The present invention relates generally to the start-up of prime movers in starter/generator systems, such as a gas turbine in aerospace applications. Specifically, the invention relates to a method and system for providing single-phase excitation techniques to a start exciter in a starter/generator system.
An auxiliary power unit (APU) system is often provided on an aircraft and is operable to provide auxiliary and/or emergency power to one or more aircraft loads. In conventional APU systems, a dedicated starter motor is activated during a starting sequence to bring a gas turbine engine up to self-sustaining speed. The gas turbine engine is then accelerated to operating speed. Once this condition is reached, a brushless, synchronous generator is excited and regulated so as to produce controlled electrical power at its terminals. The same start-up scheme is also applicable to start the main engines of the aircraft using the main engine starter/generator system.
As is known in the field, an electromagnetic machine may be operated as a motor to convert electrical power into motive power. Thus, in those applications where a source of motive power is required to start an engine, such as in an APU system or main engine starter/generator system, it is possible to omit the dedicated starter motor and operate the generator as a motor during the starting sequence to accelerate the engine to a self-sustaining speed. This capability is particularly advantageous in aircraft and electric car applications where size and weight must be held to a minimum.
The use of a starter/generator in starting and generating modes in an aircraft application has been realized by utilizing an inverter operating from a battery power source. The inverter provides control of a stator current vector coupled to the exciter machine with AC excitation to provide a main machine field flux when operated in the motoring mode. In a generating mode, conventional control of the exciter field is utilized to provide appropriate power quality. In such a system, a brushless three-phase synchronous generator operates in the generating mode to convert variable-speed motive power, supplied by a prime mover, into a fixed or variable-frequency AC power. The fixed or variable-frequency power is rectified and provided over a DC link to controllable static inverters or individual loads. The inverters are operated to produce constant-frequency AC power, which is then supplied over a load bus to one or more loads. The inverters can also be operated to produce variable voltage variable frequency AC voltage to supply various loads.
Torque produced at the shaft of the main machine is proportional to the main field flux in the main machine, and to the current in the main machine stator. To minimize the inverter KVA rating, it is desirable to maximize the main field flux in the main machine. Maximizing this flux requires that the excitation voltage applied to the exciter winding be increased to very high voltages. In applications where the maximum voltage is limited by potential insulation failure in windings, or connector voltage ratings, it is desirable to maximize the main field flux in the main field of the machine while at the same time minimizing the peak single phase excitation voltage applied to the exciter field winding.
An object of the present invention is to provide a synchronous generator, which can operate in a motoring mode to start an attached prime mover, such as a gas turbine engine.
Another object of the present invention is to maximize the main field flux for a specific maximum peak voltage applied to the exciter winding of the synchronous machine.
Still another object of the present invention is to provide alternate excitation waveforms other than a fundamental only signal to the exciter field winding of the synchronous generator.
These and other objects are substantially achieved by providing a system and method for starting a prime mover coupled to a synchronous starter/generator. The system comprises an exciter converter that provides a non-fundamental only or non-fundamental only synthesized signal using Pulse Width Modulation to a field winding of an exciter machine. The non-fundamental or non-fundamental only synthesized signal using Pulse Width Modulation provides a first rotating field for the field winding of the exciter. Exciter armature windings induce an AC signal from the rotating field where at least one rectifier rectifies the induced AC signal. A field winding of a main machine provides a flux signal from the rectified signal of said at least one rectifier. Armature windings of the main machine receive an AC signal via a main machine converter.
The details of the present invention can be readily understood by considering the following detailed description in conjunction with the accompanying drawings, in which:
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures.
As shown in
The PMG 12 includes the permanent magnet 22 connected to the rotor shaft 14. Each one of the PMG armature windings 18a, 18b and 18c is coupled to a respective leg of the PMG diode bridge rectifier 20. The PMG diode bridge rectifier 20 interacts with the exciter 24 during the generating mode of operation. The exciter 24 comprises an exciter regulator 32 that is coupled to the PMG diode bridge rectifier 20. The exciter regulator 32 is a DC to DC converter used during the generating mode of operation. A set of exciter contacts 30 either connects the exciter field winding 34 to the exciter regulator 32 for generating or to the exciter converter 36 for motoring. The exciter converter 36 is an AC to DC converter used during the motoring mode of operation for the start-up of the engine. The exciter 24 also comprises the exciter armature windings 26a, 26b and 26c where each one of the windings is connected to a respective leg of the exciter rotating diode bridge rectifier 28. The exciter rotating diode bridge rectifier 28 is in turn electrically coupled to the main machine 38. Specifically, the exciter rotating diode bridge rectifier 28 is coupled to the main machine field winding 42.
The main machine 38 further comprises the main machine armature windings 40a, 40b and 40c that are each connected to the main machine converter 46. The DC bus 48 is coupled to the main machine converter 46. The main machine contacts 44 selectively couple an AC load 54 to each of the main machine armature windings 40a, 40b and 40c.
In an embodiment of the present invention, during the generation mode, when the shaft 52 rotates, the rotor shaft 14 which is coupled to the prime mover shaft 52 rotates in the same direction. The permanent magnet 22 rotates in the same direction as the rotor shaft 14 and provides a magnetic flux to the PMG armature windings 18, which produces voltage in the PMG armature windings 18.
The power provided from the PMG armature windings 18 is rectified by the PMG diode bridge rectifier 20 and converted to a rectified DC voltage. The rectified DC voltage is then provided to the exciter regulator 32, which is preferably a DC to DC regulator or converter and regulates the voltage of the rectified DC voltage. The regulated DC voltage is provided to the exciter field winding 34 via a set of contacts 30. An AC voltage is produced in the exciter armature windings 26 and then rectified by the exciter rotating diode bridge rectifier 28.
A DC signal is provided by the exciter rotating diode bridge rectifier 28 and then applied to the main machine field winding 42. Rotation of the rotor shaft 14 and the field winding 42 induces a three-phase AC voltage in the main machine armature windings 40. The three-phase AC voltage is provided to the AC bus for further use by AC and DC loads. The DC bus 48 provides a DC voltage to the main machine converter 46 when the starter/generator 10 is in a motoring mode.
As discussed previously, it is often necessary to bring the prime mover 50 to a self-sustaining speed. In an embodiment of the present invention, the exciter 24 and the main machine 38 are used to bring the prime mover 50 to a self-sustaining speed. Specifically, the exciter converter 36 provides a signal to the exciter field winding 34 via the contacts 30. The signal is preferably an AC voltage and provides a rotating field, which induces an AC voltage in the exciter armature windings 26. The exciter rotating diode bridge rectifier 28 converts the AC voltage received from the exciter armature windings 26 to a DC voltage and provides the DC signal to the main machine field winding 42.
The main machine converter receives a DC voltage via the dc bus 48. The DC voltage from the DC bus 48 is then converted to an AC voltage by the main machine converter 46. The main machine converter 46 provides the AC voltage to the main machine armature windings 40. The combination of a DC field, also known as flux, provided by the DC voltage on the main machine field winding 42 and the rotating field provided by the AC voltage on the main machine armature windings provides torque to the shaft 52 of the prime mover 50.
It should be noted that the signal applied to the exciter field winding 34 in a motoring mode, can be specified to be limited to a certain peak voltage value e.g., about 484 volts rms or 684 volts peak, which is much higher than when the machine is in the generating mode. Since the exciter field winding 34 is designed for DC voltage and a generating mode of operation, the exciter field winding 34 inherently has a high inductance due to the required large number of turns for the exciter 34. The high inductance of the field winding of the exciter machine requires high voltages when excited with AC voltage during the motoring operation. The peak of the AC voltage applied is a design constraint.
Flux induced in the air gap (not shown) of the rotor shaft 14 for the exciter 24 is equal to the volt-seconds integral of applied voltage to the field 16 of the exciter 24 per Faraday's law of induction. Higher flux levels for the same peak voltage are achieved by applying signals other than a conventional fundamental only signal to the exciter field winding 34 via the exciter converter 36. The fundamental only signal is a sinusoidal signal.
In a first embodiment of the invention, the peak of the excitation voltage is reduced by preferably providing a fundamental plus third harmonic signal to the exciter field winding 34 via the exciter converter 36 for obtaining the same amount of main field current. In this embodiment, a fundamental plus third harmonic signal can be synthesized preferably using a modulation technique such as Pulse Width Modulation (PWM). A low pass filter is preferably used to obtain the fundamental plus third harmonic voltages. The filter is preferably placed in the same box as the exciter converter 36, so that the inter-connect wires (not shown) will not radiate electromagnetic interference. It should be appreciated by those skilled in the art that although the invention is described as using the third harmonic, other levels of harmonics can be used without departing from the scope of the present invention.
The improvement between applying a fundamental plus third harmonic signal to the exciter field winding 34 compared to applying a conventional fundamental only signal to the exciter field winding 34 is significant. As a result, the DC current provided to the main motor field winding 42 increases significantly using the fundamental plus harmonic signal.
The difference in current levels between the conventional fundamental only signal and the fundamental plus third harmonic signal is shown in Table 1. Specifically, Table 1 shows the results of the comparison in voltage and current levels between the two signals.
Between 100 and 2000 rpm, the current at the main machine field winding 42 is about 19% greater using the fundamental plus third harmonic signal compared to the fundamental only signal.
At 1000 rpm, the current at the main machine field winding 42 is 22.4 when the fundamental only signal is applied to the exciter field winding 34, and 26.6 when the fundamental plus harmonic signal is applied to the exciter field winding 34. This is an improvement of about 19%.
At 2000 rpm, the current at the main machine field winding 42 is 21.4 when the fundamental only signal is applied to the exciter field winding 34, and 25.4 when the fundamental plus harmonic signal is applied to the exciter field winding 34. This is an improvement of about 19%.
At 3000 rpm, the current at the main machine field winding 42 is 23 when the fundamental only signal is applied to the exciter field winding 34, and 25.5 when the fundamental plus harmonic signal is applied to the exciter field winding 34. This is an improvement of about 11%.
At 4000 rpm, the current at the main machine field winding 42 is 24.7 when the fundamental only signal is applied to the exciter field winding 34, and 26.3 when the fundamental plus harmonic signal is applied to the exciter field winding 34. This is an improvement of about 6%.
In a second embodiment of the invention, the required peak value of excitation voltage is reduced by preferably providing a square wave signal to the exciter field winding 34 via the exciter converter 36. This embodiment significantly reduces the switching losses of the exciter converter 36, as well as the cooling requirements, since there are no notches in the output voltage waveform of the converter. Also, the requirement for an output filter is eliminated. However, the elimination of the filter causes the interconnect wires between the exciter converter 36 and the field winding 34 of the main machine to radiate electro-magnetic interference unless the connecting cable is shielded with an over-braid. Square wave excitation therefore preferably includes shielding of the interconnect wiring. This embodiment of the invention is the preferable embodiment to minimize the weight, size, and cost of the starter/generator system 10 and to minimize the peak value of the AC voltage applied to the exciter converter 36. The application of a square wave signal to the exciter field winding 34 provides a significant improvement over both the fundamental signal and the fundamental plus third harmonic signal. The difference in current levels between the conventional fundamental signal and the square wave signal is shown in Table 2. About a 60% improvement in current levels can be achieved between 100 and 2000 rpm at the main machine field winding 42 when a square wave signal is applied to the exciter field winding 34 compared to a fundamental only signal.
At 100 rpm, the current at the main machine field winding 42 is 22.6 when the fundamental only signal is applied to the exciter field winding 34, and 37 when the square wave signal is applied to the exciter field winding 34. This is an improvement of about 64%.
At 500 rpm, the current at the main machine field winding 42 is 22.6 when the fundamental only signal is applied to the exciter field winding 34, and 36.9 when the square wave signal is applied to the exciter field winding 34. This is an improvement of about 63%.
At 1000 rpm, the current at the main machine field winding 42 is 22.4 when the fundamental only signal is applied to the exciter field winding 34, and 36.2 when the square wave signal is applied to the exciter field winding 34. This is an improvement of about 62%.
At 2000 rpm, the current at the main machine field winding 42 is 21.4 when the fundamental only signal is applied to the exciter field winding 34, and 34.4 when the square wave signal is applied to the exciter field winding 34. This is an improvement of about 61%.
At 3000 rpm, the current at the main machine field winding 42 is 23 when the fundamental only signal is applied to the exciter field winding 34, and 33.6 when the square wave signal is applied to the exciter field winding 34. This is an improvement of about 46%.
At 4000 rpm, the current at the main machine field winding 42 is 24.7 when the fundamental only signal is applied to the exciter field winding 34, and 32.8 when the square wave signal is applied to the exciter field winding 34. This is an improvement of about 33%.
The fundamental only section of Table 1 and Table 2 show that Idc1 is nearly constant for the different rpms of the prime mover 50 up to about 3,000 rpms. A constant Idc1 provides a constant torque for the prime mover 50. Similarly, Idc2 for the fundamental plus third harmonic and the square wave signals provides a constant torque for the prime mover 50 up to about 3,000 rpms. However, using the same peak voltage of 683.9 or 684 volts, a modest increase, about 16%, in current can be realized applying the fundamental plus third harmonic signal to the exciter field winding 34 and a substantial increase, about 60%, in current can be realized by applying a square wave signal to the exciter field winding 34.
In order to maintain a constant torque above 4,000 rpm, a gearbox (not shown) can be provided between the prime mover 50 and the generator. At rpms above 4,000, diminishing returns are provided with reference to Idc2. In other words, the percent increase between Idc1 and Idc2 decreases significantly at rpms above 4,000 for both the fundamental plus third harmonic signal and the square wave signal.
The gating system 39 of
The invention of
Those skilled in the art can now appreciate from the foregoing description that the broad teachings of the present invention can be implemented in a variety of forms. Therefore, while this invention can be described in connection with particular examples thereof, the true scope of the invention should not be so limited since other modifications will become apparent to the skilled practitioner upon a study of the drawings, specification and following claims.
Related subject matter is disclosed in a U.S. patent application Ser. No. 10/247,615 of Sarlioglu et al. entitled, “Electric Start For A Prime Mover”, filed on Sep. 20, 2002, the entire contents of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3629689 | Riff | Dec 1971 | A |
4616166 | Cooper et al. | Oct 1986 | A |
5066866 | Hallidy | Nov 1991 | A |
5189357 | Woodson et al. | Feb 1993 | A |
5363032 | Hanson et al. | Nov 1994 | A |
5428275 | Carr et al. | Jun 1995 | A |
5430362 | Carr et al. | Jul 1995 | A |
5493201 | Baker | Feb 1996 | A |
5594322 | Rozman et al. | Jan 1997 | A |
5668457 | Motamed | Sep 1997 | A |
5920162 | Hanson et al. | Jul 1999 | A |
6462429 | Dhyanchand et al. | Oct 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20040108726 A1 | Jun 2004 | US |