. The use of a separate bus, such as described in the fourth embodiment above, also offers the advantage of providing an independent means for both initialization and uses other than initialization, such as described in U.S. Pat. No. 6,381,685 to Dell et al., of common assignment herewith, including changes to the subsystem operational characteristics on-the-fly and for the reporting of and response to operational subsystem information such as utilization, temperature data, failure information or other purposes.


With improvements in lithography, better process controls, the use of materials with lower resistance, increased field sizes and other semiconductor processing improvements, increased device circuit density (often in conjunction with increased die sizes) will help facilitate increased function on integrated devices as well as the integration of functions previously implemented on separate devices. This integration will serve to improve overall performance of the intended function, as well as promote increased storage density, reduced power, reduced space requirements, lower cost and other manufacturer and customer benefits. This integration is a natural evolutionary process, and may result in the need for structural changes to the fundamental building blocks associated with systems.


The integrity of the commuincation path, the data storage contents and all functional operations associated with each element of a memory system or subsystem can be assured, to a high degree, with the use of one or more fault detection and/or correction methods. Any or all of the various elements may include error detection and/or correction methods such as CRC (Cyclic Redundancy Code), EDC (Error Detection and Correction), parity or other encoding/decoding methods suited for this purpose. Further reliability enhancements may include operation re-try (to overcome intermittent faults such as those associated with the transfer of information), the use of one or more alternate or replacement communication paths to replace failing paths and/or lines, complement-re-complement techniques or alternate methods used in computer, communication and related systems.


The use of bus termination, on busses as simple as point-to-point links or as complex as multi-drop structures, is becoming more common consistent with increased performance demands. A wide variety of termination methods can be identified and/or considered, and include the use of such devices as resistors, capacitors, inductors or any combination thereof, with these devices connected between the signal line and a power supply voltage or ground, a termination voltage or another signal. The termination device(s) may be part of a passive or active termination structure, and may reside in one or more positions along one or more of the signal lines, and/or as part of the transmitter and/or receiving device(s). The terminator may be selected to match the impedance of the transmission line, or selected via an alternate approach to maximize the useable frequency, operating margins and related attributes within the cost, space, power and other constraints.


Exemplary embodiments pertain to a computer memory system constructed of daisy chained hub logic devices connected to, or contained upon, memory modules. The hubs are daisy chained on a memory controller channel and are further attached to memory devices on the memory modules. The memory controller issues requests for read data to the hubs which merge this read data from the memory modules onto the memory channel. Using channel buffers and packet identification tags, the hubs are able to return read data at a time unpredicted by the memory controller, and at a time that may preempt a read request that had been issued earlier, without loosing or corrupting any of the read data returned on the channel to the memory controller.


Technical effects include the ability to optimize average read data latency by more fully utilizing the upstream channel. Through the use of CCBs, read data frame formats with identification tags and a preemptive data merge technique, indeterminate read data latency may be performed to more fully utilize the controller channel.


As described above, the embodiments of the invention may be embodied in the form of computer-implemented processes and apparatuses for practicing those processes. Embodiments of the invention may also be embodied in the form of computer program code containing instructions embodied in tangible media, such as floppy diskettes, CD-ROMs, hard drives, or any other computer-readable storage medium, wherein, when the computer program code is loaded into and executed by a computer, the computer becomes an apparatus for practicing the invention. The present invention can also be embodied in the form of computer program code, for example, whether stored in a storage medium, loaded into and/or executed by a computer, or transmitted over some transmission medium, such as over electrical wiring or cabling, through fiber optics, or via electromagnetic radiation, wherein, when the computer program code is loaded into and executed by a computer, the computer becomes an apparatus for practicing the invention. When implemented on a general-purpose microprocessor, the computer program code segments configure the microprocessor to create specific logic circuits.


While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another.

Claims
  • 1. A memory controller in a memory system, the memory controller comprising: a first mechanism for receiving data packets at indeterminate times via an upstream channel, the first mechanism comprising a means for identifying bits received via the upstream channel as corresponding to a received data packet; anda second mechanism including instructions for facilitating: determining if the received data packet is in response to a request from the memory controller, wherein input to the determining includes an upstream identification tag included in the received data packet, the upstream identification tag comprising at least one bit indicating that the received data packet is in response to a request from the memory controller or indicating that the received data packet is not in response to a request from the memory controller;determining if the received data packet is a partial response and that additional data related to the received data packet will be transferred in subsequent data packets, the determining responsive to inspecting a continuation bit in the received data packet; andmatching the received data packet to the request responsive to determining that the received data packet is in response to a request from the memory controller.
  • 2. The memory controller of claim 1, wherein the second mechanism further includes instructions for facilitating: if the received data packet is determined not to be in response to a request from the memory controller, then processing the received data packet in response to contents of the upstream identification tag.
  • 3. The memory controller of claim 2 wherein the upstream identification tag further comprises a physical address range of the data and a source of the data.
  • 4. The memory controller of claim 3 wherein the upstream identification tag further includes one or more of a reason for the unrequested data, a priority of the data, one or more continuation bits and fault tolerant encoding.
  • 5. The memory controller of claim 2 wherein the processing includes storing at least a subset of the received data packet in a cache accessible by the memory controller.
  • 6. The memory controller of claim 1 wherein the upstream identification tag further includes a source of the request, a priority of the request, and a request identifier.
  • 7. The memory controller of claim 1 wherein the upstream identification tag further includes one or more of a source of the data, fault tolerant encoding, and one or more continuation bits.
  • 8. The memory controller of claim 1 wherein the request includes a downstream identification tag.
  • 9. The memory controller of claim 8 wherein contents of the downstream identification tag are included in the upstream identification tag of a data packet that is received via an upstream channel in response to the request.
  • 10. The memory controller of claim 8 wherein the downstream identification tag includes a priority of the request, a request identifier, and identifies the memory controller as the source of the request.
  • 11. The memory controller of claim 1, wherein the identifying of the bits received via the upstream channel as corresponding to a received data packet comprises identifying at least one frame start indicator bit received via the upstream channel.
  • 12. The memory controller of claim 1, wherein the bits received on the upstream channel are received during a plurality of bus cycles and the bits corresponding to the data packet are received during any of the plurality of bus cycles.
  • 13. A method for providing indeterminate data response times in a memory system, the method comprising: monitoring an upstream channel in a memory system;determining that bits received on the upstream channel correspond to a data packet, the determining responsive to at least one bit received on the upstream channel at an indeterminate time indicating that the received bits correspond to the data packet;receiving the data packet at an upstream device via the upstream channel, the data packet including an upstream identification tag and data, the upstream identification tag comprising at least one bit indicating that the data packet is in response to a request from the upstream device or indicating that the data packet is not in response to a request from the upstream device;determining if the data packet is a partial response and that additional data related to the data packet will be transferred in subsequent data packets, the determining responsive to inspecting a continuation bit in the data packet;determining if the received data packet is in response to a request from the upstream device, wherein input to the determining includes the upstream identification tag;matching the received data packet to the request responsive to determining that the received data packet is in response to a request from the upstream device; andprocessing the data packet according to bits included in the received data packet, responsive to determining that the received data packet is not in response to a request from the upstream device.
  • 14. The method of claim 13 wherein if the data packet is determined not to be in response to a request from the upstream device, then the upstream identification tag further comprises a physical address range of the data, and a source of the data.
  • 15. The method of claim 14 wherein the upstream identification tag further includes one or more of a reason for the unrequested data, a priority of the data, one or more continuation bits and fault tolerant encoding.
  • 16. The method of claim 13 wherein the matching includes matching a request identifier in a downstream identification tag associated with the request to a request identifier in the upstream identification tag.
  • 17. The method of claim 13 wherein the upstream device is a memory controller.
  • 18. The method of claim 13, wherein the at least one bit on the upstream channel indicating that the received bits correspond to the data packet is at least one frame start indicator bit.
  • 19. The method of claim 13, wherein the data packet is received at an indeterminate time relative to a selected bus cycle of the upstream channel.
  • 20. A hub device in a memory system, the hub device comprising: a mechanism for creating a local data packet, the local data packet including an upstream identification tag for identifying contents of the data packet;a mechanism for transmitting the local data packet to an upstream device, the upstream device one of a memory controller and an other hub device; a mechanism for receiving data packets at indeterminate times via an upstream channel, the mechanism comprising a means for identifying bits received via the upstream channel as corresponding to a received data packet;a mechanism for storing a plurality of received data packets and forwarding each of the plurality of received data packets according to a priority and a chronological order, the priority determined by a priority field within each of the plurality of received data packets, and the chronological order determined by an order of a command requesting the received data packets; anda mechanism including instructions for facilitating:determining if the received data packet is in response to a request from the hub device, wherein input to the determining includes an upstream identification tag included in the received data packet the upstream identification tag comprising at least one bit indicating that the received data packet is in response to a request from the hub device or indicating that the received data packet is not in response to a request from the hub device; andmatching the received data packet to the request responsive to determining that the received data packet is in response to a request from the hub device.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 11/289,193 filed Nov. 28, 2005, the contents of which are incorporated by reference herein in their entirety.

US Referenced Citations (373)
Number Name Date Kind
2842682 Clapper Jul 1958 A
3333253 Sahulka Jul 1967 A
3395400 De Witt Jul 1968 A
3825904 Burk et al. Jul 1974 A
4028675 Frankenberg Jun 1977 A
4135240 Ritchie Jan 1979 A
4150428 Inrig et al. Apr 1979 A
4472780 Chenoweth et al. Sep 1984 A
4475194 LaVallee et al. Oct 1984 A
4479214 Ryan Oct 1984 A
4486739 Franaszek et al. Dec 1984 A
4641263 Perlman et al. Feb 1987 A
4654857 Samson et al. Mar 1987 A
4704717 King, Jr. Nov 1987 A
4723120 Petty, Jr. Feb 1988 A
4740916 Martin Apr 1988 A
4782487 Smelser Nov 1988 A
4796231 Pinkham Jan 1989 A
4803485 Rypinkski Feb 1989 A
4833605 Terada et al. May 1989 A
4839534 Clasen Jun 1989 A
4943984 Pechanek et al. Jul 1990 A
4964129 Bowden, III et al. Oct 1990 A
4964130 Bowden, III et al. Oct 1990 A
4985828 Shimizu et al. Jan 1991 A
5053947 Heibel et al. Oct 1991 A
5177375 Ogawa et al. Jan 1993 A
5206946 Brunk Apr 1993 A
5214747 Cok May 1993 A
5265212 Bruce, II Nov 1993 A
5287531 Rogers, Jr. et al. Feb 1994 A
5347270 Matsuda et al. Sep 1994 A
5357621 Cox Oct 1994 A
5375127 Leak Dec 1994 A
5387911 Gleichert et al. Feb 1995 A
5394535 Ohuchi Feb 1995 A
5410545 Porter et al. Apr 1995 A
5454091 Sites et al. Sep 1995 A
5475690 Burns et al. Dec 1995 A
5513135 Dell et al. Apr 1996 A
5517626 Archer et al. May 1996 A
5522064 Aldereguia et al. May 1996 A
5544309 Chang et al. Aug 1996 A
5546023 Borkar et al. Aug 1996 A
5561826 Davies et al. Oct 1996 A
5592632 Leung et al. Jan 1997 A
5594925 Harder et al. Jan 1997 A
5611055 Krishan et al. Mar 1997 A
5613077 Leung et al. Mar 1997 A
5627963 Gabillard et al. May 1997 A
5629685 Allen et al. May 1997 A
5661677 Rondeau, II et al. Aug 1997 A
5666480 Leung et al. Sep 1997 A
5684418 Yanagiuchi Nov 1997 A
5706346 Katta et al. Jan 1998 A
5737589 Doi et al. Apr 1998 A
5754804 Cheselka et al. May 1998 A
5764155 Kertesz et al. Jun 1998 A
5822749 Agarwal Oct 1998 A
5852617 Mote, Jr. Dec 1998 A
5870320 Volkonsky Feb 1999 A
5870325 Nielsen et al. Feb 1999 A
5872996 Barth et al. Feb 1999 A
5881154 Nohara et al. Mar 1999 A
5917760 Millar Jun 1999 A
5926838 Jeddeloh Jul 1999 A
5928343 Farmwald et al. Jul 1999 A
5930273 Mukojima Jul 1999 A
5959914 Gates et al. Sep 1999 A
5973951 Bechtolsheim et al. Oct 1999 A
5974493 Okumura et al. Oct 1999 A
5995405 Trick Nov 1999 A
6003121 Wirt Dec 1999 A
6011732 Harrison et al. Jan 2000 A
6038132 Tokunaga et al. Mar 2000 A
6049476 Laudon et al. Apr 2000 A
6076158 Sites et al. Jun 2000 A
6078515 Nielsen et al. Jun 2000 A
6081868 Brooks Jun 2000 A
6085276 VanDoren et al. Jul 2000 A
6088817 Haulin Jul 2000 A
6096091 Hartmann Aug 2000 A
6128746 Clark et al. Oct 2000 A
6145028 Shank et al. Nov 2000 A
6158040 Ho Dec 2000 A
6170047 Dye Jan 2001 B1
6170059 Pruett et al. Jan 2001 B1
6173382 Dell et al. Jan 2001 B1
6185718 Dell et al. Feb 2001 B1
6198304 Sasaki Mar 2001 B1
6215686 Deneroff et al. Apr 2001 B1
6216247 Creta et al. Apr 2001 B1
6219288 Braceras et al. Apr 2001 B1
6219760 McMinn Apr 2001 B1
6233639 Dell et al. May 2001 B1
6260127 Olarig et al. Jul 2001 B1
6262493 Garnett Jul 2001 B1
6285172 Torbey Sep 2001 B1
6292903 Coteus et al. Sep 2001 B1
6301636 Schultz et al. Oct 2001 B1
6308247 Ackerman et al. Oct 2001 B1
6317352 Halbert et al. Nov 2001 B1
6321343 Toda Nov 2001 B1
6338113 Kubo et al. Jan 2002 B1
6349390 Dell et al. Feb 2002 B1
6357018 Stuewe et al. Mar 2002 B1
6370631 Dye Apr 2002 B1
6378018 Tsern et al. Apr 2002 B1
6381685 Dell et al. Apr 2002 B2
6393512 Chen et al. May 2002 B1
6393528 Arimilli et al. May 2002 B1
6408398 Frecker et al. Jun 2002 B1
6425044 Jeddeloh Jul 2002 B1
6446174 Dow Sep 2002 B1
6446224 Chang et al. Sep 2002 B1
6461013 Simon Oct 2002 B1
6467013 Nizar Oct 2002 B1
6473836 Ikeda Oct 2002 B1
6477614 Leddige et al. Nov 2002 B1
6477615 Tanaka Nov 2002 B1
6483755 Leung et al. Nov 2002 B2
6484271 Gray Nov 2002 B1
6487102 Halbert et al. Nov 2002 B1
6487627 Willke et al. Nov 2002 B1
6493250 Halbert et al. Dec 2002 B2
6496540 Widmer Dec 2002 B1
6496910 Baentsch et al. Dec 2002 B1
6499070 Whetsel Dec 2002 B1
6502161 Perego et al. Dec 2002 B1
6505305 Olarig Jan 2003 B1
6507888 Wu et al. Jan 2003 B2
6510100 Grundon et al. Jan 2003 B2
6513091 Blackmon et al. Jan 2003 B1
6526469 Drehmel et al. Feb 2003 B1
6530007 Olarig Mar 2003 B2
6532525 Aleksic et al. Mar 2003 B1
6546359 Week Apr 2003 B1
6549971 Cecchi et al. Apr 2003 B1
6553450 Dodd et al. Apr 2003 B1
6557069 Drehmel et al. Apr 2003 B1
6564329 Cheung et al. May 2003 B1
6584576 Co Jun 2003 B1
6587912 Leddige et al. Jul 2003 B2
6590827 Chang et al. Jul 2003 B2
6594713 Fuocco et al. Jul 2003 B1
6594748 Lin Jul 2003 B1
6601121 Singh et al. Jul 2003 B2
6601149 Brock et al. Jul 2003 B1
6604180 Jeddeloh Aug 2003 B2
6611905 Grundon et al. Aug 2003 B1
6622217 Gharacorloo et al. Sep 2003 B2
6622227 Zumkehr et al. Sep 2003 B2
6625687 Halbert et al. Sep 2003 B1
6625702 Rentschler et al. Sep 2003 B2
6628538 Funaba et al. Sep 2003 B2
6631439 Saulsbury et al. Oct 2003 B2
6636957 Stevens et al. Oct 2003 B2
6643745 Palanca et al. Nov 2003 B1
6671376 Koto et al. Dec 2003 B1
6678811 Rentschler et al. Jan 2004 B2
6681292 Creta et al. Jan 2004 B2
6684320 Mohamed et al. Jan 2004 B2
6697919 Gharachorloo et al. Feb 2004 B2
6704842 Janakiraman et al. Mar 2004 B1
6721185 Dong et al. Apr 2004 B2
6721944 Chaudhry et al. Apr 2004 B2
6738836 Kessler et al. May 2004 B1
6741096 Moss May 2004 B2
6748518 Guthrie et al. Jun 2004 B1
6751684 Owen et al. Jun 2004 B2
6754762 Curley Jun 2004 B1
6766389 Hayter et al. Jul 2004 B2
6775747 Venkatraman Aug 2004 B2
6791555 Radke et al. Sep 2004 B1
6792495 Garney et al. Sep 2004 B1
6799241 Kahn et al. Sep 2004 B2
6832329 Ahrens et al. Dec 2004 B2
6839393 Sidiropoulos Jan 2005 B1
6845472 Walker et al. Jan 2005 B2
6847583 Janzen et al. Jan 2005 B2
6851036 Toda et al. Feb 2005 B1
6874102 Doody et al. Mar 2005 B2
6877076 Cho et al. Apr 2005 B1
6877078 Fujiwara et al. Apr 2005 B2
6882082 Greeff et al. Apr 2005 B2
6889284 Nizar et al. May 2005 B1
6898726 Lee May 2005 B1
6910146 Dow Jun 2005 B2
6918068 Vail et al. Jul 2005 B2
6925534 David Aug 2005 B2
6938119 Kohn et al. Aug 2005 B2
6944084 Wilcox Sep 2005 B2
6948091 Bartels et al. Sep 2005 B2
6949950 Takahashi et al. Sep 2005 B2
6952761 John Oct 2005 B2
6965952 Echartea et al. Nov 2005 B2
6977536 Chin-Chieh et al. Dec 2005 B2
6977979 Hartwell et al. Dec 2005 B1
6993612 Porterfield Jan 2006 B2
6996639 Narad Feb 2006 B2
6996766 Cypher Feb 2006 B2
7039755 Helms May 2006 B1
7047370 Jeter, Jr. et al. May 2006 B1
7047371 Dortu May 2006 B2
7047384 Bodas et al. May 2006 B2
7076700 Rieger Jul 2006 B2
7091890 Sasaki et al. Aug 2006 B1
7103792 Moon Sep 2006 B2
7120743 Meyer et al. Oct 2006 B2
7133790 Liou Nov 2006 B2
7133972 Jeddeloh Nov 2006 B2
7155016 Betts et al. Dec 2006 B1
7177211 Zimmerman Feb 2007 B2
7194593 Schnepper Mar 2007 B2
7197594 Raz et al. Mar 2007 B2
7197670 Boatright et al. Mar 2007 B2
7203318 Collum et al. Apr 2007 B2
7206887 Jeddeloh Apr 2007 B2
7206962 Deegan Apr 2007 B2
7210059 Jeddeloh Apr 2007 B2
7216196 Jeddeloh May 2007 B2
7216276 Azimi et al. May 2007 B1
7222213 James May 2007 B2
7227949 Heegard et al. Jun 2007 B2
7240145 Holman Jul 2007 B2
7260685 Lee et al. Aug 2007 B2
7266634 Ware et al. Sep 2007 B2
7269765 Charlton et al. Sep 2007 B1
7296129 Gower et al. Nov 2007 B2
7313583 Porten et al. Dec 2007 B2
7319340 Jeddeloh et al. Jan 2008 B2
7321979 Lee Jan 2008 B2
7334159 Callaghan Feb 2008 B1
7353316 Erdmann Apr 2008 B2
7363419 Cronin et al. Apr 2008 B2
7363436 Yeh et al. Apr 2008 B1
7370134 Jeddeloh May 2008 B2
7376146 Beverly et al. May 2008 B2
7386575 Bashant et al. Jun 2008 B2
7386771 Shuma Jun 2008 B2
7404118 Baguette et al. Jul 2008 B1
7418526 Jeddeloh Aug 2008 B2
7421525 Polzin et al. Sep 2008 B2
7430145 Weiss et al. Sep 2008 B2
7433258 Rao et al. Oct 2008 B2
20010003839 Kondo Jun 2001 A1
20010029566 Shin Oct 2001 A1
20010029592 Walker et al. Oct 2001 A1
20020019926 Huppenthal et al. Feb 2002 A1
20020059439 Arroyo et al. May 2002 A1
20020083255 Greeff et al. Jun 2002 A1
20020103988 Dornier Aug 2002 A1
20020112119 Halbert et al. Aug 2002 A1
20020112194 Uzelac Aug 2002 A1
20020124195 Nizar Sep 2002 A1
20020124201 Edwards et al. Sep 2002 A1
20020156985 Abhyankar et al. Oct 2002 A1
20020174274 Wu et al. Nov 2002 A1
20030009632 Arimilli et al. Jan 2003 A1
20030028701 Rao et al. Feb 2003 A1
20030033364 Garnett et al. Feb 2003 A1
20030051055 Parrella et al. Mar 2003 A1
20030056183 Kobayashi Mar 2003 A1
20030084309 Kohn May 2003 A1
20030090879 Doblar et al. May 2003 A1
20030105938 Cooksey et al. Jun 2003 A1
20030118044 Blanc et al. Jun 2003 A1
20030126354 Kahn et al. Jul 2003 A1
20030126363 David Jul 2003 A1
20030177314 Grimsrud et al. Sep 2003 A1
20030223303 Lamb et al. Dec 2003 A1
20030229770 Jeddeloh Dec 2003 A1
20030235222 Bridges et al. Dec 2003 A1
20030236959 Johnson et al. Dec 2003 A1
20040006674 Hargis et al. Jan 2004 A1
20040015650 Zumkehr et al. Jan 2004 A1
20040049723 Obara Mar 2004 A1
20040078615 Martin et al. Apr 2004 A1
20040098546 Bashant et al. May 2004 A1
20040098549 Dorst May 2004 A1
20040117588 Arimilli et al. Jun 2004 A1
20040123222 Widmer Jun 2004 A1
20040128474 Vorbach Jul 2004 A1
20040148482 Grundy et al. Jul 2004 A1
20040160832 Janzen et al. Aug 2004 A1
20040163028 Olarig Aug 2004 A1
20040165609 Herbst et al. Aug 2004 A1
20040199363 Bohizic et al. Oct 2004 A1
20040205433 Gower et al. Oct 2004 A1
20040230718 Polzin et al. Nov 2004 A1
20040246767 Vogt Dec 2004 A1
20040250153 Vogt Dec 2004 A1
20040260909 Lee et al. Dec 2004 A1
20040260957 Jeddeloh et al. Dec 2004 A1
20050022065 Dixon et al. Jan 2005 A1
20050023560 Ahn et al. Feb 2005 A1
20050027941 Wang et al. Feb 2005 A1
20050033906 Mastronarde et al. Feb 2005 A1
20050044305 Jakobs et al. Feb 2005 A1
20050050237 Jeddeloh et al. Mar 2005 A1
20050050255 Jeddeloh Mar 2005 A1
20050066136 Schnepper Mar 2005 A1
20050071542 Weber et al. Mar 2005 A1
20050071707 Hampel Mar 2005 A1
20050078506 Rao et al. Apr 2005 A1
20050080581 Zimmerman et al. Apr 2005 A1
20050081085 Ellis et al. Apr 2005 A1
20050081114 Ackaret et al. Apr 2005 A1
20050081129 Shah et al. Apr 2005 A1
20050086424 Oh et al. Apr 2005 A1
20050086441 Myer et al. Apr 2005 A1
20050097249 Oberlin et al. May 2005 A1
20050105350 Zimmerman et al. May 2005 A1
20050120157 Chen et al. Jun 2005 A1
20050125702 Huang et al. Jun 2005 A1
20050125703 Lefurgy et al. Jun 2005 A1
20050138246 Chen et al. Jun 2005 A1
20050138267 Bains et al. Jun 2005 A1
20050144399 Hosomi Jun 2005 A1
20050149665 Wolrich et al. Jul 2005 A1
20050166006 Talbot et al. Jul 2005 A1
20050177677 Jeddeloh Aug 2005 A1
20050177690 LaBerge Aug 2005 A1
20050204216 Daily et al. Sep 2005 A1
20050216601 Yost Sep 2005 A1
20050216678 Jeddeloh Sep 2005 A1
20050216822 Kyusojin et al. Sep 2005 A1
20050220097 Swami et al. Oct 2005 A1
20050223196 Knowles Oct 2005 A1
20050229132 Butt et al. Oct 2005 A1
20050235072 Smith et al. Oct 2005 A1
20050248997 Lee Nov 2005 A1
20050257005 Jeddeloh et al. Nov 2005 A1
20050259496 Hsu et al. Nov 2005 A1
20050289292 Morrow et al. Dec 2005 A1
20050289377 Luong Dec 2005 A1
20060004953 Vogt Jan 2006 A1
20060010339 Klein Jan 2006 A1
20060036826 Dell et al. Feb 2006 A1
20060036827 Dell et al. Feb 2006 A1
20060050694 Bury et al. Mar 2006 A1
20060080584 Hartnett et al. Apr 2006 A1
20060085602 Huggahalli et al. Apr 2006 A1
20060095592 Borkenhagen May 2006 A1
20060095679 Edirisooriya May 2006 A1
20060104371 Schuermans et al. May 2006 A1
20060107175 Dell et al. May 2006 A1
20060112238 Jamil et al. May 2006 A1
20060161733 Beckett et al. Jul 2006 A1
20060162882 Ohara et al. Jul 2006 A1
20060168407 Stern Jul 2006 A1
20060179208 Jeddeloh Aug 2006 A1
20060190674 Poechmueller Aug 2006 A1
20060195631 Rajamani Aug 2006 A1
20060206742 James Sep 2006 A1
20060212666 Jeddeloh Sep 2006 A1
20060224764 Shinohara et al. Oct 2006 A1
20060271746 Meyer et al. Nov 2006 A1
20060277365 Pong Dec 2006 A1
20060288172 Lee et al. Dec 2006 A1
20070005922 Swaminathan et al. Jan 2007 A1
20070016698 Vogt Jan 2007 A1
20070025304 Leelahakriengkrai et al. Feb 2007 A1
20070038907 Jeddeloh et al. Feb 2007 A1
20070067382 Sun Mar 2007 A1
20070083701 Kapil Apr 2007 A1
20070160053 Coteus Jul 2007 A1
20080043808 Hsu et al. Feb 2008 A1
20080162807 Rothman et al. Jul 2008 A1
20080163014 Crawford et al. Jul 2008 A1
20080222379 Jeddeloh Sep 2008 A1
20090003335 Biran et al. Jan 2009 A1
20090006900 Lastras-Montano et al. Jan 2009 A1
Foreign Referenced Citations (17)
Number Date Country
0229316 Jul 1987 EP
0470734 Feb 1992 EP
0899743 Jun 1998 EP
1429340 Jun 2004 EP
2396711 Jun 2004 GB
59153353 Sep 1984 JP
0114140 Jun 1989 JP
0432614 Nov 1992 JP
10011971 Jan 1998 JP
2004139552 May 2004 JP
2008003711 Jan 2008 JP
9621188 Jul 1996 WO
9812651 Mar 1998 WO
0004481 Jan 2000 WO
0223353 Mar 2002 WO
WO2005038660 Apr 2005 WO
2007109888 Oct 2007 WO
Related Publications (1)
Number Date Country
20070286199 A1 Dec 2007 US
Continuation in Parts (1)
Number Date Country
Parent 11289193 Nov 2005 US
Child 11843271 US