A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
One or more implementations relate generally to providing information to a mobile handheld device from a database network system.
The subject matter discussed in the background section should not be assumed to be prior art merely as a result of its mention in the background section. Similarly, a problem mentioned in the background section or associated with the subject matter of the background section should not be assumed to have been previously recognized in the prior art. The subject matter in the background section merely represents different approaches, which in and of themselves may also be inventions.
Most mobile handheld electronic devices such as tablet computers, smartphones, and personal digital assistants (PDAs) are network enabled and allow a mobile user to access information over a public network such as the Internet. For example, users can receive electronic mail (email) and web content via their smartphones and tablets. Moreover, mobile handheld devices can support mobile applications so that users can manipulate data, retrieve and send information, and save and create files. In many ways, mobile handheld devices are replacing fixed location components and bulkier laptop computers.
By their nature, mobile handheld devices establish network connectivity via a mobile wireless network, e.g., a cellular telephone network. Because wireless network connectivity relies on radio wave transmissions, depending on the location of the device, network connectivity can be weak if not altogether nonexistent. For example, in underground transit stations or in remote mountainous areas, most mobile handheld devices have little or no network capabilities. In some circumstances, network connectivity can be weak or lost in particular neighborhoods or streets. Accordingly, most mobile handheld devices inherently have intermittent network connectivity depending on the location of the device. In most situations, however, intermittent network connectivity is tolerated because many features of the mobile handheld device are not typically dependent on a sustained network connection.
In the workplace, employers often provide employees with one or more mobile handheld devices for work related purposes. In this way, employees can be outside of the corporate office and still have access to email, voice mail, and other corporate information. Nevertheless, because the device has intermittent network connectivity, accessing corporate information from a database system can be difficult or impossible. For example, a document or file retrieved from a database often includes references to, or include links to, one or more related files or documents. When the user reviews the retrieved file and wishes to review a related file or document by selecting the associated link, access to that information can be delayed when network connectivity is lost. Accordingly, the user must move to another location with network connectivity in order to retrieve the related information. In some situations, however, the user cannot move to another location; for example, when the user is attending a meeting in a room without a wireless network. In this situation, access to the related information using the mobile handheld device is effectively impossible.
Accordingly, it is desirable to provide techniques for providing information from a database system to a mobile handheld device having intermittent network connectivity.
In accordance with embodiments, there are provided mechanisms and methods for providing information to a mobile handheld device from a database system. These mechanisms and methods for providing information to a mobile handheld device can enable embodiments to provide the capability to access information related to requested information without a network connection. The ability of embodiments to provide such technique can allow a user of the mobile handheld device to access information from the database without regard to location or availability of a wireless network.
In an embodiment and by way of example, a method for providing information to a mobile handheld device from a database system is provided. The method embodiment includes receiving by a node hosting an information management service a request for data. The request is received from a network enabled mobile handheld device that has intermittent network connectivity. The information management service is configured for identifying unrequested anticipated data based on the requested data. In an embodiment, the anticipated data is identified based on a data request pattern associated with the requested data. Once identified, the requested data and at least a portion of the anticipated data is retrieved from a database system, and sent to the network enabled mobile handheld device via a network. By providing anticipated data along with requested data, a mobile user has direct access to unrequested anticipated data when network connectivity is interrupted.
In another embodiment, a method for accessing information from a database system by a mobile handheld device having intermittent network connectivity includes receiving by an information manager component hosted by a mobile handheld device a request for data, and sending the request for data to a node hosting an information management service configured for retrieving the requested data and for retrieving unrequested anticipated data from a database system. In an embodiment, the anticipated data is retrieved based on a data request pattern associated with the requested data. The requested data and at least a portion of the anticipated data is received and stored in available storage of the mobile handheld device. By providing anticipated data along with requested data, a user of the mobile handheld device has direct access to unrequested anticipated data when network connectivity is interrupted.
While one or more implementations and techniques are described with reference to an embodiment in which techniques for providing information to a mobile handheld device is implemented in a system having an application server providing a front end for an on-demand database service capable of supporting multiple tenants, the one or more implementations and techniques are not limited to multi-tenant databases nor deployment on application servers. Embodiments may be practiced using other database architectures, i.e., ORACLE®, DB2® by IBM and the like without departing from the scope of the embodiments claimed.
Any of the above embodiments may be used alone or together with one another in any combination. The one or more implementations encompassed within this specification may also include embodiments that are only partially mentioned or alluded to or are not mentioned or alluded to at all in this brief summary or in the abstract. Although various embodiments may have been motivated by various deficiencies with the prior art, which may be discussed or alluded to in one or more places in the specification, the embodiments do not necessarily address any of these deficiencies. In other words, different embodiments may address different deficiencies that may be discussed in the specification. Some embodiments may only partially address some deficiencies or just one deficiency that may be discussed in the specification, and some embodiments may not address any of these deficiencies.
In the following drawings like reference numbers are used to refer to like elements. Although the following figures depict various examples, the one or more implementations are not limited to the examples depicted in the figures.
General Overview
Systems and methods are provided for providing information to a mobile handheld device from a database system.
In the workplace environment, employees use mobile handheld electronic devices to support many aspects of their business operations. Such devices can include, but are not limited to, tablet computers, PDAs, and smartphones, just to name a few. Typically, these devices use a wireless telecommunication infrastructure to support mobile communication services. In addition, the wireless telecommunication infrastructure can support data transmissions between network enabled mobile handheld devices and services via a public network, such as the Internet. Nevertheless, because mobile handheld devices have intermittent network connectivity, activities more suitable for using a persistent network connection are difficult and tedious for a mobile user. For example, a mobile user attempting to access multiple reports and files from a secure database system using a mobile handheld device will be required to log-in each time connectivity is reestablished after an interruption.
To date, there is no effective and/or efficient way of providing information from a database system to a mobile handheld device having intermittent network connectivity. The following exemplary embodiments illustrate mechanisms and methods that can enable a mobile user to access information from a database system using a mobile handheld device having intermittent network connectivity. The ability of embodiments to provide such technique can enhance the functionality of the device and can improve the user's productivity and efficiency.
Illustrated in
In an embodiment, the request handler component 204 can be configured to receive the request for data from the mobile handheld device 210 via the network 214. The network 214 can support any protocol compatible with a configuration of the information management service module 202 and/or other components hosted by the node 201 including the information management service module 202. The request for data can include a variety of information. For example, the request can include, but is not limited to, a search query for a report, information identifying or describing the requested data, information identifying a user requesting the data, and information identifying the mobile handheld device 210 and its available storage capacity.
Referring again to
In an embodiment, a request monitoring component 205 hosted by the node 201 and optionally integrated with the request handler component 204, can be configured for creating the data request pattern 203 associated with the requested data 207 by monitoring a plurality of subsequent data requests associated with the requested data. For example, the requested data 207 can be a corporate report that summarizes annual earnings over 10 years. When the corporate report is requested and retrieved, the request monitoring component 205 can be configured to monitor subsequent data requests associated with the initial request for the corporate report. In an embodiment, the request monitoring component 205 can be configured to track subsequent data requests from any requester during a single communication session or over several communication sessions during a predetermined period of time.
According to an embodiment, the request monitoring component 205 can be configured for analyzing the plurality of subsequent data requests to determine a data request pattern 203, where the data request pattern 203 ranks follow up data requests based on a ranking criteria, such as a subsequent request frequency. For example, referring again to the requested corporate report, the request monitoring component 205 can determine, based on the subsequent data requests, that an annual earnings report for year nine (9) within the 10 year span is most frequently requested as a follow up data request, and that the annual earnings report for year one (1) is the next most frequently requested report. In this example, the data request pattern 203 can include the annual reports for year nine (9) and one (1), where year nine (9) is ranked first and year one (1) is ranked second. Alternatively or in addition, the ranking criteria can be based on when the data was requested, e.g., the most recently requested data is ranked highest.
In another embodiment, the request monitoring component 205 can be configured for creating a user specific data request pattern 203a associated with a particular user and with the requested data 207. In this embodiment, the request monitoring component 205 can be configured for monitoring a plurality of a user's subsequent data requests associated with the requested data, and for analyzing the plurality of the user's subsequent data requests to determine the user specific data request pattern 203a.
Alternatively or in addition, in another embodiment, the data request pattern 203 associated with the requested data 207 can be based on links embedded in the requested data 207. For example, referring again to the requested corporate report, the report can include links to each of the annual earnings reports for years one (1) through ten (10), and the request monitoring component 205 can be configured to identify those links. In this example, the data request pattern 203 can include all of the links embedded in the requested data 207, i.e., links to each of the annual reports, and optionally can rank them according to the ranking criteria, e.g., most recently requested, request frequency and/or any combination thereof.
Once the data request pattern 203 and/or the user specific data request pattern 203a is determined, the request monitoring component 205 can be configured for generating an association between the data request pattern 203, 203a and the requested data 207. The user specific data request pattern 203a can be further associated with the user such that the association is between the user, the user specific request pattern 203a, and the requested data 207. The association is then stored in the database system 208. According to an exemplary embodiment, a data manager component 206 hosted by the node 201 and optionally integrated with the information management service module 202 can be configured to receive the association from the request handler component 204, and optionally to process the association so that it can be stored in the database system 208.
According to an embodiment, the request handler component 204 can be configured for identifying the unrequested anticipated data 209 by retrieving the data request pattern 203 based on the association between the data request pattern 203 and the requested data 207. In an embodiment, the request handler component 204 can invoke the data manager component 206 to retrieve the data request pattern 203. The request handler component 204 can then select at least one of the follow up data requests in the data request pattern 203. In an embodiment, the highest ranking follow up data request can be selected automatically. Alternatively or in addition, the selected follow up data request(s) can be based on ranking and on other criteria, such as size, type, and format.
Referring again to
Referring again to
In an exemplary embodiment, when the request handler component 204 receives the requested data 207 and the anticipated data 209, it is configured for determining how much of the anticipated data 209 should be sent to the mobile handheld device 210. For example, the request handler component 204 can determine an available storage of the network enabled handheld mobile device 210 based on the information received in the request for data. As noted above, the request for data can include information identifying or describing the requested data, information identifying a user requesting the data, and information identifying the mobile handheld device 210 and its available storage capacity.
According to an embodiment, the request handler component 204 can determine a total storage requirement by summing a storage requirement of the requested data 207 and a storage requirement of the anticipated data 209. When the total storage requirement is less than the available storage of the network enabled mobile device 210, the requested data 207 and all of the anticipated data 209 can be sent to the device 210. Otherwise, when the total storage requirement exceeds the available storage of the network enabled mobile device 210, the requested data 207 and a portion of the anticipated data 209 can be sent to the device 210. In an embodiment, a sum of the storage requirements of the requested data and of the portion of the anticipated data is less than the available storage of the network enabled mobile device 210.
The information management service module 202 includes means for sending the requested data 207 and at least a portion of the anticipated data 209 to the network enabled mobile handheld device 210. For example,
Referring to
Alternatively or in addition, in an embodiment, the information manager component 220 can display a plurality of icons associated with files, records, and/or objects for the user and an indication selecting an icon associated with the requested data can be received.
In another embodiment, the information manager component 220 can be configured for receiving at least one search criteria relating to the requested data. Based on the at least one search criteria, the information manager component 220 can generate a search query and can generate the request for data including the search query. In this embodiment, the information manager component 220 can be configured for processing the search query, and for displaying a report selector 400 including a plurality of icons/thumbnails corresponding to files, records, and/or objects that satisfy the search query. From the displayed report selector 400, the information manager component 220 can receive an indication selecting an icon, e.g., 401a, associated with the requested data.
As indicated above, the request for data can include various additional information in addition to a search query and/or information identifying or describing the requested data. For instance, the search query can include information identifying a user requesting the data, and information identifying the mobile handheld device 210 and its available storage capacity.
Referring again to
In an embodiment, the storage 230 can be a temporary storage component, e.g., a cache, or a persistent storage component. In another embodiment, the data 207, 209 can be stored in a combination of persistent and temporary storage. Because anticipated data 209 along with requested data 207 is stored, a user of the mobile handheld device 210 has direct access to unrequested anticipated data 209 when network connectivity is interrupted.
For example, when the requested data 207 is stored by the information manager component 220 in storage 230, the requested data 207 can be retrieved by a rendering engine component 213 hosted by the handheld device 210. The rendering engine component 213 can be configured for rendering the requested data 207, e.g., a report, and for providing the rendered report to the network browser 212 for display to the user.
When the user selects the link 502, as shown in
According to another embodiment, the information management service module 202 can provide an alert to the mobile handheld device 210 when the requested data 207 and/or the anticipated data 209 is updated. For example, when an update is performed by the database system 208, the request handler component 204 can be configured for receiving an indication updating the requested data 207 and/or the anticipated data 209. In response to receiving this indication, a notification can be sent to the network enabled mobile handheld device 210 via the network 214. In an embodiment, the notification can include the updated requested data 207 and/or the updated anticipated data 209.
The information manager component 220 can be configured for receiving the notification and for storing the updated requested data and/or the updated anticipated data in the available storage 230 of the mobile handheld device 210. In an embodiment, when the notification is received, the information manager component 220 can notify the user that an update has been received by, for example, causing the device 210 to vibrate or by activating a ring tone. In another embodiment, the user can review any received updates by, for example, shaking the handheld device 210 or selecting an update button on the graphical user interface displaying a report.
System Overview
Environment 610 is an environment in which an on-demand database service exists. User system 612 may be any machine or system that is used by a user to access a database user system. For example, any of user systems 612 can be a handheld computing device, a mobile phone, a laptop computer, a work station, and/or a network of computing devices. As illustrated in
An on-demand database service, such as system 616, is a database system that is made available to outside users that do not need to necessarily be concerned with building and/or maintaining the database system, but instead may be available for their use when the users need the database system (e.g., on the demand of the users). Some on-demand database services may store information from one or more tenants stored into tables of a common database image to form a multi-tenant database system (MTS). Accordingly, “on-demand database service 616” and “system 616” will be used interchangeably herein. A database image may include one or more database objects. A relational database management system (RDMS) or the equivalent may execute storage and retrieval of information against the database object(s). Application platform 618 may be a framework that allows the applications of system 616 to run, such as the hardware and/or software, e.g., the operating system. In an embodiment, on-demand database service 616 may include an application platform 618 that enables creation, managing and executing one or more applications developed by the provider of the on-demand database service, users accessing the on-demand database service via user systems 612, or third party application developers accessing the on-demand database service via user systems 612.
The users of user systems 612 may differ in their respective capacities, and the capacity of a particular user system 612 might be entirely determined by permissions (permission levels) for the current user. For example, where a salesperson is using a particular user system 612 to interact with system 616, that user system has the capacities allotted to that salesperson. However, while an administrator is using that user system to interact with system 616, that user system has the capacities allotted to that administrator. In systems with a hierarchical role model, users at one permission level may have access to applications, data, and database information accessible by a lower permission level user, but may not have access to certain applications, database information, and data accessible by a user at a higher permission level. Thus, different users will have different capabilities with regard to accessing and modifying application and database information, depending on a user's security or permission level.
Network 614 is any network or combination of networks of devices that communicate with one another. For example, network 614 can be any one or any combination of a LAN (local area network), WAN (wide area network), telephone network, wireless network, point-to-point network, star network, token ring network, hub network, or other appropriate configuration. As the most common type of computer network in current use is a TCP/IP (Transfer Control Protocol and Internet Protocol) network, such as the global internetwork of networks often referred to as the “Internet” with a capital “I,” that network will be used in many of the examples herein. However, it should be understood that the networks that the one or more implementations might use are not so limited, although TCP/IP is a frequently implemented protocol.
User systems 612 might communicate with system 616 using TCP/IP and, at a higher network level, use other common Internet protocols to communicate, such as HTTP, FTP, AFS, WAP, etc. In an example where HTTP is used, user system 612 might include an HTTP client commonly referred to as a “browser” for sending and receiving HTTP messages to and from an HTTP server at system 616. Such an HTTP server might be implemented as the sole network interface between system 616 and network 614, but other techniques might be used as well or instead. In some implementations, the interface between system 616 and network 614 includes load sharing functionality, such as round-robin HTTP request distributors to balance loads and distribute incoming HTTP requests evenly over a plurality of servers. At least as for the users that are accessing that server, each of the plurality of servers has access to the MTS' data; however, other alternative configurations may be used instead.
In one embodiment, system 616, shown in
One arrangement for elements of system 616 is shown in
Several elements in the system shown in
According to one embodiment, each user system 612 and all of its components are operator configurable using applications, such as a browser, including computer code run using a central processing unit such as an Intel Pentium® processor or the like. Similarly, system 616 (and additional instances of an MTS, where more than one is present) and all of their components might be operator configurable using application(s) including computer code to run using a central processing unit such as processor system 617, which may include an Intel Pentium® processor or the like, and/or multiple processor units. A computer program product embodiment includes a machine-readable storage medium (media) having instructions stored thereon/in which can be used to program a computer to perform any of the processes of the embodiments described herein. Computer code for operating and configuring system 616 to intercommunicate and to process webpages, applications and other data and media content as described herein are preferably downloaded and stored on a hard disk, but the entire program code, or portions thereof, may also be stored in any other volatile or non-volatile memory medium or device as is well known, such as a ROM or RAM, or provided on any media capable of storing program code, such as any type of rotating media including floppy disks, optical discs, digital versatile disk (DVD), compact disk (CD), microdrive, and magneto-optical disks, and magnetic or optical cards, nanosystems (including molecular memory ICs), or any type of media or device suitable for storing instructions and/or data. Additionally, the entire program code, or portions thereof, may be transmitted and downloaded from a software source over a transmission medium, e.g., over the Internet, or from another server, as is well known, or transmitted over any other conventional network connection as is well known (e.g., extranet, VPN, LAN, etc.) using any communication medium and protocols (e.g., TCP/IP, HTTP, HTTPS, Ethernet, etc.) as are well known. It will also be appreciated that computer code for implementing embodiments can be implemented in any programming language that can be executed on a client system and/or server or server system such as, for example, C, C++, HTML, any other markup language, Java™, JavaScript, ActiveX, any other scripting language, such as VBScript, and many other programming languages as are well known may be used. (Java™ is a trademark of Sun Microsystems, Inc.).
According to one embodiment, each system 616 is configured to provide webpages, forms, applications, data and media content to user (client) systems 612 to support the access by user systems 612 as tenants of system 616. As such, system 616 provides security mechanisms to keep each tenant's data separate unless the data is shared. If more than one MTS is used, they may be located in close proximity to one another (e.g., in a server farm located in a single building or campus), or they may be distributed at locations remote from one another (e.g., one or more servers located in city A and one or more servers located in city B). As used herein, each MTS could include one or more logically and/or physically connected servers distributed locally or across one or more geographic locations. Additionally, the term “server” is meant to include a computer system, including processing hardware and process space(s), and an associated storage system and database application (e.g., OODBMS or RDBMS) as is well known in the art. It should also be understood that “server system” and “server” are often used interchangeably herein. Similarly, the database object described herein can be implemented as single databases, a distributed database, a collection of distributed databases, a database with redundant online or offline backups or other redundancies, etc., and might include a distributed database or storage network and associated processing intelligence.
User system 612, network 614, system 616, tenant data storage 622, and system data storage 624 were discussed above in
Application platform 618 includes an application setup mechanism 738 that supports application developers' creation and management of applications, which may be saved as metadata into tenant data storage 622 by save routines 736 for execution by subscribers as one or more tenant process spaces 704 managed by tenant management process 710 for example. Invocations to such applications may be coded using PL/SOQL 734 that provides a programming language style interface extension to API 732. A detailed description of some PL/SOQL language embodiments is discussed in commonly owned U.S. Pat. No. 7,730,478 entitled, METHOD AND SYSTEM FOR ALLOWING ACCESS TO DEVELOPED APPLICATIONS VIA A MULTI-TENANT ON-DEMAND DATABASE SERVICE, by Craig Weissman, filed Sep. 21, 2007, which is incorporated in its entirety herein for all purposes. Invocations to applications may be detected by one or more system processes, which manages retrieving application metadata 716 for the subscriber making the invocation and executing the metadata as an application in a virtual machine.
Each application server 7001-700N may be communicably coupled to database systems, e.g., having access to system data 625 and tenant data 623, via a different network connection. For example, one application server 7001 might be coupled via the network 614 (e.g., the Internet), another application server 700N-1 might be coupled via a direct network link, and another application server 700N might be coupled by yet a different network connection. Transfer Control Protocol and Internet Protocol (TCP/IP) are typical protocols for communicating between application servers 7001-700N and the database system. However, it will be apparent to one skilled in the art that other transport protocols may be used to optimize the system depending on the network interconnect used.
In certain embodiments, each application server 7001-700N is configured to handle requests for any user associated with any organization that is a tenant. Because it is desirable to be able to add and remove application servers from the server pool at any time for any reason, there is preferably no server affinity for a user and/or organization to a specific application server 7001-700N. In one embodiment, therefore, an interface system implementing a load balancing function (e.g., an F5 Big-IP load balancer) is communicably coupled between the application servers 7001-700N and the user systems 612 to distribute requests to the application servers 7001-700N. In one embodiment, the load balancer uses a least connections algorithm to route user requests to the application servers 7001-700N. Other examples of load balancing algorithms, such as round robin and observed response time, also can be used. For example, in certain embodiments, three consecutive requests from the same user could hit three different application servers 7001-700N, and three requests from different users could hit the same application server 7001-700N. In this manner, system 616 is multi-tenant, wherein system 616 handles storage of, and access to, different objects, data and applications across disparate users and organizations.
As an example of storage, one tenant might be a company that employs a sales force where each salesperson uses system 616 to manage their sales process. Thus, a user might maintain contact data, leads data, customer follow-up data, performance data, goals and progress data, etc., all applicable to that user's personal sales process (e.g., in tenant data storage 622). In an example of a MTS arrangement, since all of the data and the applications to access, view, modify, report, transmit, calculate, etc., can be maintained and accessed by a user system having nothing more than network access, the user can manage his or her sales efforts and cycles from any of many different user systems. For example, if a salesperson is visiting a customer and the customer has Internet access in their lobby, the salesperson can obtain critical updates as to that customer while waiting for the customer to arrive in the lobby.
While each user's data might be separate from other users' data regardless of the employers of each user, some data might be organization-wide data shared or accessible by a plurality of users or all of the users for a given organization that is a tenant. Thus, there might be some data structures managed by system 616 that are allocated at the tenant level while other data structures might be managed at the user level. Because an MTS might support multiple tenants including possible competitors, the MTS should have security protocols that keep data, applications, and application use separate. Also, because many tenants may opt for access to an MTS rather than maintain their own system, redundancy, up-time, and backup are additional functions that may be implemented in the MTS. In addition to user-specific data and tenant specific data, system 616 might also maintain system level data usable by multiple tenants or other data. Such system level data might include industry reports, news, postings, and the like that are sharable among tenants.
In certain embodiments, user systems 612 (which may be client systems) communicate with application servers 7001-700N to request and update system-level and tenant-level data from system 616 that may require sending one or more queries to tenant data storage 622 and/or system data storage 624. System 616 (e.g., an application server 7001 in system 616) automatically generates one or more SQL statements (e.g., one or more SQL queries) that are designed to access the desired information. System data storage 624 may generate query plans to access the requested data from the database.
Each database can generally be viewed as a collection of objects, such as a set of logical tables, containing data fitted into predefined categories. A “table” is one representation of a data object, and may be used herein to simplify the conceptual description of objects and custom objects. It should be understood that “table” and “object” may be used interchangeably herein. Each table generally contains one or more data categories logically arranged as columns or fields in a viewable schema. Each row or record of a table contains an instance of data for each category defined by the fields. For example, a CRM database may include a table that describes a customer with fields for basic contact information such as name, address, phone number, fax number, etc. Another table might describe a purchase order, including fields for information such as customer, product, sale price, date, etc. In some multi-tenant database systems, standard entity tables might be provided for use by all tenants. For CRM database applications, such standard entities might include tables for Account, Contact, Lead, and Opportunity data, each containing pre-defined fields. It should be understood that the word “entity” may also be used interchangeably herein with “object” and “table”.
In some multi-tenant database systems, tenants may be allowed to create and store custom objects, or they may be allowed to customize standard entities or objects, for example by creating custom fields for standard objects, including custom index fields. U.S. patent application Ser. No. 10/817,161, filed Apr. 2, 2004, entitled “Custom Entities and Fields in a Multi-Tenant Database System”, and which is hereby incorporated herein by reference, teaches systems and methods for creating custom objects as well as customizing standard objects in a multi-tenant database system. In certain embodiments, for example, all custom entity data rows are stored in a single multi-tenant physical table, which may contain multiple logical tables per organization. It is transparent to customers that their multiple “tables” are in fact stored in one large table or that their data may be stored in the same table as the data of other customers. While one or more implementations have been described by way of example and in terms of the specific embodiments, it is to be understood that one or more implementations are not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications and similar arrangements as would be apparent to those skilled in the art. Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
This application is a continuation of U.S. application Ser. No. 13/212,006, filed Aug. 17, 2011, which claims the benefit of U.S. Provisional Patent Application 61/419,677, filed Dec. 3, 2010, both of which are incorporated herein by reference in their entirety and for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
5577188 | Zhu | Nov 1996 | A |
5592620 | Chen | Jan 1997 | A |
5608872 | Schwartz | Mar 1997 | A |
5649104 | Carleton | Jul 1997 | A |
5715450 | Ambrose et al. | Feb 1998 | A |
5761419 | Schwartz | Jun 1998 | A |
5819038 | Carleton | Oct 1998 | A |
5821937 | Tonelli et al. | Oct 1998 | A |
5831610 | Tonelli et al. | Nov 1998 | A |
5864854 | Boyle | Jan 1999 | A |
5873096 | Lim et al. | Feb 1999 | A |
5878223 | Becker | Mar 1999 | A |
5918159 | Fomukong et al. | Jun 1999 | A |
5954801 | Sokolov | Sep 1999 | A |
5958040 | Jouppi | Sep 1999 | A |
5963953 | Cram et al. | Oct 1999 | A |
5999948 | Nelson | Dec 1999 | A |
6067565 | Horvitz | May 2000 | A |
6076107 | Chen | Jun 2000 | A |
6085226 | Horvitz | Jul 2000 | A |
6092083 | Brodersen et al. | Jul 2000 | A |
6092149 | Hicken | Jul 2000 | A |
6094680 | Hokanson | Jul 2000 | A |
6105061 | Nakai | Aug 2000 | A |
6115768 | Yamamoto | Sep 2000 | A |
6151630 | Williams | Nov 2000 | A |
6161149 | Achacoso et al. | Dec 2000 | A |
6167438 | Yates | Dec 2000 | A |
6169534 | Raffel et al. | Jan 2001 | B1 |
6178425 | Brodersen et al. | Jan 2001 | B1 |
6182122 | Berstis | Jan 2001 | B1 |
6182133 | Horvitz | Jan 2001 | B1 |
6189011 | Lim et al. | Feb 2001 | B1 |
6216135 | Brodersen et al. | Apr 2001 | B1 |
6233617 | Rothwein et al. | May 2001 | B1 |
6260115 | Permut | Jul 2001 | B1 |
6266669 | Brodersen et al. | Jul 2001 | B1 |
6295530 | Ritchie et al. | Sep 2001 | B1 |
6324568 | Diec et al. | Nov 2001 | B1 |
6324693 | Brodersen et al. | Nov 2001 | B1 |
6336137 | Lee et al. | Jan 2002 | B1 |
D454139 | Feldcamp et al. | Mar 2002 | S |
6367077 | Brodersen et al. | Apr 2002 | B1 |
6385641 | Jiang | May 2002 | B1 |
6393605 | Loomans | May 2002 | B1 |
6405220 | Brodersen et al. | Jun 2002 | B1 |
6434550 | Warner et al. | Aug 2002 | B1 |
6438652 | Jordan | Aug 2002 | B1 |
6442651 | Crow | Aug 2002 | B2 |
6446089 | Brodersen et al. | Sep 2002 | B1 |
6484239 | Hill | Nov 2002 | B1 |
6510469 | Starnes | Jan 2003 | B1 |
6535909 | Rust | Mar 2003 | B1 |
6539382 | Byrne | Mar 2003 | B1 |
6549908 | Loomans | Apr 2003 | B1 |
6553563 | Ambrose et al. | Apr 2003 | B2 |
6560461 | Fomukong et al. | May 2003 | B1 |
6574635 | Stauber et al. | Jun 2003 | B2 |
6577726 | Huang et al. | Jun 2003 | B1 |
6601087 | Zhu | Jul 2003 | B1 |
6604117 | Lim et al. | Aug 2003 | B2 |
6604128 | Diec | Aug 2003 | B2 |
6609150 | Lee et al. | Aug 2003 | B2 |
6621834 | Scherpbier | Sep 2003 | B1 |
6625696 | Willke, II | Sep 2003 | B1 |
6654032 | Zhu | Nov 2003 | B1 |
6665648 | Brodersen et al. | Dec 2003 | B2 |
6665655 | Warner et al. | Dec 2003 | B1 |
6684438 | Brodersen et al. | Feb 2004 | B2 |
6711565 | Subramaniam et al. | Mar 2004 | B1 |
6724399 | Katchour et al. | Apr 2004 | B1 |
6728702 | Subramaniam et al. | Apr 2004 | B1 |
6728840 | Shatil | Apr 2004 | B1 |
6728960 | Loomans et al. | Apr 2004 | B1 |
6732095 | Warshavsky et al. | May 2004 | B1 |
6732100 | Brodersen et al. | May 2004 | B1 |
6732111 | Brodersen et al. | May 2004 | B2 |
6742033 | Smith | May 2004 | B1 |
6754681 | Brodersen et al. | Jun 2004 | B2 |
6763351 | Subramaniam et al. | Jul 2004 | B1 |
6763501 | Zhu | Jul 2004 | B1 |
6768904 | Kim | Jul 2004 | B2 |
6772229 | Achacoso et al. | Aug 2004 | B1 |
6782383 | Subramaniam et al. | Aug 2004 | B2 |
6792507 | Chiou | Sep 2004 | B2 |
6804330 | Jones et al. | Oct 2004 | B1 |
6826565 | Ritchie et al. | Nov 2004 | B2 |
6826582 | Chatterjee et al. | Nov 2004 | B1 |
6826745 | Coker | Nov 2004 | B2 |
6829655 | Huang et al. | Dec 2004 | B1 |
6842748 | Warner et al. | Jan 2005 | B1 |
6850895 | Brodersen et al. | Feb 2005 | B2 |
6850949 | Warner et al. | Feb 2005 | B2 |
6901380 | Bremers | May 2005 | B1 |
6937966 | Hellerstein | Aug 2005 | B1 |
6981017 | Kasriel | Dec 2005 | B1 |
6985933 | Singhal | Jan 2006 | B1 |
7024491 | Hanmann | Apr 2006 | B1 |
7062502 | Kesler | Jun 2006 | B1 |
7062567 | Benitez | Jun 2006 | B2 |
7089331 | Gollapudi | Aug 2006 | B1 |
7340411 | Cook | Mar 2008 | B2 |
7356482 | Frankland et al. | Apr 2008 | B2 |
7359395 | Toporek | Apr 2008 | B2 |
7401094 | Kesler | Jul 2008 | B1 |
7620655 | Larsson | Nov 2009 | B2 |
7698160 | Beaven et al. | Apr 2010 | B2 |
7779475 | Jakobson et al. | Aug 2010 | B2 |
7851004 | Hirao et al. | Dec 2010 | B2 |
8010663 | Firminger et al. | Aug 2011 | B2 |
8014943 | Jakobson | Sep 2011 | B2 |
8015495 | Achacoso et al. | Sep 2011 | B2 |
8032297 | Jakobson | Oct 2011 | B2 |
8041776 | Friedman | Oct 2011 | B2 |
8069225 | McCanne | Nov 2011 | B2 |
8082301 | Ahlgren et al. | Dec 2011 | B2 |
8095413 | Beaven et al. | Jan 2012 | B1 |
8095594 | Beaven et al. | Jan 2012 | B2 |
8209308 | Jakobson et al. | Jun 2012 | B2 |
8271964 | Zorn | Sep 2012 | B2 |
8275836 | Beaven et al. | Sep 2012 | B2 |
8321533 | Fainberg | Nov 2012 | B2 |
8364611 | Tendjoukian | Jan 2013 | B2 |
8438298 | Arai | May 2013 | B2 |
8463869 | Morse | Jun 2013 | B2 |
8484111 | Frankland et al. | Jul 2013 | B2 |
8490025 | Jakobson et al. | Jul 2013 | B2 |
8504945 | Jakobson et al. | Aug 2013 | B2 |
8510664 | Rueben et al. | Aug 2013 | B2 |
8533446 | Mondri | Sep 2013 | B2 |
8566301 | Rueben et al. | Oct 2013 | B2 |
8646103 | Jakobson et al. | Feb 2014 | B2 |
9465885 | Tenenblat | Oct 2016 | B2 |
9680719 | Hato | Jun 2017 | B2 |
20010003828 | Peterson | Jun 2001 | A1 |
20010044791 | Richter et al. | Nov 2001 | A1 |
20010047456 | Schrobenhauzer | Nov 2001 | A1 |
20020072951 | Lee et al. | Jun 2002 | A1 |
20020082892 | Raffel | Jun 2002 | A1 |
20020129352 | Brodersen et al. | Sep 2002 | A1 |
20020140731 | Subramanian et al. | Oct 2002 | A1 |
20020143997 | Huang et al. | Oct 2002 | A1 |
20020162090 | Parnell et al. | Oct 2002 | A1 |
20020165742 | Robbins | Nov 2002 | A1 |
20030004971 | Gong | Jan 2003 | A1 |
20030018705 | Chen et al. | Jan 2003 | A1 |
20030018830 | Chen et al. | Jan 2003 | A1 |
20030066031 | Laane et al. | Apr 2003 | A1 |
20030066032 | Ramachandran et al. | Apr 2003 | A1 |
20030069936 | Warner et al. | Apr 2003 | A1 |
20030070000 | Coker et al. | Apr 2003 | A1 |
20030070004 | Mukundan et al. | Apr 2003 | A1 |
20030070005 | Mukundan et al. | Apr 2003 | A1 |
20030074418 | Coker et al. | Apr 2003 | A1 |
20030120675 | Stauber et al. | Jun 2003 | A1 |
20030151633 | George et al. | Aug 2003 | A1 |
20030159136 | Huang et al. | Aug 2003 | A1 |
20030187921 | Diec et al. | Oct 2003 | A1 |
20030189600 | Gune et al. | Oct 2003 | A1 |
20030204427 | Gune et al. | Oct 2003 | A1 |
20030206192 | Chen et al. | Nov 2003 | A1 |
20040001092 | Rothwein et al. | Jan 2004 | A1 |
20040015981 | Coker et al. | Jan 2004 | A1 |
20040027388 | Berg et al. | Feb 2004 | A1 |
20040128001 | Levin et al. | Jul 2004 | A1 |
20040186860 | Lee et al. | Sep 2004 | A1 |
20040193510 | Catahan et al. | Sep 2004 | A1 |
20040199489 | Barnes-Leon et al. | Oct 2004 | A1 |
20040199536 | Barnes-Leon et al. | Oct 2004 | A1 |
20040249854 | Barnes-Leon et al. | Dec 2004 | A1 |
20040260534 | Pak et al. | Dec 2004 | A1 |
20040260659 | Chan et al. | Dec 2004 | A1 |
20040268299 | Lei et al. | Dec 2004 | A1 |
20050050555 | Exley et al. | Mar 2005 | A1 |
20050091098 | Brodersen et al. | Apr 2005 | A1 |
20060288033 | Raz | Dec 2006 | A1 |
20090063415 | Chatfield et al. | Mar 2009 | A1 |
20090100342 | Jakobson | Apr 2009 | A1 |
20090157985 | Stevens | Jun 2009 | A1 |
20090177744 | Marlow et al. | Jul 2009 | A1 |
20110314266 | Mondri | Dec 2011 | A1 |
20120209948 | Tenenblat | Aug 2012 | A1 |
20120233137 | Jakobson et al. | Sep 2012 | A1 |
20130054729 | Jaiswal | Feb 2013 | A1 |
20130218948 | Jakobson | Aug 2013 | A1 |
20130218949 | Jakobson | Aug 2013 | A1 |
20130218966 | Jakobson | Aug 2013 | A1 |
20140359537 | Jakobson et al. | Dec 2014 | A1 |
20150007050 | Jakobson et al. | Jan 2015 | A1 |
20150095162 | Jakobson et al. | Apr 2015 | A1 |
20150172563 | Jakobson et al. | Jun 2015 | A1 |
Entry |
---|
U.S. Appl. No. 13/986,251, filed Apr. 16, 2013. |
Office Action for U.S. Appl. No. 13/212,006; dated Jan. 15, 2014. |
Office Action for U.S. Appl. No. 13/212,006; dated May 13, 2014. |
Office Action for U.S. Appl. No. 13/212,006; dated Dec. 15, 2014. |
Office Action for U.S. Appl. No. 13/212,006; dated Apr. 15, 2015. |
Office Action for U.S. Appl. No. 13/212,006; dated Oct. 15, 2015. |
Number | Date | Country | |
---|---|---|---|
20170053030 A1 | Feb 2017 | US |
Number | Date | Country | |
---|---|---|---|
61419677 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13212006 | Aug 2011 | US |
Child | 15290360 | US |