With increasing use of pump therapy for Type 1 diabetic patients, young and old alike, the importance of controlling the infusion device such as external infusion pumps is evident. Indeed, presently available external infusion devices typically include an input mechanism such as buttons through which the patient may program and control the infusion device. Such infusion devices also typically include a user interface such as a display which is configured to display information relevant to the patient's infusion progress, status of the various components of the infusion device, as well as other programmable information such as patient specific basal profiles.
The external infusion devices are typically connected to an infusion set which includes a cannula that is placed transcutaneously through the skin of the patient to infuse a select dosage of insulin based on the infusion device's programmed basal rates or any other infusion rates as prescribed by the patient's doctor. Generally, the patient is able to control the pump to administer additional doses of insulin during the course of wearing and operating the infusion device such as for, administering a carbohydrate bolus prior to a meal. Certain infusion devices include food database that has associated therewith, an amount of carbohydrate, so that the patient may better estimate the level of insulin dosage needed for, for example, calculating a bolus amount.
However, in general, most estimation or calculation of a bolus amount for administration, or a determination of a suitable basal profile, for that matter, are educated estimates based on the patient's physiology as determined by the patient's doctor, or an estimate performed by the patient. Moreover, the infusion devices do not generally include enhancement features that would better assist the diabetic patients to control and/or manage the glucose levels.
In view of the foregoing, it would be desirable to have a method and system for providing insulin therapy determination and recommendation based on real time monitored analyte levels of the patient for proactive insulin therapy treatment to improve management of diabetes.
In accordance with the various embodiments of the present invention, there are provided method and system for receiving data associated with monitored analyte related levels for a predetermined time period substantially in real time, retrieving one or more therapy profiles associated with the monitored analyte related levels, generating one or more modifications to the retrieved one or more therapy profiles based on the data associated with the monitored analyte related levels.
These and other objects, features and advantages of the present invention will become more fully apparent from the following detailed description of the embodiments, the appended claims and the accompanying drawings.
As described in detail below, in accordance with the various embodiments of the present invention, there are provided various embodiments for providing real time or substantially real time monitored levels associated with a patient's analyte levels, and one or more associated therapy recommendation associated with the monitored analyte levels to provide real time insulin therapy and management. Accordingly, in one embodiment of the present invention, diabetic patients may better control the glucose levels and improve their physiological conditions based on accurate and substantially real time monitoring of glucose levels, and are provided with one or more recommendations for modifying or maintaining the insulin therapy (based on, for example, insulin pump therapy), for real time proactive management of glucose levels.
Referring to
The one or more analyte sensors of the analyte monitoring system 110 is coupled to a respective one or more of a data transmitter unit which is configured to receive one or more signals from the respective analyte sensors corresponding to the detected analyte levels of the patient, and to transmit the information corresponding to the detected analyte levels to a receiver device, and/or fluid delivery device 120. That is, over a communication link, the transmitter units may be configured to transmit data associated with the detected analyte levels periodically, and/or intermittently and repeatedly to one or more other devices such as the insulin delivery device and/or the remote terminal 140 for further data processing and analysis.
The transmitter units of the analyte monitoring system 110 may in one embodiment, be configured to transmit the analyte related data substantially in real time to the fluid delivery device 120 and/or the remote terminal 140 after receiving it from the corresponding analyte sensors such that the analyte level such as glucose level of the patient 130 may be monitored in real time. In one aspect, the analyte levels of the patient may be obtained using one or more discrete blood glucose testing devices such as blood glucose meters, or continuous analyte monitoring systems such as continuous glucose monitoring systems.
Additional analytes that may be monitored, determined or detected by the analyte monitoring system 110 include, for example, acetyl choline, amylase, bilirubin, cholesterol, chorionic gonadotropin, creatine kinase (e.g., CK-MB), creatine, DNA, fructosamine, glucose, glutamine, growth hormones, hormones, ketones, lactate, peroxide, prostate-specific antigen, prothrombin, RNA, thyroid stimulating hormone, and troponin. The concentration of drugs, such as, for example, antibiotics (e.g., gentamicin, vancomycin, and the like), digitoxin, digoxin, drugs of abuse, theophylline, and warfarin, may also be determined.
Moreover, within the scope of the present invention, the transmitter units of the analyte monitoring system 110 may be configured to directly communicate with one or more of the remote terminal 140 or the fluid delivery device 120. Furthermore, within the scope of the present invention, additional devices may be provided for communication in the analyte monitoring system 110 including additional receiver/data processing unit, remote terminals (such as a physician's terminal and/or a bedside terminal in a hospital environment, for example. In addition, within the scope of the present invention, one or more of the analyte monitoring system 110, the fluid delivery device 120 and the remote terminal 140 may be configured to communicate over a wireless data communication link such as, but not limited to a radio frequency (RF) communication link, Bluetooth® communication link, infrared communication link, or any other type of suitable wireless communication connection between two or more electronic devices, which may further be uni-directional or bi-directional communication between the two or more devices. Alternatively, the data communication link may include wired cable connection such as, for example, but not limited to RS232 connection, USB connection, or serial cable connection.
Referring back to
Additional detailed description of the continuous analyte monitoring system, its various components including the functional descriptions of the sensor, transmitter unit, receiver unit, and remote terminal/data processing terminal are provided in U.S. Pat. No. 6,175,752 issued Jan. 16, 2001 entitled “Analyte Monitoring Device and Methods of Use”, and in application Ser. No. 10/745,878 filed Dec. 26, 2003, issued as U.S. Pat. No. 7,811,231, entitled “Continuous Glucose Monitoring System and Methods of Use”, each assigned to the Assignee of the present application.
Referring again to
Referring back to
Referring to
Referring yet again to
That is, the predefined time period of the real time monitored glucose data in one embodiment may include one or more time periods sufficient to provide glucose trend information or sufficient to provide analysis of glucose levels to adjust insulin therapy on an on-going, and substantially real time basis. For example, the predefined time period in one embodiment may include one or more of a 30 minute time period, a 45 minute time period, a one hour time period, a two hour time period and a 6 hour time period. While exemplary predefined time periods are provided herein, within the scope of the present invention, any suitable predefined time period may be employed as may be sufficient to be used for glucose trend determination and/or therapy related determinations (such as, for example, modification of existing basal profiles, calculation of temporary basal profile, or determination of a bolus amount).
Referring back to
Referring back to
Referring again to
Referring back to
For example, in one embodiment, the patient 130 may be provided with a recommended temporary basal profile based on the monitored real time glucose levels over a predetermined time period as well as the current basal profile which is executed by the fluid delivery device 120 (
In this manner, in one embodiment of the present invention, based on real time monitored glucose levels, the patient may be provided with on-going, real time insulin therapy options and modifications to the pre-programmed insulin delivery basal profiles so as to improve upon the initially programmed therapy profiles based on the monitored real time glucose data.
On the other hand, referring back to
For example, in one embodiment, the real time data associated with the monitored analyte levels is analyzed and an extrapolation of the data based on the rate of change of the monitored analyte levels is determined. That is, the real time data associated with the monitored analyte levels is used to determined the rate at which the monitored analyte level changed over the predetermined time period, and accordingly, a trend information is determined based on, for example, the determined rate at which the monitored analyte level changed over the predetermined time period.
In a further embodiment, the trend information based on the real time data associated with the monitored analyte levels may be dynamically modified and continuously updated based on the received real time data associated with the monitored analyte levels for one or more predetermined time periods. As such, in one embodiment, the trend information may be configured to dynamically change and be updated continuously based on the received real time data associated with the monitored analyte levels.
Referring to
In this manner, the patient may be provided with one or more adjustments to the existing or current basal profiles or any other pre-programmed therapy profiles based on continuously monitored physiological levels of the patient such as analyte levels of the patient. Indeed, in one embodiment of the present invention, using continuously monitored glucose levels of the patient, modification or adjustment to the pre-programmed basal profiles may be calculated and provided to the patient for review and implementation as desired by the patient. In this manner, for example, a diabetic patient may improve the insulin therapy management and control.
Within the scope of the present invention, the processes and routines described in conjunction with
In this manner, in accordance with the various embodiments of the present invention, there are provided methods and system for providing information associated with the direction and rate of change of analyte (e.g., glucose) levels for determination of, for example, bolus or basal rate change recommendations, for comparing expected glucose level changes to actual real time glucose level changes to update, for example, insulin sensitivity factor in an ongoing basis, and for automatically confirming the monitored glucose values within a preset time period (e.g., 30 minutes) after insulin therapy initiation to determine whether the initiated therapy is having the intended therapeutic effect.
Indeed, in accordance with the various embodiments of the present invention, the use of glucose trend information in insulin delivery rate determinations provides for a more accurate insulin dosing and may lead to a decrease in hypoglycemic events and improved HbAlCs.
Accordingly, a method in one embodiment of the present invention includes receiving data associated with monitored analyte related levels for a predetermined time period substantially in real time, retrieving one or more therapy profiles associated with the monitored analyte related levels, generating one or more modifications to the retrieved one or more therapy profiles based on the data associated with the monitored analyte related levels.
The method may further include displaying the generated one or more modifications to the retrieved one or more therapy profiles.
In one aspect, the generated one or more modifications to the retrieved one or more therapy profiles may be displayed as one or more of an alphanumeric output display, a graphical output display, an icon display, a video output display, a color display or an illumination display.
In a further aspect, the predetermined time period may include a time period between 15 minutes and six hours.
The one or more therapy profiles in yet another aspect may include a basal profile, a correction bolus, a temporary basal profile, an insulin sensitivity, an insulin on board level, and an insulin absorption rate.
In still another aspect, retrieving the one or more therapy profiles associated with the monitored analyte related levels may include retrieving a current analyte rate of change information.
In yet still another aspect, generating the one or more modifications to the retrieved one or more therapy profiles may include determining a modified analyte rate of change information based on the received data associated with monitored analyte related levels.
Moreover, the method may further include generating an output alert based on the modified analyte rate of change information.
Still, the method may also include determining an analyte level projection information based on the modified analyte rate of change information.
A system for providing diabetes management in accordance with another embodiment of the present invention includes an interface unit, one or more processors coupled to the interface unit, a memory for storing instructions which, when executed by the one or more processors, causes the one or more processors to receive data associated with monitored analyte related levels for a predetermined time period substantially in real time, retrieve one or more therapy profiles associated with the monitored analyte related levels, and generate one or more modifications to the retrieved one or more therapy profiles based on the data associated with the monitored analyte related levels.
The interface unit may include an input unit and an output unit, the input unit configured to receive the one or more analyte related data, and the output unit configured to output the one or more of the generated modifications to the retrieved one or more therapy profiles.
The interface unit and the one or more processors in a further embodiment may be operatively coupled to one or more of a housing of an infusion device or a housing of an analyte monitoring system.
The infusion device may include one of an external insulin pump, an implantable insulin pump, an on-body patch pump, a pen-type injection device, an inhalable insulin delivery system, and a transdermal insulin delivery system.
The memory in a further aspect may be configured for storing instructions which, when executed by the one or more processors, causes the one or more processors to display the generated one or more modifications to the retrieved one or more therapy profiles.
Further, the memory may be configured for storing instructions which, when executed by the one or more processors, causes the one or more processors to display the generated one or more modifications to the retrieved one or more therapy profiles as one or more of an alphanumeric output display, a graphical output display, an icon display, a video output display, a color display or an illumination display.
In one aspect, the predetermined time period may include one of a time period between 15 minutes and six hours.
The one or more therapy profiles may include a basal profile, a correction bolus, a temporary basal profile, an insulin sensitivity, an insulin on board level, and an insulin absorption rate.
In another aspect, the memory may be further configured for storing instructions which, when executed by the one or more processors, causes the one or more processors to retrieve a current analyte rate of change information.
In still another aspect, the memory may be further configured for storing instructions which, when executed by the one or more processors, causes the one or more processors to determine a modified analyte rate of change information based on the received data associated with monitored analyte related levels.
Additionally, in yet still another aspect, the memory may be further configured for storing instructions which, when executed by the one or more processors, causes the one or more processors to generate an output alert based on the modified analyte rate of change information.
Further, the memory may be further configured for storing instructions which, when executed by the one or more processors, causes the one or more processors to determine an analyte level projection information based on the modified analyte rate of change information.
A system for providing diabetes management in accordance with yet another embodiment of the present invention includes an analyte monitoring system configured to monitor analyte related levels of a patient substantially in real time, a medication delivery unit operatively for wirelessly receiving data associated with the monitored analyte level of the patient substantially in real time from the analyte monitoring system, a data processing unit operatively coupled to the one or more of the analyte monitoring system or the medication delivery unit, the data processing unit configured to retrieve one or more therapy profiles associated with the monitored analyte related levels, and generate one or more modifications to the retrieved one or more therapy profiles based on the data associated with the monitored analyte related levels.
In one aspect, the analyte monitoring system may be configured to wirelessly communicate with the medication delivery unit over a radio frequency (RF) communication link, a Bluetooth® communication link, an Infrared communication link, or a local area network (LAN).
The various processes described above including the processes performed by the processor 210 in the software application execution environment in the fluid delivery device 120 as well as any other suitable or similar processing units embodied in the analyte monitoring system 110 and the remote terminal 140, including the processes and routines described in conjunction with
Various other modifications and alterations in the structure and method of operation of this invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. It is intended that the following claims define the scope of the present invention and that structures and methods within the scope of these claims and their equivalents be covered thereby.
The present application is a continuation of U.S. patent application Ser. No. 14/263,996 filed Apr. 28, 2014, which is a continuation of U.S. patent application Ser. No. 13/532,346 filed Jun. 25, 2012, issued as U.S. Pat. No. 8,727,982 on May 20, 2014, which is a continuation of U.S. patent application Ser. No. 11/462,974 filed Aug. 7, 2006, issued as U.S. Pat. No. 8,206,296 on Jun. 26, 2012, entitled “Method and System for Providing Integrated Analyte Monitoring and Infusion System Therapy Management”, the disclosures of each of which are incorporated herein by reference for purposes.
Number | Name | Date | Kind |
---|---|---|---|
3208121 | Price | Sep 1965 | A |
3923060 | Ellinwood, Jr. | Dec 1975 | A |
3924819 | Lapinskas | Dec 1975 | A |
4003379 | Ellinwood, Jr. | Jan 1977 | A |
4055175 | Clemens et al. | Oct 1977 | A |
4076182 | Stites | Feb 1978 | A |
4151845 | Clemens | May 1979 | A |
4360019 | Portner | Nov 1982 | A |
4387863 | Edmonston | Jun 1983 | A |
4441968 | Emmer et al. | Apr 1984 | A |
4464170 | Clemens et al. | Aug 1984 | A |
4601707 | Albisser et al. | Jul 1986 | A |
4629145 | Graham | Dec 1986 | A |
4667896 | Frey et al. | May 1987 | A |
4685903 | Cable et al. | Aug 1987 | A |
4725010 | Lotamer | Feb 1988 | A |
4802638 | Burger et al. | Feb 1989 | A |
4847785 | Stephens | Jul 1989 | A |
4886505 | Haynes et al. | Dec 1989 | A |
5019096 | Fox, Jr. et al. | May 1991 | A |
5051688 | Murase et al. | Sep 1991 | A |
5067665 | LoStracco et al. | Nov 1991 | A |
5097834 | Skrabal | Mar 1992 | A |
5109577 | Young | May 1992 | A |
5135004 | Adams et al. | Aug 1992 | A |
5202261 | Musho et al. | Apr 1993 | A |
5209414 | Clemens et al. | May 1993 | A |
5210778 | Massart | May 1993 | A |
5228449 | Christ et al. | Jul 1993 | A |
5231988 | Wernicke et al. | Aug 1993 | A |
5236143 | Dragon | Aug 1993 | A |
5237993 | Skrabal | Aug 1993 | A |
5250023 | Lee | Oct 1993 | A |
5251126 | Kahn et al. | Oct 1993 | A |
5266359 | Spielvogel | Nov 1993 | A |
5284425 | Holtermann et al. | Feb 1994 | A |
5344411 | Domb et al. | Sep 1994 | A |
5349852 | Kamen et al. | Sep 1994 | A |
5384547 | Lynk et al. | Jan 1995 | A |
5390671 | Lord et al. | Feb 1995 | A |
5394877 | Orr et al. | Mar 1995 | A |
5402780 | Faasse, Jr. | Apr 1995 | A |
5410326 | Goldstein | Apr 1995 | A |
5437656 | Shikani et al. | Aug 1995 | A |
5451424 | Solomon et al. | Sep 1995 | A |
5515390 | Benton | May 1996 | A |
5526844 | Kamen et al. | Jun 1996 | A |
5533389 | Kamen et al. | Jul 1996 | A |
5552997 | Massart | Sep 1996 | A |
5558640 | Pfeiler | Sep 1996 | A |
5569186 | Lord et al. | Oct 1996 | A |
5593852 | Heller et al. | Jan 1997 | A |
5599321 | Conway et al. | Feb 1997 | A |
5601435 | Quy | Feb 1997 | A |
5609575 | Larson et al. | Mar 1997 | A |
5662904 | Ferguson et al. | Sep 1997 | A |
5665065 | Colman et al. | Sep 1997 | A |
5673691 | Abrams et al. | Oct 1997 | A |
5726646 | Bane et al. | Mar 1998 | A |
5738220 | Geszler | Apr 1998 | A |
5748103 | Flach et al. | May 1998 | A |
5807375 | Gross et al. | Sep 1998 | A |
5822715 | Worthington et al. | Oct 1998 | A |
5833603 | Kovacs et al. | Nov 1998 | A |
5899855 | Brown | May 1999 | A |
5918603 | Brown | Jul 1999 | A |
5925021 | Castellano et al. | Jul 1999 | A |
5951521 | Mastrototaro et al. | Sep 1999 | A |
5954643 | VanAntwerp et al. | Sep 1999 | A |
5956501 | Brown | Sep 1999 | A |
5975120 | Novosel | Nov 1999 | A |
5987353 | Khatchatrian et al. | Nov 1999 | A |
5988545 | King | Nov 1999 | A |
6028413 | Brockmann | Feb 2000 | A |
6052565 | Ishikura et al. | Apr 2000 | A |
6066243 | Anderson et al. | May 2000 | A |
6083248 | Thompson | Jul 2000 | A |
6091975 | Daddona et al. | Jul 2000 | A |
6096364 | Bok et al. | Aug 2000 | A |
6129823 | Hughes et al. | Oct 2000 | A |
6134461 | Say et al. | Oct 2000 | A |
6141573 | Kurnik et al. | Oct 2000 | A |
6143164 | Heller et al. | Nov 2000 | A |
6175752 | Say et al. | Jan 2001 | B1 |
6233539 | Brown | May 2001 | B1 |
6247664 | Peterson et al. | Jun 2001 | B1 |
6248067 | Causey et al. | Jun 2001 | B1 |
6254586 | Mann et al. | Jul 2001 | B1 |
6270455 | Brown | Aug 2001 | B1 |
6284478 | Heller et al. | Sep 2001 | B1 |
6314317 | Willis | Nov 2001 | B1 |
6359270 | Bridson | Mar 2002 | B1 |
6379301 | Worthington et al. | Apr 2002 | B1 |
6387048 | Schulman et al. | May 2002 | B1 |
6418332 | Mastrototaro et al. | Jul 2002 | B1 |
6427088 | Bowman, IV et al. | Jul 2002 | B1 |
6471689 | Joseph et al. | Oct 2002 | B1 |
6482156 | Iliff | Nov 2002 | B2 |
6484045 | Holker et al. | Nov 2002 | B1 |
6485461 | Mason et al. | Nov 2002 | B1 |
6493069 | Nagashimada et al. | Dec 2002 | B1 |
6498043 | Schulman et al. | Dec 2002 | B1 |
6544212 | Galley et al. | Apr 2003 | B2 |
6546268 | Ishikawa et al. | Apr 2003 | B1 |
6554798 | Mann et al. | Apr 2003 | B1 |
6558320 | Causey, III et al. | May 2003 | B1 |
6558321 | Burd et al. | May 2003 | B1 |
6558351 | Steil et al. | May 2003 | B1 |
6562001 | Lebel et al. | May 2003 | B2 |
6564105 | Starkweather et al. | May 2003 | B2 |
6571128 | Lebel et al. | May 2003 | B2 |
6572542 | Houben et al. | Jun 2003 | B1 |
6576101 | Heller et al. | Jun 2003 | B1 |
6577899 | Lebel et al. | Jun 2003 | B2 |
6585644 | Lebel et al. | Jul 2003 | B2 |
6598824 | Schmidt | Jul 2003 | B2 |
6635014 | Starkweather et al. | Oct 2003 | B2 |
6641533 | Causey, III et al. | Nov 2003 | B2 |
6641562 | Peterson | Nov 2003 | B1 |
6648821 | Lebel et al. | Nov 2003 | B2 |
6656114 | Poulson et al. | Dec 2003 | B1 |
6656158 | Mahoney et al. | Dec 2003 | B2 |
6656159 | Flaherty | Dec 2003 | B2 |
6658396 | Tang et al. | Dec 2003 | B1 |
6659948 | Lebel et al. | Dec 2003 | B2 |
6668196 | Villegas et al. | Dec 2003 | B1 |
6669669 | Flaherty et al. | Dec 2003 | B2 |
6676816 | Mao et al. | Jan 2004 | B2 |
6687546 | Lebel et al. | Feb 2004 | B2 |
6692457 | Flaherty | Feb 2004 | B2 |
6694191 | Starkweather et al. | Feb 2004 | B2 |
6699218 | Flaherty et al. | Mar 2004 | B2 |
6702857 | Brauker et al. | Mar 2004 | B2 |
6723072 | Flaherty et al. | Apr 2004 | B2 |
6733446 | Lebel et al. | May 2004 | B2 |
6736797 | Larsen et al. | May 2004 | B1 |
6740059 | Flaherty | May 2004 | B2 |
6740075 | Lebel et al. | May 2004 | B2 |
6741877 | Shults et al. | May 2004 | B1 |
6744350 | Blomquist | Jun 2004 | B2 |
6749587 | Flaherty | Jun 2004 | B2 |
6758810 | Lebel et al. | Jul 2004 | B2 |
6768425 | Flaherty et al. | Jul 2004 | B2 |
6789195 | Prihoda et al. | Sep 2004 | B1 |
6810290 | Lebel et al. | Oct 2004 | B2 |
6811533 | Lebel et al. | Nov 2004 | B2 |
6811534 | Bowman, IV et al. | Nov 2004 | B2 |
6813519 | Lebel et al. | Nov 2004 | B2 |
6830558 | Flaherty et al. | Dec 2004 | B2 |
6837858 | Cunningham et al. | Jan 2005 | B2 |
6850790 | Berner et al. | Feb 2005 | B2 |
6852104 | Blomquist | Feb 2005 | B2 |
6862465 | Shults et al. | Mar 2005 | B2 |
6873268 | Lebel et al. | Mar 2005 | B2 |
6882940 | Potts et al. | Apr 2005 | B2 |
6887270 | Miller et al. | May 2005 | B2 |
6896666 | Kochamaba et al. | May 2005 | B2 |
6902207 | Lickliter | Jun 2005 | B2 |
6916159 | Rush et al. | Jul 2005 | B2 |
6923763 | Kovatchev et al. | Aug 2005 | B1 |
6931327 | Goode, Jr. et al. | Aug 2005 | B2 |
6936006 | Sabra | Aug 2005 | B2 |
6946446 | Ma et al. | Sep 2005 | B2 |
6950708 | Bowman IV et al. | Sep 2005 | B2 |
6958705 | Lebel et al. | Oct 2005 | B2 |
6960192 | Flaherty et al. | Nov 2005 | B1 |
6974437 | Lebel et al. | Dec 2005 | B2 |
6999854 | Roth | Feb 2006 | B2 |
7003336 | Holker et al. | Feb 2006 | B2 |
7015817 | Copley et al. | Mar 2006 | B2 |
7016713 | Gardner et al. | Mar 2006 | B2 |
7018360 | Flaherty et al. | Mar 2006 | B2 |
7024245 | Lebel et al. | Apr 2006 | B2 |
7027848 | Robinson et al. | Apr 2006 | B2 |
7027931 | Jones et al. | Apr 2006 | B1 |
7029455 | Flaherty | Apr 2006 | B2 |
7034677 | Steinthal et al. | Apr 2006 | B2 |
7041468 | Drucker et al. | May 2006 | B2 |
7046153 | Oja et al. | May 2006 | B2 |
7052251 | Nason et al. | May 2006 | B2 |
7052472 | Miller et al. | May 2006 | B1 |
7066922 | Angel et al. | Jun 2006 | B2 |
7074307 | Simpson et al. | Jul 2006 | B2 |
7077328 | Krishnaswamy et al. | Jul 2006 | B2 |
7079977 | Osorio et al. | Jul 2006 | B2 |
7081195 | Simpson et al. | Jul 2006 | B2 |
7092891 | Maus et al. | Aug 2006 | B2 |
7108778 | Simpson et al. | Sep 2006 | B2 |
7110803 | Shults et al. | Sep 2006 | B2 |
7113821 | Sun et al. | Sep 2006 | B1 |
7133717 | Coston et al. | Nov 2006 | B2 |
7134999 | Brauker et al. | Nov 2006 | B2 |
7136689 | Shults et al. | Nov 2006 | B2 |
7137964 | Flaherty | Nov 2006 | B2 |
7144384 | Gorman et al. | Dec 2006 | B2 |
7153265 | Vachon | Dec 2006 | B2 |
7155112 | Uno et al. | Dec 2006 | B2 |
7155290 | Von Arx et al. | Dec 2006 | B2 |
7167818 | Brown | Jan 2007 | B2 |
7171274 | Starkweather et al. | Jan 2007 | B2 |
7171312 | Steinthal et al. | Jan 2007 | B2 |
7179226 | Crothall et al. | Feb 2007 | B2 |
7192450 | Brauker et al. | Mar 2007 | B2 |
7207974 | Safabash et al. | Apr 2007 | B2 |
7216665 | Sims, Jr. | May 2007 | B1 |
7226278 | Nason et al. | Jun 2007 | B2 |
7226442 | Sheppard et al. | Jun 2007 | B2 |
7226978 | Tapsak et al. | Jun 2007 | B2 |
7229042 | Thebault et al. | Jun 2007 | B2 |
7267665 | Steil et al. | Sep 2007 | B2 |
7276029 | Goode, Jr. et al. | Oct 2007 | B2 |
7286894 | Grant et al. | Oct 2007 | B1 |
7303549 | Flaherty et al. | Dec 2007 | B2 |
7310544 | Brister et al. | Dec 2007 | B2 |
7318816 | Bobroff et al. | Jan 2008 | B2 |
7324012 | Mann et al. | Jan 2008 | B2 |
7329239 | Safabash et al. | Feb 2008 | B2 |
7335294 | Heller et al. | Feb 2008 | B2 |
7354420 | Steil et al. | Apr 2008 | B2 |
7364568 | Angel et al. | Apr 2008 | B2 |
7364592 | Carr-Brendel et al. | Apr 2008 | B2 |
7366556 | Brister et al. | Apr 2008 | B2 |
7379765 | Petisce et al. | May 2008 | B2 |
7381184 | Funderburk et al. | Jun 2008 | B2 |
7402153 | Steil et al. | Jul 2008 | B2 |
7404796 | Ginsberg | Jul 2008 | B2 |
7424318 | Brister et al. | Sep 2008 | B2 |
7429258 | Angel et al. | Sep 2008 | B2 |
7455663 | Bikovsky | Nov 2008 | B2 |
7460898 | Brister et al. | Dec 2008 | B2 |
7462264 | Heller et al. | Dec 2008 | B2 |
7467003 | Brister et al. | Dec 2008 | B2 |
7471972 | Rhodes et al. | Dec 2008 | B2 |
7483736 | Marchitto et al. | Jan 2009 | B2 |
7494465 | Brister et al. | Feb 2009 | B2 |
7497827 | Brister et al. | Mar 2009 | B2 |
7499002 | Blasko et al. | Mar 2009 | B2 |
7519408 | Rasdal et al. | Apr 2009 | B2 |
7547281 | Hayes et al. | Jun 2009 | B2 |
7583990 | Goode, Jr. et al. | Sep 2009 | B2 |
7591801 | Brauker et al. | Sep 2009 | B2 |
7599726 | Goode, Jr. et al. | Oct 2009 | B2 |
7613491 | Boock et al. | Nov 2009 | B2 |
7615007 | Shults et al. | Nov 2009 | B2 |
7630748 | Budiman | Dec 2009 | B2 |
7632228 | Brauker et al. | Dec 2009 | B2 |
7637868 | Saint et al. | Dec 2009 | B2 |
7640048 | Dobbles et al. | Dec 2009 | B2 |
7645263 | Angel et al. | Jan 2010 | B2 |
7651596 | Petisce et al. | Jan 2010 | B2 |
7651845 | Doyle, III et al. | Jan 2010 | B2 |
7654956 | Brister et al. | Feb 2010 | B2 |
7657297 | Simpson et al. | Feb 2010 | B2 |
7697967 | Stafford | Apr 2010 | B2 |
7699775 | Desai et al. | Apr 2010 | B2 |
7711402 | Shults et al. | May 2010 | B2 |
7713574 | Brister et al. | May 2010 | B2 |
7715893 | Kamath et al. | May 2010 | B2 |
7727147 | Osorio et al. | Jun 2010 | B1 |
7731657 | Stafford | Jun 2010 | B2 |
7736344 | Moberg et al. | Jun 2010 | B2 |
7763042 | Iio et al. | Jul 2010 | B2 |
7766829 | Sloan et al. | Aug 2010 | B2 |
7768387 | Fennell et al. | Aug 2010 | B2 |
7783333 | Brister et al. | Aug 2010 | B2 |
7792562 | Shults et al. | Sep 2010 | B2 |
7813809 | Strother et al. | Oct 2010 | B2 |
7822454 | Alden et al. | Oct 2010 | B1 |
7826981 | Goode, Jr. et al. | Nov 2010 | B2 |
7889069 | Fifolt et al. | Feb 2011 | B2 |
7899511 | Shults et al. | Mar 2011 | B2 |
7899545 | John | Mar 2011 | B2 |
7905833 | Brister et al. | Mar 2011 | B2 |
7914450 | Goode, Jr. et al. | Mar 2011 | B2 |
7938797 | Estes | May 2011 | B2 |
7941200 | Weinert et al. | May 2011 | B2 |
7946985 | Mastrototaro et al. | May 2011 | B2 |
7970448 | Shults et al. | Jun 2011 | B2 |
7972296 | Braig et al. | Jul 2011 | B2 |
7974672 | Shults et al. | Jul 2011 | B2 |
7976466 | Ward et al. | Jul 2011 | B2 |
7978063 | Baldus et al. | Jul 2011 | B2 |
8010174 | Goode et al. | Aug 2011 | B2 |
8010256 | Oowada | Aug 2011 | B2 |
RE43316 | Brown et al. | Apr 2012 | E |
8192394 | Estes et al. | Jun 2012 | B2 |
8206296 | Jennewine | Jun 2012 | B2 |
8216138 | McGarraugh et al. | Jul 2012 | B1 |
8282549 | Brauker et al. | Oct 2012 | B2 |
8461985 | Fennell et al. | Jun 2013 | B2 |
8597570 | Terashima et al. | Dec 2013 | B2 |
8727982 | Jennewine | May 2014 | B2 |
8732188 | Doniger | May 2014 | B2 |
10206629 | Jennewine | Feb 2019 | B2 |
10685749 | Hayter | Jun 2020 | B2 |
11749410 | Hayter | Sep 2023 | B2 |
20010020124 | Tamada | Sep 2001 | A1 |
20010037366 | Webb et al. | Nov 2001 | A1 |
20010047604 | Valiulis | Dec 2001 | A1 |
20020016719 | Nemeth et al. | Feb 2002 | A1 |
20020019612 | Watanabe et al. | Feb 2002 | A1 |
20020054320 | Ogino | May 2002 | A1 |
20020095076 | Krausman et al. | Jul 2002 | A1 |
20020106709 | Potts et al. | Aug 2002 | A1 |
20020107476 | Mann et al. | Aug 2002 | A1 |
20020133107 | Darcey | Sep 2002 | A1 |
20020147135 | Schnell | Oct 2002 | A1 |
20020169439 | Flaherty et al. | Nov 2002 | A1 |
20020169635 | Shillingburg | Nov 2002 | A1 |
20020193679 | Malave et al. | Dec 2002 | A1 |
20030021729 | Moller et al. | Jan 2003 | A1 |
20030023317 | Brauker et al. | Jan 2003 | A1 |
20030028089 | Galley et al. | Feb 2003 | A1 |
20030032874 | Rhodes et al. | Feb 2003 | A1 |
20030055380 | Flaherty et al. | Mar 2003 | A1 |
20030060692 | Ruchti et al. | Mar 2003 | A1 |
20030060753 | Starkweather et al. | Mar 2003 | A1 |
20030065308 | Lebel et al. | Apr 2003 | A1 |
20030069541 | Gillis et al. | Apr 2003 | A1 |
20030073414 | P. Capps | Apr 2003 | A1 |
20030100040 | Bonnecaze et al. | May 2003 | A1 |
20030114836 | Estes et al. | Jun 2003 | A1 |
20030114897 | Von Arx et al. | Jun 2003 | A1 |
20030122021 | McConnell et al. | Jul 2003 | A1 |
20030130616 | Steil et al. | Jul 2003 | A1 |
20030144362 | Utterberg et al. | Jul 2003 | A1 |
20030147515 | Kai et al. | Aug 2003 | A1 |
20030167035 | Flaherty et al. | Sep 2003 | A1 |
20030175323 | Utterberg et al. | Sep 2003 | A1 |
20030176933 | Lebel et al. | Sep 2003 | A1 |
20030212379 | Bylund et al. | Nov 2003 | A1 |
20030217966 | Tapsak et al. | Nov 2003 | A1 |
20030225361 | Sabra | Dec 2003 | A1 |
20040010207 | Flaherty et al. | Jan 2004 | A1 |
20040011671 | Shults et al. | Jan 2004 | A1 |
20040015131 | Flaherty et al. | Jan 2004 | A1 |
20040041749 | Dixon | Mar 2004 | A1 |
20040045879 | Shults et al. | Mar 2004 | A1 |
20040063435 | Sakamoto et al. | Apr 2004 | A1 |
20040064088 | Gorman et al. | Apr 2004 | A1 |
20040064096 | Flaherty et al. | Apr 2004 | A1 |
20040099529 | Mao et al. | May 2004 | A1 |
20040122530 | Hansen et al. | Jun 2004 | A1 |
20040133390 | Osorio et al. | Jul 2004 | A1 |
20040135684 | Steinthal et al. | Jul 2004 | A1 |
20040147872 | Thompson | Jul 2004 | A1 |
20040152622 | Keith et al. | Aug 2004 | A1 |
20040153032 | Garribotto et al. | Aug 2004 | A1 |
20040155770 | Nelson et al. | Aug 2004 | A1 |
20040162521 | Bengtsson | Aug 2004 | A1 |
20040167464 | Ireland et al. | Aug 2004 | A1 |
20040172307 | Gruber | Sep 2004 | A1 |
20040186362 | Brauker et al. | Sep 2004 | A1 |
20040193025 | Steil et al. | Sep 2004 | A1 |
20040193090 | Lebel et al. | Sep 2004 | A1 |
20040199059 | Brauker et al. | Oct 2004 | A1 |
20040204868 | Maynard et al. | Oct 2004 | A1 |
20040210180 | Altman | Oct 2004 | A1 |
20040210208 | Paul et al. | Oct 2004 | A1 |
20040225338 | Lebel et al. | Nov 2004 | A1 |
20040254433 | Brandis et al. | Dec 2004 | A1 |
20040260478 | Schwamm | Dec 2004 | A1 |
20050001024 | Kusaka et al. | Jan 2005 | A1 |
20050004439 | Shin et al. | Jan 2005 | A1 |
20050010269 | Lebel et al. | Jan 2005 | A1 |
20050027180 | Goode, Jr. et al. | Feb 2005 | A1 |
20050031689 | Shults et al. | Feb 2005 | A1 |
20050038332 | Saidara et al. | Feb 2005 | A1 |
20050038674 | Braig et al. | Feb 2005 | A1 |
20050043598 | Goode, Jr. et al. | Feb 2005 | A1 |
20050049179 | Davidson et al. | Mar 2005 | A1 |
20050065464 | Talbot et al. | Mar 2005 | A1 |
20050070774 | Addison et al. | Mar 2005 | A1 |
20050090607 | Tapsak et al. | Apr 2005 | A1 |
20050096511 | Fox et al. | May 2005 | A1 |
20050096516 | Soykan et al. | May 2005 | A1 |
20050112169 | Brauker et al. | May 2005 | A1 |
20050113653 | Fox et al. | May 2005 | A1 |
20050113886 | Fischell et al. | May 2005 | A1 |
20050116683 | Cheng et al. | Jun 2005 | A1 |
20050119540 | Potts et al. | Jun 2005 | A1 |
20050137530 | Campbell et al. | Jun 2005 | A1 |
20050143635 | Kamath et al. | Jun 2005 | A1 |
20050171512 | Flaherty | Aug 2005 | A1 |
20050176136 | Burd et al. | Aug 2005 | A1 |
20050181010 | Hunter et al. | Aug 2005 | A1 |
20050182306 | Sloan | Aug 2005 | A1 |
20050182358 | Veit et al. | Aug 2005 | A1 |
20050182366 | Vogt et al. | Aug 2005 | A1 |
20050187442 | Cho et al. | Aug 2005 | A1 |
20050187720 | Goode, Jr. et al. | Aug 2005 | A1 |
20050192557 | Brauker et al. | Sep 2005 | A1 |
20050195930 | Spital et al. | Sep 2005 | A1 |
20050203360 | Brauker et al. | Sep 2005 | A1 |
20050203461 | Flaherty et al. | Sep 2005 | A1 |
20050204134 | Von Arx et al. | Sep 2005 | A1 |
20050214892 | Kovatchev et al. | Sep 2005 | A1 |
20050238507 | DiIanni et al. | Oct 2005 | A1 |
20050245795 | Goode, Jr. et al. | Nov 2005 | A1 |
20050245799 | Brauker et al. | Nov 2005 | A1 |
20050251033 | Scarantino et al. | Nov 2005 | A1 |
20050261667 | Crank et al. | Nov 2005 | A1 |
20050277872 | Colby et al. | Dec 2005 | A1 |
20050277912 | John | Dec 2005 | A1 |
20060001551 | Kraft et al. | Jan 2006 | A1 |
20060004603 | Peterka et al. | Jan 2006 | A1 |
20060010098 | Goodnow et al. | Jan 2006 | A1 |
20060015020 | Neale et al. | Jan 2006 | A1 |
20060016700 | Brister et al. | Jan 2006 | A1 |
20060017923 | Ruchti et al. | Jan 2006 | A1 |
20060019327 | Brister et al. | Jan 2006 | A1 |
20060020186 | Brister et al. | Jan 2006 | A1 |
20060020187 | Brister et al. | Jan 2006 | A1 |
20060020188 | Kamath et al. | Jan 2006 | A1 |
20060020189 | Brister et al. | Jan 2006 | A1 |
20060020190 | Kamath et al. | Jan 2006 | A1 |
20060020191 | Brister et al. | Jan 2006 | A1 |
20060020192 | Brister et al. | Jan 2006 | A1 |
20060020300 | Nghiem et al. | Jan 2006 | A1 |
20060036139 | Brister et al. | Feb 2006 | A1 |
20060036140 | Brister et al. | Feb 2006 | A1 |
20060036141 | Kamath et al. | Feb 2006 | A1 |
20060036142 | Brister et al. | Feb 2006 | A1 |
20060036143 | Brister et al. | Feb 2006 | A1 |
20060036144 | Brister et al. | Feb 2006 | A1 |
20060036145 | Brister et al. | Feb 2006 | A1 |
20060041229 | Garibotto et al. | Feb 2006 | A1 |
20060065772 | Grant et al. | Mar 2006 | A1 |
20060079740 | Silver et al. | Apr 2006 | A1 |
20060091006 | Wang et al. | May 2006 | A1 |
20060095020 | Casas et al. | May 2006 | A1 |
20060142651 | Brister et al. | Jun 2006 | A1 |
20060154642 | Scannell | Jul 2006 | A1 |
20060166629 | Reggiardo | Jul 2006 | A1 |
20060173406 | Hayes et al. | Aug 2006 | A1 |
20060173444 | Choy et al. | Aug 2006 | A1 |
20060173712 | Joubert | Aug 2006 | A1 |
20060178633 | Garibotto et al. | Aug 2006 | A1 |
20060189863 | Peyser et al. | Aug 2006 | A1 |
20060193375 | Lee et al. | Aug 2006 | A1 |
20060202805 | Schulman et al. | Sep 2006 | A1 |
20060222566 | Brauker et al. | Oct 2006 | A1 |
20060224141 | Rush et al. | Oct 2006 | A1 |
20060226985 | Goodnow et al. | Oct 2006 | A1 |
20060247508 | Fennell | Nov 2006 | A1 |
20060258929 | Goode et al. | Nov 2006 | A1 |
20060272652 | Stocker et al. | Dec 2006 | A1 |
20060276771 | Galley et al. | Dec 2006 | A1 |
20060282290 | Flaherty et al. | Dec 2006 | A1 |
20060290496 | Peeters et al. | Dec 2006 | A1 |
20060293577 | Morrison et al. | Dec 2006 | A1 |
20060293607 | Alt et al. | Dec 2006 | A1 |
20070016381 | Kamath et al. | Jan 2007 | A1 |
20070016449 | Cohen et al. | Jan 2007 | A1 |
20070017983 | Frank et al. | Jan 2007 | A1 |
20070027381 | Stafford | Feb 2007 | A1 |
20070032717 | Brister et al. | Feb 2007 | A1 |
20070033074 | Nitzan et al. | Feb 2007 | A1 |
20070060869 | Tolle et al. | Mar 2007 | A1 |
20070060870 | Tolle et al. | Mar 2007 | A1 |
20070060871 | Istoc et al. | Mar 2007 | A1 |
20070060979 | Strother et al. | Mar 2007 | A1 |
20070066956 | Finkel | Mar 2007 | A1 |
20070073129 | Shah et al. | Mar 2007 | A1 |
20070078320 | Stafford | Apr 2007 | A1 |
20070078321 | Mazza et al. | Apr 2007 | A1 |
20070078322 | Stafford | Apr 2007 | A1 |
20070078818 | Zvitz et al. | Apr 2007 | A1 |
20070093786 | Goldsmith et al. | Apr 2007 | A1 |
20070100222 | Mastrototaro et al. | May 2007 | A1 |
20070106135 | Sloan et al. | May 2007 | A1 |
20070118405 | Campbell et al. | May 2007 | A1 |
20070128682 | Rosman et al. | Jun 2007 | A1 |
20070129621 | Kellogg et al. | Jun 2007 | A1 |
20070149874 | Say et al. | Jun 2007 | A1 |
20070149875 | Ouyang et al. | Jun 2007 | A1 |
20070163880 | Woo et al. | Jul 2007 | A1 |
20070179370 | Say et al. | Aug 2007 | A1 |
20070191702 | Yodfat et al. | Aug 2007 | A1 |
20070203407 | Hoss et al. | Aug 2007 | A1 |
20070203966 | Brauker et al. | Aug 2007 | A1 |
20070208244 | Brauker et al. | Sep 2007 | A1 |
20070208246 | Brauker et al. | Sep 2007 | A1 |
20070213657 | Jennewine et al. | Sep 2007 | A1 |
20070219480 | Kamen et al. | Sep 2007 | A1 |
20070219597 | Kamen et al. | Sep 2007 | A1 |
20070228071 | Kamen et al. | Oct 2007 | A1 |
20070235331 | Simpson et al. | Oct 2007 | A1 |
20070249922 | Peyser et al. | Oct 2007 | A1 |
20070255114 | Ackermann et al. | Nov 2007 | A1 |
20070255321 | Gerber et al. | Nov 2007 | A1 |
20070255348 | Holtzclaw | Nov 2007 | A1 |
20070282299 | Hellwig | Dec 2007 | A1 |
20070299409 | Whitbourne et al. | Dec 2007 | A1 |
20080004515 | Jennewine et al. | Jan 2008 | A1 |
20080004601 | Jennewine et al. | Jan 2008 | A1 |
20080009692 | Stafford | Jan 2008 | A1 |
20080018480 | Sham | Jan 2008 | A1 |
20080021436 | Wolpert et al. | Jan 2008 | A1 |
20080021666 | Goode, Jr. et al. | Jan 2008 | A1 |
20080033254 | Kamath et al. | Feb 2008 | A1 |
20080033268 | Stafford | Feb 2008 | A1 |
20080039702 | Hayter et al. | Feb 2008 | A1 |
20080045824 | Tapsak et al. | Feb 2008 | A1 |
20080058773 | John | Mar 2008 | A1 |
20080060955 | Goodnow | Mar 2008 | A1 |
20080061961 | John | Mar 2008 | A1 |
20080064937 | McGarraugh et al. | Mar 2008 | A1 |
20080071156 | Brister et al. | Mar 2008 | A1 |
20080083617 | Simpson et al. | Apr 2008 | A1 |
20080086042 | Brister et al. | Apr 2008 | A1 |
20080086044 | Brister et al. | Apr 2008 | A1 |
20080086273 | Shults et al. | Apr 2008 | A1 |
20080092638 | Brenneman et al. | Apr 2008 | A1 |
20080093447 | Johnson et al. | Apr 2008 | A1 |
20080097246 | Stafford | Apr 2008 | A1 |
20080108942 | Brister et al. | May 2008 | A1 |
20080114228 | McCluskey et al. | May 2008 | A1 |
20080119707 | Stafford | May 2008 | A1 |
20080139910 | Mastrototaro et al. | Jun 2008 | A1 |
20080177149 | Weinert et al. | Jul 2008 | A1 |
20080183061 | Goode, Jr. et al. | Jul 2008 | A1 |
20080183399 | Goode, Jr. et al. | Jul 2008 | A1 |
20080188731 | Brister et al. | Aug 2008 | A1 |
20080189051 | Goode, Jr. et al. | Aug 2008 | A1 |
20080194934 | Ray et al. | Aug 2008 | A1 |
20080194935 | Brister et al. | Aug 2008 | A1 |
20080194936 | Goode, Jr. et al. | Aug 2008 | A1 |
20080194937 | Goode, Jr. et al. | Aug 2008 | A1 |
20080194938 | Brister et al. | Aug 2008 | A1 |
20080195232 | Carr-Brendel et al. | Aug 2008 | A1 |
20080195967 | Goode, Jr. et al. | Aug 2008 | A1 |
20080197024 | Simpson et al. | Aug 2008 | A1 |
20080200788 | Brister et al. | Aug 2008 | A1 |
20080200789 | Brister et al. | Aug 2008 | A1 |
20080200791 | Simpson et al. | Aug 2008 | A1 |
20080200897 | Hoss et al. | Aug 2008 | A1 |
20080201325 | Doniger | Aug 2008 | A1 |
20080208025 | Shults et al. | Aug 2008 | A1 |
20080214915 | Brister et al. | Sep 2008 | A1 |
20080214918 | Brister et al. | Sep 2008 | A1 |
20080228051 | Shults et al. | Sep 2008 | A1 |
20080228054 | Shults et al. | Sep 2008 | A1 |
20080228055 | Sher | Sep 2008 | A1 |
20080234663 | Yodfat et al. | Sep 2008 | A1 |
20080234943 | Ray et al. | Sep 2008 | A1 |
20080242961 | Brister et al. | Oct 2008 | A1 |
20080242963 | Essenpreis et al. | Oct 2008 | A1 |
20080254544 | Modzelewski et al. | Oct 2008 | A1 |
20080262469 | Brister et al. | Oct 2008 | A1 |
20080269687 | Chong et al. | Oct 2008 | A1 |
20080269714 | Mastrototaro et al. | Oct 2008 | A1 |
20080269723 | Mastrototaro et al. | Oct 2008 | A1 |
20080275313 | Brister et al. | Nov 2008 | A1 |
20080287764 | Rasdal et al. | Nov 2008 | A1 |
20080287765 | Rasdal et al. | Nov 2008 | A1 |
20080287766 | Rasdal et al. | Nov 2008 | A1 |
20080296155 | Shults et al. | Dec 2008 | A1 |
20080300572 | Rankers et al. | Dec 2008 | A1 |
20080306368 | Goode, Jr. et al. | Dec 2008 | A1 |
20080306434 | Dobbles et al. | Dec 2008 | A1 |
20080306435 | Kamath et al. | Dec 2008 | A1 |
20080306444 | Brister et al. | Dec 2008 | A1 |
20080319085 | Wright et al. | Dec 2008 | A1 |
20090005666 | Shin et al. | Jan 2009 | A1 |
20090006133 | Weinert et al. | Jan 2009 | A1 |
20090012379 | Goode, Jr. et al. | Jan 2009 | A1 |
20090018424 | Kamath et al. | Jan 2009 | A1 |
20090030294 | Petisce et al. | Jan 2009 | A1 |
20090036758 | Brauker et al. | Feb 2009 | A1 |
20090036763 | Brauker et al. | Feb 2009 | A1 |
20090040022 | Finkenzeller | Feb 2009 | A1 |
20090043181 | Brauker et al. | Feb 2009 | A1 |
20090043182 | Brauker et al. | Feb 2009 | A1 |
20090043525 | Brauker et al. | Feb 2009 | A1 |
20090043541 | Brauker et al. | Feb 2009 | A1 |
20090043542 | Brauker et al. | Feb 2009 | A1 |
20090045055 | Rhodes et al. | Feb 2009 | A1 |
20090048503 | Dalal et al. | Feb 2009 | A1 |
20090054747 | Fennell | Feb 2009 | A1 |
20090054748 | Feldman et al. | Feb 2009 | A1 |
20090054750 | Jennewine | Feb 2009 | A1 |
20090062633 | Brauker et al. | Mar 2009 | A1 |
20090062635 | Brauker et al. | Mar 2009 | A1 |
20090069650 | Jennewine et al. | Mar 2009 | A1 |
20090076356 | Simpson et al. | Mar 2009 | A1 |
20090076359 | Peyser | Mar 2009 | A1 |
20090076360 | Brister et al. | Mar 2009 | A1 |
20090076361 | Kamath et al. | Mar 2009 | A1 |
20090082693 | Stafford | Mar 2009 | A1 |
20090085873 | Betts et al. | Apr 2009 | A1 |
20090088614 | Taub | Apr 2009 | A1 |
20090088787 | Koike et al. | Apr 2009 | A1 |
20090093687 | Telfort et al. | Apr 2009 | A1 |
20090099436 | Brister et al. | Apr 2009 | A1 |
20090102678 | Mazza et al. | Apr 2009 | A1 |
20090105560 | Solomon | Apr 2009 | A1 |
20090105569 | Stafford | Apr 2009 | A1 |
20090105570 | Sloan et al. | Apr 2009 | A1 |
20090105571 | Fennell et al. | Apr 2009 | A1 |
20090124877 | Goode, Jr. et al. | May 2009 | A1 |
20090124878 | Goode, Jr. et al. | May 2009 | A1 |
20090124879 | Brister et al. | May 2009 | A1 |
20090124964 | Leach et al. | May 2009 | A1 |
20090131768 | Simpson et al. | May 2009 | A1 |
20090131769 | Leach et al. | May 2009 | A1 |
20090131776 | Simpson et al. | May 2009 | A1 |
20090131777 | Simpson et al. | May 2009 | A1 |
20090137886 | Shariati et al. | May 2009 | A1 |
20090137887 | Shariati et al. | May 2009 | A1 |
20090143659 | Li et al. | Jun 2009 | A1 |
20090143660 | Brister et al. | Jun 2009 | A1 |
20090156919 | Brister et al. | Jun 2009 | A1 |
20090156924 | Shariati et al. | Jun 2009 | A1 |
20090163790 | Brister et al. | Jun 2009 | A1 |
20090163791 | Brister et al. | Jun 2009 | A1 |
20090164190 | Hayter | Jun 2009 | A1 |
20090164239 | Hayter | Jun 2009 | A1 |
20090164251 | Hayter | Jun 2009 | A1 |
20090178459 | Li et al. | Jul 2009 | A1 |
20090182217 | Li et al. | Jul 2009 | A1 |
20090192366 | Mensinger et al. | Jul 2009 | A1 |
20090192380 | Shariati et al. | Jul 2009 | A1 |
20090192722 | Shariati et al. | Jul 2009 | A1 |
20090192724 | Brauker et al. | Jul 2009 | A1 |
20090192745 | Kamath et al. | Jul 2009 | A1 |
20090192751 | Kamath et al. | Jul 2009 | A1 |
20090203981 | Brauker et al. | Aug 2009 | A1 |
20090204341 | Brauker et al. | Aug 2009 | A1 |
20090216100 | Ebner et al. | Aug 2009 | A1 |
20090216102 | Say et al. | Aug 2009 | A1 |
20090216103 | Brister et al. | Aug 2009 | A1 |
20090240120 | Mensinger et al. | Sep 2009 | A1 |
20090240128 | Mensinger et al. | Sep 2009 | A1 |
20090240193 | Mensinger et al. | Sep 2009 | A1 |
20090242399 | Kamath et al. | Oct 2009 | A1 |
20090242425 | Kamath et al. | Oct 2009 | A1 |
20090247855 | Boock et al. | Oct 2009 | A1 |
20090247856 | Boock et al. | Oct 2009 | A1 |
20090247931 | Damgaard-Sorensen | Oct 2009 | A1 |
20090253973 | Bashan et al. | Oct 2009 | A1 |
20090287073 | Boock et al. | Nov 2009 | A1 |
20090287074 | Shults et al. | Nov 2009 | A1 |
20090292188 | Hoss et al. | Nov 2009 | A1 |
20090298182 | Schulat et al. | Dec 2009 | A1 |
20090299155 | Yang et al. | Dec 2009 | A1 |
20090299156 | Simpson et al. | Dec 2009 | A1 |
20090299162 | Brauker et al. | Dec 2009 | A1 |
20090299276 | Brauker et al. | Dec 2009 | A1 |
20100010324 | Brauker et al. | Jan 2010 | A1 |
20100010329 | Taub et al. | Jan 2010 | A1 |
20100010331 | Brauker et al. | Jan 2010 | A1 |
20100010332 | Brauker et al. | Jan 2010 | A1 |
20100016687 | Brauker et al. | Jan 2010 | A1 |
20100016698 | Rasdal et al. | Jan 2010 | A1 |
20100022855 | Brauker et al. | Jan 2010 | A1 |
20100030038 | Brauker et al. | Feb 2010 | A1 |
20100030053 | Goode, Jr. et al. | Feb 2010 | A1 |
20100030484 | Brauker et al. | Feb 2010 | A1 |
20100030485 | Brauker et al. | Feb 2010 | A1 |
20100036215 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036216 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036222 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036223 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036225 | Goode, Jr. et al. | Feb 2010 | A1 |
20100041971 | Goode, Jr. et al. | Feb 2010 | A1 |
20100045465 | Brauker et al. | Feb 2010 | A1 |
20100049024 | Saint et al. | Feb 2010 | A1 |
20100063373 | Kamath et al. | Mar 2010 | A1 |
20100076283 | Simpson et al. | Mar 2010 | A1 |
20100081908 | Dobbles et al. | Apr 2010 | A1 |
20100081910 | Brister et al. | Apr 2010 | A1 |
20100087724 | Brauker et al. | Apr 2010 | A1 |
20100096259 | Zhang et al. | Apr 2010 | A1 |
20100099970 | Shults et al. | Apr 2010 | A1 |
20100099971 | Shults et al. | Apr 2010 | A1 |
20100105999 | Dixon et al. | Apr 2010 | A1 |
20100119693 | Tapsak et al. | May 2010 | A1 |
20100121169 | Petisce et al. | May 2010 | A1 |
20100141656 | Krieftewirth | Jun 2010 | A1 |
20100152554 | Steine et al. | Jun 2010 | A1 |
20100160759 | Celentano et al. | Jun 2010 | A1 |
20100168538 | Keenan et al. | Jul 2010 | A1 |
20100174266 | Estes | Jul 2010 | A1 |
20100185175 | Kamen et al. | Jul 2010 | A1 |
20100191082 | Brister et al. | Jul 2010 | A1 |
20100198142 | Sloan et al. | Aug 2010 | A1 |
20100213080 | Celentano et al. | Aug 2010 | A1 |
20100240975 | Goode et al. | Sep 2010 | A1 |
20100274111 | Say et al. | Oct 2010 | A1 |
20100292634 | Kircher et al. | Nov 2010 | A1 |
20100312176 | Lauer et al. | Dec 2010 | A1 |
20100313105 | Nekoomaram et al. | Dec 2010 | A1 |
20110031986 | Bhat et al. | Feb 2011 | A1 |
20110077490 | Simpson et al. | Mar 2011 | A1 |
20110148905 | Simmons et al. | Jun 2011 | A1 |
20110208027 | Wagner et al. | Aug 2011 | A1 |
20110257895 | Brauker et al. | Oct 2011 | A1 |
20110287528 | Fern et al. | Nov 2011 | A1 |
20120165640 | Galley et al. | Jun 2012 | A1 |
20120173200 | Breton et al. | Jul 2012 | A1 |
20120265043 | Jennewine | Oct 2012 | A1 |
20130235166 | Jones et al. | Sep 2013 | A1 |
20140235985 | Jennewine | Aug 2014 | A1 |
20140258190 | Doniger | Sep 2014 | A1 |
20160106919 | Hayter | Apr 2016 | A1 |
20170193184 | Hayter | Jul 2017 | A1 |
20190175119 | Jennewine | Jun 2019 | A1 |
20230154625 | Hayter | May 2023 | A1 |
Number | Date | Country |
---|---|---|
2003259741 | Feb 2004 | AU |
2495648 | Feb 2004 | CA |
2498682 | Sep 2005 | CA |
2555749 | Sep 2005 | CA |
2632709 | Jun 2007 | CA |
2615575 | Jun 2008 | CA |
2701374 | Apr 2009 | CA |
1956371 | Aug 2008 | EP |
2260757 | Dec 2010 | EP |
WO 9956613 | Nov 1999 | WO |
WO-2001052935 | Jul 2001 | WO |
WO-2001054753 | Aug 2001 | WO |
WO 2004009161 | Jan 2004 | WO |
WO-2004015539 | Feb 2004 | WO |
WO-2006037109 | Apr 2006 | WO |
WO 2006079867 | Aug 2006 | WO |
WO-2007065285 | Jun 2007 | WO |
WO-2007101260 | Sep 2007 | WO |
WO-2007149319 | Dec 2007 | WO |
WO-2008001366 | Jan 2008 | WO |
WO-2008003003 | Jan 2008 | WO |
WO-2008005780 | Jan 2008 | WO |
WO-2011104616 | Sep 2011 | WO |
Entry |
---|
Bremer, T. M., et al., “Benchmark Data from the Literature for Evaluation of New Glucose Sensing Technologies”, Diabetes Technology & Therapeutics, vol. 3, No. 3, 2001, pp. 409-418. |
Cheyne, E. H., et al., “Performance of a Continuous Glucose Monitoring System During Controlled Hypoglycaemia in Healthy Volunteers”, Diabetes Technology & Therapeutics, vol. 4, No. 5, 2002, pp. 607-613. |
Diem, P., et al., “Clinical Performance of a Continuous Viscometric Affinity Sensor for Glucose”, Diabetes Technology & Therapeutics, vol. 6, 2004, pp. 790-799. |
Garg, S., et al., “Improvement in Glycemic Excursions with a Transcutaneous, Real-Time Continuous Glucose Sensor”, Diabetes Care, vol. 29, No. 1, 2006, pp. 44-50. |
Kondepati, V., et al., “Recent Progress in Analytical Instrumentation for Glycemic Control in Diabetic and Critically Ill Patients”, Analytical Bioanalytical Chemistry, vol. 388, 2007, pp. 545-563. |
Kuure-Kinsey, M., et al., “A Dual-Rate Kalman Filter for Continuous Glucose Monitoring”, Proceedings of the 28th IEEE, EMBS Annual International Conference, New York City, 2006, pp. 63-66. |
Li, Y., et al., “In Vivo Release From a Drug Delivery MEMS Device”, Journal of Controlled Release, vol. 100, 2004, 99. 211-219. |
Lodwig, V., et al., “Continuous Glucose Monitoring with Glucose Sensors: Calibration and Assessment Criteria”, Diabetes Technology & Therapeutics, vol. 5, No. 4, 2003, pp. 573-587. |
Morbiducci, U, et al., “Improved Usability of the Minimal Model of Insulin Sensitivity Based on an Automated Approach and Genetic Algorithms for Parameter Estimation”, Clinical Science, vol. 112, 2007, pp. 257-263. |
Mougiakakou, et al., “A Real Time Simulation Model of Glucose-Insulin Metabolism for Type 1 Diabetes Patients”, Proceedings of the 2005 IEEE, 2005, pp. 298-301. |
Panteleon, A. E., et al., “The Role of the Independent Variable to Glucose Sensor Calibration”, Diabetes Technology & Therapeutics, vol. 5, No. 3, 2003, pp. 401-410. |
Parker, R., et al., “Robust H∞ Glucose Control in Diabetes Using a Physiological Model”, AlChE Journal, vol. 46, No. 12, 2000, pp. 2537-2549. |
U.S. Appl. No. 11/462,974, Notice of Allowance dated Mar. 14, 2012. |
U.S. Appl. No. 11/462,974, Office Action dated Feb. 16, 2011. |
U.S. Appl. No. 11/462,974, Office Action dated Oct. 27, 2011. |
U.S. Appl. No. 13/532,346, Office Action dated Jan. 17, 2014. |
U.S. Appl. No. 13/532,346, Notice of Allowance dated Feb. 25, 2014. |
Exhibit CP-7, Second Expert Report of Dr. Cesar C. Palerm, Oct. 21, 2022, Garg, S. et al., “Improvement in Glycemic Excursions with a Transcutaneous, Real-Time Continuous Glucose Sensor”, Diabetes Care, Jan. 2006, 29(12):44-50. |
Exhibit No. 2, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022, “Note for Guidance on Clinical Investigation of Medicinal Products in the Treatment of Diabetes Mellitus,” The European Agency for the Evaluation of Medicinal Products, 2002, 12 pages. |
Exhibit No. 3, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022, “Defining and Reporting Hypoglycemia in Diabetes”, American Diabetes Association, Diabetes Care, 2005, 28(5):1245-1249. |
Exhibit No. 11, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022, “The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus” The New England Journal of Medicine, 1993, 329(14):977-986. |
Exhibit No. 12, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022, National Service Framework for Diabetes: Standards, Dept. of Health, 2002, 48 pages. |
Exhibit No. 13, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022, Amiel, S. et al., “Training in flexible, intensive insulin management to enable dietary freedom in people with type 1 diabetes: dose adjustment for normal eating (DAFNE) randomized controlled trial” BMJ, 2002, 325; 6 pages. |
Exhibit No. 14, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022, “Type 1 diabetes: diagnosis and management of type 1 diabetes in children, young people and adults” National Institute for Clinical Excellence, Clinical Guideline 15, Jul. 2004, 113 pages. |
Exhibit No. 23, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022, Internet Archive, WayBack Machine, Medtronic MiniMed, 2004, 20 pages. |
Exhibit No. 24, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022, “Glucowatch G2, Automatic Glucose Biographer and Autosensors,” 2002, 70 pages. |
Exhibit No. 25, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022, “Guardian® REAL-Time Continuous Glucose Monitoring System, User Guide,” Medtronic MiniMed, 2006, 181 pages. |
Exhibit No. 32, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022, Puhr, S. et al., “Real-World Hypoglycemia Avoidance with a Predictive Low Glucose Alert Does Not Depend on Frequent Screen Views”, Journal of Diabetes Sciences And Technology, 2004, 14(1): 83-86. |
PMA Approvals FDA—webpage available at: https://www.fda.gov; 3 pages. |
PMA database search for Freestyle Navigator Continuous Glucose Monitor—https://www.fda.gov; 6 pages. |
Sandham, William et al., “Blood Glucose Prediction for Diabetes Therapy Using a Recurrent Artificial Neural Network,” 9th European Signal Processing Conference (EUSIPCO 1998), 1998, pp. 1-4. |
Number | Date | Country | |
---|---|---|---|
20190175119 A1 | Jun 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14263996 | Apr 2014 | US |
Child | 16273529 | US | |
Parent | 13532346 | Jun 2012 | US |
Child | 14263996 | US | |
Parent | 11462974 | Aug 2006 | US |
Child | 13532346 | US |