Method and system for providing synchronized views of multiple applications for display on a remote computing device

Abstract
A method and system of providing remote access at a client computer that executes a client remote access program that simultaneously communicates with first and second server remote access programs. The first and second server remote access programs determine first and second presentation data indicative of an application state of first and second application programs. The client remote access program receives the first and the second presentation data and determines display data in dependence thereupon for substantially simultaneously displaying the first and the second presentation data. The first and second application programs are provided with an out-of-band communication path to synchronize data between themselves, without the synchronization occurring through the client remote access program.
Description
BACKGROUND OF THE DISCLOSURE

In numerous present day scenarios, computer networks may provide remote access to data for display on a computing device, and in particular to remote synchronized views of multiple datasets provided by applications on different server instances. For example, in the healthcare sector a medical practitioner, such as a surgeon working at a first hospital, may want to compare medical imaging data, such as, for example, MRI data or CT Scan data of a patient captured at the first hospital with imaging data of the patient that have been previously captured at a second hospital or medical imaging facility. In another example, a medical practitioner may want to compare imaging data captured of a patient with reference imaging data stored in a medical repository.


Use of wireless handheld devices such as, for example, IPHONE, ANDROID, and IPAD has rapidly increased over the last couple of years to the extent that now nearly every professional owns at least one wireless handheld device. State of the art wireless mobile technology enables use of small wireless handheld devices to access the Internet and download various forms of image data files for display thereon.


In a traditional multiple-server/single-client remote access model, synchronization of the views between multiple remotely accessed application programs involves bidirectional client-server communications and multiple synchronization steps. In particular, each synchronization step requires a round trip through the client, thus placing constraints on the uplink communication bandwidth available at the wireless client device and requiring additional time for the round trip to complete.


SUMMARY OF THE DISCLOSURE

A method and system for providing remote access to data for display on a computing device such as a mobile device via a computer network is provided. According to some implementations, the method and system provide substantially simultaneous remote access to data stored in different locations for synchronized display on a wireless handheld device via a wireless computer network. An out-of-band communication mechanism is provided to enable application programs associated with the data to communicate with each other without the need to communicate via a round trip through the client.


In accordance with the present disclosure, there is disclosed a method of providing remote access to a plurality of application programs executing on plural server computers. The method may include providing at least one server remote access program on each the plural server computers, each of the plural server remote access programs being in communication with a respective one of plural application programs; providing at least one remote connection to a client remote access program executing on a client computer, the client remote access program communicating with the at least one server remote access program over the at least one remote connection to enable access to the plural application programs; providing a communication connection between the plural server computers to synchronize the state among the plural server computers; communicating presentation data representing a change in a state of at least one of the plural application programs to the client remote access program; and displaying the presentation data at the client computer.


In accordance with aspects of the present disclosure, there is disclosed an apparatus for providing remote access to a plurality of application programs executing on plural server computers. The apparatus may include a first server having a first memory and a first processor, the first server executing a first server remote access program on the first processor that is in communication with a first application program; and a second server having a second memory and a second processor, the second server executing a second server remote access program on the second processor that is in communication with a second application program. A communication connection may be provided between the first server and the second server to synchronize a state between the first server and the second server, wherein presentation data representing a change in the state of at least one of the first application program and the second application program is communicated to a client remote access program associated with a client computer in remote communication with the first server remote access program and the second sever remote access program, and wherein the client computer displays the presentation data on a display associated with at the client computer.


In accordance with aspects of the present disclosure, there is disclosed a method of providing remote access to a plurality of application programs executing on plural server computers. The method may include providing a server remote access program on each of the plural server computers, each server remote access program being in communication with a respective one of plural application programs; synchronizing, among the plural server computers, presentation data associated with each the plurality of application programs; communicating the presentation data associated with the plurality of application programs to a client remote access program executing on a client computing device; determining display data to be displayed at the computing device in accordance with the presentation data; and simultaneously displaying the presentation data to display a view of the plural application programs.


These and other objects and advantages may be provided by the embodiments of the disclosure, including some implementations exemplified in the description and figures.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this disclosure, illustrate various implementations. Like reference numerals are used to reference like elements throughout. In the drawings:



FIG. 1 illustrates an example of a display for displaying a first and the second presentation data in a single user interface;



FIG. 2 is a simplified block diagram of a system for providing remote access to data for display on a mobile device via a computer network;



FIG. 3 is a simplified block diagram illustrating communication of a client computer with a first server computer and a second server computer of the system shown in FIG. 2;



FIG. 4 illustrates an operational flow diagram of the processes that are performed in accordance with the present disclosure;



FIG. 5 illustrates additional aspects of the system of FIGS. 2 and 3; and



FIG. 6 shows an exemplary computing environment in which example aspects of the present disclosure may be implemented.





DETAILED DESCRIPTION OF THE DISCLOSURE

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. While implementations of the disclosure will be described for providing substantially simultaneous remote access to imaging data stored in two different locations in a clinical environment for display on a wireless handheld device only for the sake of simplicity, it will become evident to those skilled in the art that the implementations of the disclosure are not limited thereto, but are applicable for providing remotes access to any number of locations, various other forms of data, in numerous other present day applications, and for display on other devices such as laptop computers or personal computers.



FIG. 1 illustrates an example single user interface 100 for displaying first and second presentation data 110A, 110B associated with a first and second server, respectively. The single user interface 100 may be displayed by a client computer and comprises two image display fields 106 and 108 for simultaneously displaying the first and the second presentation data 110A, 110B, for example, in a side by side fashion. As will be described in more detail with regard to FIGS. 2 and 3, the multiple-server/single-client remote access model may be used in scenarios where a client device interfaces with two or more applications provided by two or more remote servers. The servers may each communicate presentation data to the client that is displayed, for example, in the single user interface 100.


Interaction zones 104 may be displayed in an interaction field 102 placed, for example, to the left hand side of the image display field 106. Other display options include placing: the image display fields 106 and 108 on top of each other; the interaction field in different locations on the screen; the interaction zones in a plurality of different locations on the screen. Optionally, the user of the client computer may be enabled to place the various fields and/or interaction zones using, for example, drag and drop technology.


Thus, with reference to FIGS. 2 and 3, there is illustrated a system 200 for providing remote access to data for display on a mobile device via a computer network according to the present disclosure wherein synchronization of presentation data 110A, 110B between server computers is performed using an out-of-band communication path. The system 200 comprises a client computer 212, such as wireless handheld device such as, for example, an IPHONE 212 (or other any other mobile device) connected via a communication network 210 such as, for example, the Internet, to a first server computer 202A and a second server computer 202B. Other client computers may be connected to the communication network 210, such as desktop computers, laptop/notebook computers, thin client devices, tablet computers, virtual computers, etc., that are either wired or wirelessly connected to the communication network 210. It is noted that the connections to the communication network 210 may be any type of connection, for example, Wi-Fi (IEEE 802.11x), WiMax (IEEE 802.16), Ethernet, 3G, 4G, etc. The server computers 202A, 202B and the client computer 212 may be implemented using hardware such as that shown in the general purpose computing device of FIG. 6.


The first server computer 202A may be connected to a Local Area Network (LAN) 209 at, e.g., a first hospital while the second server computer 202B may be connected to the LAN 209 or a second LAN (not shown) of, e.g., a second hospital. Imaging data such as, for example, MRI imaging data, CT Scan imaging data and X-ray imaging data captured at the first hospital may be stored in a database 208 connected to the LAN 209. Although not shown for purposes of clarity, information may be stored in a database connected to the LAN 209 or a separate LAN of the second hospital. The LANs may be omitted and the first and the second server computer 202A, 202B may be directly connected to the computer network 210 with the databases being directly connected to the respective first and second server computers 202A, 202B.


As will be discussed in detail below, communication paths 222, 224 and 226 may be provided between the first and second server computer 202A and 202B to synchronize presentation data 110A and 110B. The paths may be used by applications executing on the server computers 202A and 202B to present synchronized views when their only link is the common client application (e.g., the client application presenting user interface 100). As illustrated in FIG. 1, in the image display fields 106 and 108, the client may be displaying entire views from each application (e.g. comparison viewing of medical imagery) or only small components thereof (e.g. text fields from disparate database viewers united using recombination).


The server computers 202A and 202B may execute an electronic Picture Archiving and Communication System (PACS) using the Digital Imaging and Communications in Medicine (DICOM) format for storage and transfer. The PACS is illustrated as application programs 207A and 207B, respectively. As is evident to those skilled in the art, the DICOM format is substantially unsuitable for providing remote access thereto and for displaying the same on a wireless handheld device. The PACS or other image retrieval or image processing applications are performed, for example, by executing on the processors 204A and 204B executable commands of the respective application programs 207A and 207B stored in memory 206A and 206B of the server computers 202A and 202B. It is noted that the application programs 207A and 207B may be type of application program and are not limited to image retrieval or image processing application programs.


According to some implementations, access to data using, for example, the handheld wireless device 212 is enabled by executing: a first server remote access program 211A on the processor 204A of the first server computer 202A; a second server remote access program 211B on the processor 204B of the second server computer 202B; and a respective client remote access program 221 executed on a processor 218 of the client computer 212. The first and the second server remote access programs 211A and 211B may be performed by executing executable commands stored in the memory 206A and 206B of the first and the second server computer 202A and 202B while the client remote access program 221 is performed by executing executable commands stored in memory 220 of the client computer 212. An example of the server remote access program is PUREWEB, available from Calgary Scientific, Inc. of Calgary, Alberta, Canada. While first and the second server remote access programs 211A and 211B are illustrated as executing on the same server as their respective application programs 207A and 207B, the first and the second server remote access programs 211A and 211B and application programs 207A and 207B may execute on different servers.


Communications between the client computer 212 and the first and second server computer 202A and 202B is provided as communication between the first and the second server remote access program 211A and 211B and the client remote access program 221 via, for example, a wireless computer network. The first and the second server remote access program 211A and 211B communicate with a respective first and second application program such as, for example, a medical imaging program, such as RESOLUTIONMD, available from Calgary Scientific, Inc. of Calgary, Alberta, Canada. The first and the second application programs 207A and 207B communicate with the respective databases for retrieving respective first and second image data therefrom. The client remote access program 221 communicates with a user interaction program 219 (FIG. 3) such as, for example, a web browser or a native mobile application for displaying data such as, for example, image data and image processing control data; for receiving user input data for interacting with the first and the second application program using, for example, a graphical display with a touch-screen 214.


The first and the second server remote access programs and the client remote access program may be implemented using standard programming languages and communication is enabled using standard communication technologies such as, for example, Hyper Text Transfer Protocol (HTTP), virtual private networks (VPN), and secure socket layers (SSL), which are well known to those skilled in the art. Provision of the first and the second server remote access program and the client remote access program enable implementations of aspects of the disclosure as a retrofit to existing technologies on the server side as well as on the client side.


As shown in FIG. 3, the first and the second server remote access program 211A, 211B receive first and second image data from the first and the second application program 207A, 207B, respectively. Upon receipt, the first and the second server remote access program 211A, 211B generate first and second presentation data 110A, 110B, respectively, of the first and second image data and transmit the same to the client remote access program 221A, 221B. The presentation data 110A, 110B may be provided as part of a state model that describes an application state of the first and second application programs 207A and 207B. The first and second presentation data 110A, 110B may be generated in a fashion according to hardware capabilities of the client computer 212, for example, in accordance with processing capacity, memory size, type of graphical display, and type of user interface.


The presentation data 110A, 110B may be communicated in a document, such as an XML document that describes an association of logical elements of the application program 207A, 207B with corresponding states of the application program, with the logical elements being in a hierarchical order. For example, the logical elements may be a screen, a menu, a submenu, a button, etc. that make up the application program user interface. This enables the client device, for example, to natively display the logical elements. As such, a menu of the application program that is presented on a mobile phone will look like a native menu of the mobile phone. Similarly, the menu of the application program that is presented on desktop computer will look like a native menu of the desktop computer operating system.


For example, presentation data generated 110A, 110B and transmitted for a laptop computer or desktop computer are different from presentation data generated and transmitted for a handheld device such as, for example, an IPHONE. Generation of presentation data 110A, 110B enables a substantial reduction in the amount of data transmitted for display on the small display of a handheld wireless device, i.e., results in a reduction in bandwidth utilization. Furthermore, the generation of presentation data 110A, 110B addresses safety or privacy issues related to sensitive data such as medical imaging data by obviating the transmission of the sensitive data from the server computer to the client computer.


In some implementations, the client computing device 212, and/or the server computers 202A, 202B may collaboratively interact with the application programs 207A, 207B. As such, by communicating presentation data 110A, 110B between each of the participants in a collaborative session, each of the participating devices may present a synchronized view of the application programs 207A, 207B. In a collaborative session, users of different computing devices that may be in different places may each actively participate in the same session. The users in the collaborative session jointly operate the application programs 207A, 207B in real time over the LAN 209 or the communication network 210.


Thus, referring again to communications paths 222, 224 and 226 in FIG. 2, the paths may be provided between the first and second server computer 202A and 202B to synchronize presentation data 110A, 110B associated with application programs 207A, 207B running on the first and second server computers 202A, 202B. In conventional systems, when a particular client computer is displaying image data from multiple server computers in a many-to-one fashion in the single user interface 100, synchronization of the presentation data 110A, 110B involves bi-directional client-server communications and multiple synchronization steps. For example, information about presentation data is first passed to, and integrated for view, within a user interface 100 on the client computer. Then the presentation data is communicated back to the application programs 207A, 207B through the client remote access program 221 and the server remote access program 211A. The communication paths 222, 224 and 226 remove the need to share application state by passing the presentation data 110A, 110B through the client computer 212, eliminating the need for bi-directional communication.


In accordance with some implementations, interprocess communication (IPC) facilities may be used to enable the communication between and among the server computers 202A and 202B over communication paths 222, 224 and 226. IPC provides high-level support for connecting processes using TCP/IP sockets and for sending data between the processes. IPC facilities handle the opening sockets, registering messages, and sending and receiving messages, including both anonymous publish/subscribe and client/server type messages. IPC libraries contain functions to marshall (i.e., serialize) and unmarshall (i.e., de-serialize) data, and handle data transfer between machines, invoke user-defined handlers when a message is received, and invoke user-defined callbacks at set intervals. If the applications are on the same server computer, IPC may use, e.g., UNIX sockets or a shared memory space, rather than TCP/IP sockets. Examples of interprocess communications facilities include COM, ActiveX, etc.


As shown, the communications paths may be a direct path 222 between the server computers 202A and 202B; a local LAN path 224 that traverses the LAN 209; or a WAN path 226 that traverses the network 210. Also, if multiple application programs are executing on a single server computer, IPC can be implemented, as noted above. Thus, as shown in FIG. 2, the communication paths 222, 224 and 226 provide out-of-band communication paths between the application programs 207A and 207B that are being provided to a common remote user interface, e.g. 100, or between the server remote access programs 211A and 211B, which can enhance efficiency and speed of interaction while reducing networking delays.


Thus, the above enables the server computers 202A and 202B to communicate among themselves to accomplish the synchronization without requiring instruction from the user interaction program 219, thereby reducing the traffic on the client's uplink and improving performance overall as a result. Further, the communication paths 222, 224 and 226 are significantly faster connections, than the uplink from the client computer 212.



FIG. 4 illustrates an operational flow diagram of the processes 400 that are performed in accordance with the present disclosure. The processes 400 may be implemented to present image data from two different PACS in a coordinated viewer in e.g., a side-by-side fashion where the PACS directly send current slice coordinates to each other without requiring this information to be communicated through the client computer. At 402, the first and second application programs and first and second server remote access programs are executed. Using the processor 204A of the first server computer 202A, the first server remote access program 221A and the first application program 207A is executed. Likewise, using the processor 204B of the second server computer 202B, the second server remote access program 211B and the second application program 207B is executed.


At 404, the server computers may communicate to synchronize a display state. Using one or more of the communications paths 222, 224 and 226, the application programs 207A and 207B and/or the server remote access programs 211A and 211B may communicate using, e.g., IPC, to synchronize the presentation data. The server remote access programs 211A and 211B may exchange relevant portions of the presentation data 110A, 110B (e.g., XML data) to enable all views to be synchronized. For example, if the application program 107B is a PACS viewer, the information exchanged between server remote access programs 211A and 211B may be a viewpoint (e.g., virtual eye position), a specific image selected from a stack of images, or a patient anatomy normalized coordinates of a displayed slice. This information may be contained in the presentation data 110B. As another example, if the application programs 107A and 107B are each aerodynamic viewers, then the image display field 106 may be the airflow over a wing from above, the image display 108 may be the airflow mirrored from below. The server remote access programs 211A and 211B may synchronize the views using the display data 110A and 110B.


At 406, presentation data associated with the first and/or second application programs is communicated with the client remote access program. For example, the first presentation data 110A may be indicative of an application state of the first application program 207A and/or the second presentation data 110B may be indicative of an application state of the first application program 207B, where the states may be imagery associated with the application programs.


At 408, the client remote access program receives the first and/or the second presentation data and determines display data in dependence thereupon for substantially simultaneously displaying the first and the second presentation data. The display data may be indicative of the user interface 100. Using the graphical display 214 of the client computer 212 the display data is displayed in a human comprehensible fashion.


At 410, changes due to the synchronization may be presented in the user interface. For example, updated presentation data 110A and/or 110B may be provided to the client remote access program 221, which in turn may be used to update the user interface 100.



FIG. 5 illustrates additional aspects of the system 200 of FIGS. 2 and 3. As illustrated, system 200 may be provided as having a tiered software stack. The client remote access application 221 may sit on top of a client software development kit (SDK) 704 in a client tier 720. The client tier 720 communicates to the server remote access application 211A, 211B in a server tier 730. The server tier 730 communicates to a state manager 708 sitting on top of the applications 207A/107B and a server SDK 712 in an application tier 740. Application extensions may be implemented in any of the tiers, i.e., within the server tier as a plug-in 706, the client tier as client application extension 702, the application tier as application extension 710, or combinations thereof.


When executed, the client remote access application 221A updates the presentation data 110A, 110B in accordance with user input data received from a user interface program. The client remote access application 221 may generate control data in accordance with the updated presentation data 110A, 110B, and provide the same to the server remote access application 211B running on the server 202B.


Upon receipt of application data from an application program 207A, 207B, the server remote access application 211A, 211B updates the presentation data 110A, 110B in accordance with the screen or application data, generates presentation data in accordance with the updated presentation data 110A, 110B, and provides the same to the client remote access application 221 on the client computing device 212. The application programs 207A and 207B and/or the server remote access applications 211A and 211B may communicate with each other using the communication links 222, 224 and/or 226, as described above to synchronize information between each other.



FIG. 6 shows an exemplary computing environment in which example aspects of the present disclosure may be implemented. The computing system environment is only one example of a suitable computing environment and is not intended to suggest any limitation as to the scope of use or functionality.


Numerous other general purpose or special purpose computing system environments or configurations may be used. Examples of well known computing systems, environments, and/or configurations that may be suitable for use include, but are not limited to, personal computers, server computers, handheld or laptop devices, multiprocessor systems, microprocessor-based systems, network personal computers (PCs), minicomputers, mainframe computers, embedded systems, distributed computing environments that include any of the above systems or devices, and the like.


Computer-executable instructions, such as program modules, being executed by a computer may be used. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. Distributed computing environments may be used where tasks are performed by remote processing devices that are linked through a communications network or other data transmission medium. In a distributed computing environment, program modules and other data may be located in both local and remote computer storage media including memory storage devices.


With reference to FIG. 6, an exemplary system for implementing aspects described herein includes a computing device, such as computing device 600. In its most basic configuration, computing device 600 typically includes at least one processing unit 602 and memory 604. Depending on the exact configuration and type of computing device, memory 604 may be volatile (such as random access memory (RAM)), non-volatile (such as read-only memory (ROM), flash memory, etc.), or some combination of the two. This most basic configuration is illustrated in FIG. 6 by dashed line 606.


Computing device 600 may have additional features/functionality. For example, computing device 600 may include additional storage (removable and/or non-removable) including, but not limited to, magnetic or optical disks or tape. Such additional storage is illustrated in FIG. 6 by removable storage 608 and non-removable storage 610.


Computing device 600 typically includes a variety of computer readable media. Computer readable media can be any available media that can be accessed by device 600 and includes both volatile and non-volatile media, removable and non-removable media.


Computer storage media include volatile and non-volatile, and removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Memory 604, removable storage 608, and non-removable storage 610 are all examples of computer storage media. Computer storage media include, but are not limited to, RAM, ROM, electrically erasable program read-only memory (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by computing device 600. Any such computer storage media may be part of computing device 600.


Computing device 600 may contain communications connection(s) 612 that allow the device to communicate with other devices. Computing device 600 may also have input device(s) 614 such as a keyboard, mouse, pen, voice input device, touch input device, etc. Output device(s) 616 such as a display, speakers, printer, etc. may also be included. All these devices are well known in the art and need not be discussed at length here.


It should be understood that the various techniques described herein may be implemented in connection with hardware or software or, where appropriate, with a combination of both. Thus, the methods and apparatus of the presently disclosed subject matter, or certain aspects or portions thereof, may take the form of program code (i.e., instructions) embodied in tangible media, such as floppy diskettes, CD-ROMs, hard drives, or any other machine-readable storage medium wherein, when the program code is loaded into and executed by a machine, such as a computer, the machine becomes an apparatus for practicing the presently disclosed subject matter. In the case of program code execution on programmable computers, the computing device generally includes a processor, a storage medium readable by the processor (including volatile and non-volatile memory and/or storage elements), at least one input device, and at least one output device. One or more programs may implement or utilize the processes described in connection with the presently disclosed subject matter, e.g., through the use of an application programming interface (API), reusable controls, or the like. Such programs may be implemented in a high level procedural or object-oriented programming language to communicate with a computer system. However, the program(s) can be implemented in assembly or machine language, if desired. In any case, the language may be a compiled or interpreted language and it may be combined with hardware implementations.


Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims
  • 1. An apparatus for providing remote access to a plurality of application programs executing on plural server computers, comprising: a first server having a first memory and a first processor, the first server executing a first server remote access program on the first processor that is in communication with a first application program; anda second server having a second memory and a second processor, the second server executing a second server remote access program on the second processor that is in communication with a second application program,wherein a communication connection is provided between the first server and the second server to synchronize a state between the first server and the second server, wherein presentation data representing a change in the state of at least one of the first application program and the second application program is communicated as a hierarchy of logical elements to a client remote access program associated with a client computer in remote communication with the first server remote access program and the second server remote access program, wherein the client remote access program determines display data configured to display a simultaneous view of the states of the first and second application programs in dependence upon the entirety of the presentation data presentation data and indicative of the user interface, wherein the client computer displays the display data on a display associated with the client computer until receiving updated presentation data and updating the display data.
  • 2. The apparatus of claim 1, wherein the communication connection comprises at least one of a shared memory space, a socket, a direct path between the plural server computers, a local path that traverses a local area network between the plural server computers, and a wide area network path between the plural server computers.
  • 3. The apparatus of claim 1, wherein communication connection utilizes interprocess communication (IPC) facilities.
  • 4. The apparatus of claim 1, wherein a user interface associated with the first application program and the second application program is substantially simultaneously displayed in accordance with the presentation data.
  • 5. The apparatus of claim 4, wherein interaction zones are defined on a display of the client computer, and wherein interactive functionalities of the first application program and the second application program are associated with a respective interaction zone.
  • 6. The apparatus of claim 5, wherein plural client remote access programs execute on respective plural client computers, wherein presentation data representing a change in a state of at least one of the first application program and the second application program is provided to the plural client remote access programs, and wherein the presentation data is displayed at the plural client computers.
  • 7. A method of providing remote access to a plurality of application programs executing on plural server computers, comprising: providing a server remote access program on each of the plural server computers, each server remote access program being in communication with a respective one of plural application programs;synchronizing respective states of a selection of the plural application programs among the plural server computers,using the respective server remote access programs to generate presentation data associated with the selection of the plurality of application programs and according to hardware capabilities of at least one client computing device receiving the presentation data;after synchronizing the states and generating presentation data from the selection of the plurality of application programs, communicating the entirety of the presentation data to respective client remote access programs executing on the at least one client computing device;determining, at the respective client remote access programs, display data indicative of a user interface, to be displayed at a respective client computing device in accordance with the presentation data until receiving updated presentation data and then updating the display data;displaying the display data to display a simultaneous view of the states of the selection of plural application programs.
  • 8. The method of claim 7, further comprising synchronizing the presentation data using an out-of-band communication link between the plural server computers.
  • 9. The method of claim 8, wherein the out-of-band communication link utilizes interprocess communication (IPC) facilities.
  • 10. The method of claim 7, further comprising: defining interaction zones within the view displayed on a display of the client computer; andassociating interactive functionalities of each of the plural application programs with a respective interaction zone.
  • 11. A method of providing remote access to a plurality of application programs executing on plural server computers, comprising: providing a server remote access program on each of the plural server computers, each server remote access program being in communication with a respective one of plural application programs;synchronizing respective states of a selection of the plural application programs among the plural server computers,using the respective server remote access programs to generate presentation data associated with the selection of the plurality of application programs and according to hardware capabilities of at least one client computing device receiving the presentation data;after synchronizing the states and generating presentation data from the selection of the plurality of application programs, communicating the entirety of the presentation data as a hierarchy of logical elements to a respective client remote access programs executing on the at least one client computing device;determining, at the respective client remote access programs, display data indicative of a user interface, to be displayed at a respective client computing device in accordance with the presentation data until receiving updated presentation data and then updating the display data;displaying the display data to display a simultaneous view of the states of the selection of plural application programs.
  • 12. A method of providing remote access to a plurality of application programs executing on plural server computers, comprising: providing at least one server remote access program on each of the plural server computers, each of the plural server remote access programs being in communication with a respective one of plural application programs;providing a plurality of remote connections to respective client remote access programs executing on respective client computers and the client remote access programs communicating with the at least one server remote access program over the remote connections to enable access to the plural application programs;providing a communication connection between the plural server computers;synchronizing the states of the plural application programs among the plural server computers using an out-of-band communication link between the plural server computers that excludes the respective client computers;communicating a first set of presentation data representing a change in a state of at least one of the plural application programs to a plurality of client remote access programs;determining, at the respective client remote access programs, respective sets of display data, indicative of respective user interfaces at respective client computers wherein the display data at each of the respective client computers is in dependence upon the first set of presentation data;displaying the respective display data at the respective client computers until receiving updated presentation data at the client remote access programs and updating the respective user interfaces.
  • 13. The method of claim 12, wherein the communication connection comprises at least one of a shared memory space, a socket, a direct path between the plural server computers, a local path that traverses a local area network between the plural server computers, and a wide area network path between the plural server computers.
  • 14. The method of claim 12, wherein the communication connection utilizes interprocess communication (IPC) facilities.
  • 15. The method of claim 12, wherein the communication connection is provided between the plural server remote access programs.
  • 16. The method of claim 12, further comprising substantially simultaneously displaying, in accordance with the presentation data, a user interface associated with each of the plural application programs.
  • 17. The method of claim 12, further comprising: defining interaction zones on a display of the client computer; andassociating interactive functionalities of each of the plural application programs with a respective interaction zone.
  • 18. The method of claim 17, wherein a same interactive functionality of the plural application programs are associated with a same interaction zone.
  • 19. The method of claim 17, further comprising: providing the at least one remote connection to plural client remote access programs executing on plural client computers;communicating presentation data representing a change in a state of at least one of the plural application programs to the plural client remote access programs; anddisplaying the presentation data at the plural client computer.
  • 20. The method of claim 19, further comprising: associating the interaction zones with off-screen display buffers having characteristics that are independent of hardware capabilities of either of the plural server computers and the plural client computers; andsizing, by at least one of the plural server computers, the interaction zones to match each client computer in a round robin fashion as each client computer connected to the plural server computers is updated.
  • 21. The method of claim 20, further comprising: defining the interaction zones having one size for all of the plural client computers; andsending interaction zone scaling instructions to each client computer for display.
  • 22. The method of claim 12, wherein the control data from the client remote access program comprises client screen data.
CROSS-REFERENCE TO RELATED APPLICATION

The present disclosure claims priority to U.S. Provisional Patent Application No. 61/662,561, filed Jun. 21, 2012, entitled “Method and System for Providing Synchronized Views of Multiple Applications for Display on a Remote Computing Device,” the disclosure of which is incorporated by reference in its entirety.

US Referenced Citations (183)
Number Name Date Kind
4975690 Torres Dec 1990 A
5345550 Bloomfield Sep 1994 A
5555003 Montgomery et al. Sep 1996 A
5742778 Hao et al. Apr 1998 A
5844553 Hao Dec 1998 A
5870759 Bauer et al. Feb 1999 A
5920311 Anthias Jul 1999 A
5978842 Noble et al. Nov 1999 A
6045048 Wilz et al. Apr 2000 A
6061689 Chang et al. May 2000 A
6075531 DeStefano Jun 2000 A
6141698 Krishnan et al. Oct 2000 A
6145098 Nouri et al. Nov 2000 A
6253228 Ferris et al. Jun 2001 B1
6343313 Salesky et al. Jan 2002 B1
6453334 Vinson et al. Sep 2002 B1
6453356 Sheard et al. Sep 2002 B1
6570563 Honda May 2003 B1
6601233 Underwood Jul 2003 B1
6792607 Burd et al. Sep 2004 B1
6918113 Patel et al. Jul 2005 B2
6938096 Greschler et al. Aug 2005 B1
6970459 Meier Nov 2005 B1
6976077 Lehew et al. Dec 2005 B1
7065568 Bracewell et al. Jun 2006 B2
7069227 Lintel, III et al. Jun 2006 B1
7073059 Worely et al. Jul 2006 B2
7149761 Cooke et al. Dec 2006 B2
7167893 Malone et al. Jan 2007 B1
7174504 Tsao Feb 2007 B2
7181686 Bahrs Feb 2007 B1
7193985 Lewis et al. Mar 2007 B1
7240162 de Vries Jul 2007 B2
7246063 James et al. Jul 2007 B2
7320131 O'Toole, Jr. Jan 2008 B1
7343310 Stender Mar 2008 B1
7350151 Nakajima Mar 2008 B1
7418711 Lee et al. Aug 2008 B1
7451196 de Vries et al. Nov 2008 B1
7577751 Vinson et al. Aug 2009 B2
7620901 Carpenter et al. Nov 2009 B2
7647370 Liu et al. Jan 2010 B1
7650444 Dirstine et al. Jan 2010 B2
7656799 Samuels et al. Feb 2010 B2
7706399 Janczak Apr 2010 B2
7725331 Schurenberg et al. May 2010 B2
7802183 Essin Sep 2010 B1
7831919 Viljoen et al. Nov 2010 B1
7921078 McCuller Apr 2011 B2
7941488 Goodman et al. May 2011 B2
7966572 Matthews et al. Jun 2011 B2
8024523 de Vries et al. Sep 2011 B2
8261345 Hitomi et al. Sep 2012 B2
8356252 Raman et al. Jan 2013 B2
8359591 de Vries et al. Jan 2013 B2
8509230 Vinson et al. Aug 2013 B2
8527706 de Vries et al. Sep 2013 B2
8572178 Frazzini et al. Oct 2013 B1
8606952 Pasetto et al. Dec 2013 B2
8607158 Molander et al. Dec 2013 B2
8627081 Grimen et al. Jan 2014 B2
8667054 Tahan Mar 2014 B2
8832260 Raja et al. Sep 2014 B2
8924512 Stoyanov et al. Dec 2014 B2
20010047393 Arner et al. Nov 2001 A1
20020032751 Bharadwaj Mar 2002 A1
20020032804 Hunt Mar 2002 A1
20020092029 Smith Jul 2002 A1
20030014735 Achlioptas et al. Jan 2003 A1
20030023670 Walrath Jan 2003 A1
20030055893 Sato et al. Mar 2003 A1
20030065738 Yang et al. Apr 2003 A1
20030120324 Osborn et al. Jun 2003 A1
20030120762 Yepishin et al. Jun 2003 A1
20030149941 Tsao Aug 2003 A1
20030163514 Waldschmidt Aug 2003 A1
20030184584 Vachuska et al. Oct 2003 A1
20030208472 Pham Nov 2003 A1
20040015842 Nanivadekar et al. Jan 2004 A1
20040029638 Hytcheson et al. Feb 2004 A1
20040039742 Barsness et al. Feb 2004 A1
20040068516 Lee et al. Apr 2004 A1
20040106916 Quaid et al. Jun 2004 A1
20040117804 Scahill et al. Jun 2004 A1
20040153525 Borella Aug 2004 A1
20040162876 Kohavi Aug 2004 A1
20040183827 Putterman et al. Sep 2004 A1
20040236633 Knauerhase et al. Nov 2004 A1
20040243919 Muresan et al. Dec 2004 A1
20040249885 Petropoulakis et al. Dec 2004 A1
20050005024 Samuels et al. Jan 2005 A1
20050010871 Ruthfield et al. Jan 2005 A1
20050021687 Anastassopoulos et al. Jan 2005 A1
20050050229 Comeau et al. Mar 2005 A1
20050138631 Bellotti et al. Jun 2005 A1
20050188046 Hickman et al. Aug 2005 A1
20050188313 Matthews et al. Aug 2005 A1
20050198578 Agrawala et al. Sep 2005 A1
20050240906 Kinderknecht et al. Oct 2005 A1
20060004874 Hutcheson et al. Jan 2006 A1
20060026006 Hindle Feb 2006 A1
20060031377 Ng Feb 2006 A1
20060036770 Hosn et al. Feb 2006 A1
20060085835 Istvan et al. Apr 2006 A1
20060101397 Mercer et al. May 2006 A1
20060130069 Srinivasan et al. Jun 2006 A1
20060231175 Vondracek et al. Oct 2006 A1
20060236328 DeWitt Oct 2006 A1
20060258462 Cheng et al. Nov 2006 A1
20060265689 Kuznetsov et al. Nov 2006 A1
20060271563 Angelo et al. Nov 2006 A1
20060288171 Tsien Dec 2006 A1
20060294418 Fuchs Dec 2006 A1
20070024645 Purcell et al. Feb 2007 A1
20070047535 Varma Mar 2007 A1
20070067754 Chen et al. Mar 2007 A1
20070079244 Brugiolo Apr 2007 A1
20070112880 Yang et al. May 2007 A1
20070120763 De Paepe et al. May 2007 A1
20070130292 Tzruya et al. Jun 2007 A1
20070136677 Agarwal Jun 2007 A1
20070203944 Batra Aug 2007 A1
20070208718 Javid et al. Sep 2007 A1
20070226636 Carpenter et al. Sep 2007 A1
20070244990 Wells Oct 2007 A1
20070256073 Troung Nov 2007 A1
20070282951 Selimis et al. Dec 2007 A1
20080016155 Khalatian Jan 2008 A1
20080134211 Cui Jun 2008 A1
20080146194 Yang et al. Jun 2008 A1
20080183190 Adcox et al. Jul 2008 A1
20080313282 Warila et al. Dec 2008 A1
20090044171 Avadhanula Feb 2009 A1
20090080523 McDowell Mar 2009 A1
20090089742 Nagulu et al. Apr 2009 A1
20090119644 de Vries et al. May 2009 A1
20090209239 Montesdeoca Aug 2009 A1
20090217177 DeGrazia Aug 2009 A1
20100061238 Godbole et al. Mar 2010 A1
20100077058 Messer Mar 2010 A1
20100131591 Thomas et al. May 2010 A1
20100150031 Allen et al. Jun 2010 A1
20100174773 Penner et al. Jul 2010 A1
20100205147 Lee Aug 2010 A1
20100223566 Holmes Sep 2010 A1
20100268813 Pahlavan et al. Oct 2010 A1
20110138283 Marston Jun 2011 A1
20110157196 Nave et al. Jun 2011 A1
20110162062 Kumar et al. Jun 2011 A1
20110184993 Chawla Jul 2011 A1
20110213830 Lopez et al. Sep 2011 A1
20110222442 Cole et al. Sep 2011 A1
20110252152 Sherry et al. Oct 2011 A1
20120030275 Boller et al. Feb 2012 A1
20120084713 Desai Apr 2012 A1
20120090004 Jeong Apr 2012 A1
20120133675 McDowell May 2012 A1
20120154633 Rodriguez Jun 2012 A1
20120221792 de Vries et al. Aug 2012 A1
20120226742 Momchilov Sep 2012 A1
20120245918 Overton et al. Sep 2012 A1
20120246225 Lemire et al. Sep 2012 A1
20120271875 Cai Oct 2012 A1
20120324032 Chan Dec 2012 A1
20120324358 Jooste Dec 2012 A1
20130007227 Hitomi et al. Jan 2013 A1
20130031618 Momchilov Jan 2013 A1
20130046815 Thomas et al. Feb 2013 A1
20130046816 Thomas et al. Feb 2013 A1
20130054679 Jooste Feb 2013 A1
20130070740 Yovin Mar 2013 A1
20130117474 Ajanovic et al. May 2013 A1
20130138791 Thomas et al. May 2013 A1
20130147845 Xie et al. Jun 2013 A1
20130159062 Stiehl Jun 2013 A1
20130179962 Arai et al. Jul 2013 A1
20130262566 Stephure et al. Oct 2013 A1
20140240524 Julia et al. Aug 2014 A1
20140241229 Bertorelle et al. Aug 2014 A1
20140298420 Barton et al. Oct 2014 A1
20150067769 Barton et al. Mar 2015 A1
20150156133 Leitch et al. Jun 2015 A1
20150319252 Momchilov et al. Nov 2015 A1
Foreign Referenced Citations (30)
Number Date Country
101539932 Sep 2009 CN
101883097 Nov 2010 CN
102129632 Jul 2011 CN
102821413 Dec 2012 CN
0349463 Jan 1990 EP
1422901 May 2004 EP
2007084744 Mar 1995 JP
2002055870 Feb 2002 JP
2004-287758 Oct 2004 JP
2005031807 Feb 2005 JP
2005521946 Jul 2005 JP
2008-099055 Apr 2008 JP
2010-256972 Nov 2010 JP
2295752 Mar 2007 RU
2298287 Apr 2007 RU
2305860 Sep 2007 RU
9858478 Dec 1998 WO
0116724 Mar 2001 WO
0209106 Jan 2002 WO
03032569 Apr 2003 WO
03083684 Oct 2003 WO
2010060206 Jun 2010 WO
2010088768 Aug 2010 WO
2010127327 Nov 2010 WO
2012127308 Sep 2012 WO
2013024342 Feb 2013 WO
2013024343 Feb 2013 WO
2013109984 Jul 2013 WO
2013128284 Sep 2013 WO
2013153439 Oct 2013 WO
Non-Patent Literature Citations (27)
Entry
Extended European Search Report, dated Mar. 3, 2015, received in connection with corresponding European Application No. 09828497.9.
Coffman, Daniel, et al., “A Client-Server Architecture for State-Dependent Dynamic Visualizations on the Web,” IBM T.J. Watson Research Center, 2010, 10 pages.
Fraser, N., “Differential Synchronization,” Google, Mountain View, CA, Jan. 2009, 8 pages.
Jourdain, Sebastien, et al., “ParaViewWeb: A Web Framework for 3D Visualization and Data Processing,” International Journal of Computer Information Systems and Industrial Management Applications, vol. 3, 2011, pp. 870-877.
Microsoft Computer Dictionary, Microsoft Press, 5th Edition, Mar. 15, 2002, p. 624.
Mitchell, J. Ross, et al., A Smartphone Client-Server Teleradiology System for Primary Diagnosis of Acute Stroke, Journal of Medical Internet Research, vol. 13, Issue 2, 2011, 12 pages.
ParaViewWeb, KitwarePublic, retrieved on Jan. 27, 2014 from http://www.paraview.org/Wiki/ParaViewWeb, 1 page.
Remote Desktop Protocol (RDP), retrieved on May 4, 2014 from http://en.wikipedia.org/wiki/Remote—Desktop—Protocol, 7 pages.
Remote Desktop Services (RDS), Remote App, retrieved on May 4, 2014 from http://en.wikipedia.org/wiki/Remote—Desktop—Services, 9 pages.
Remote Desktop Services (RDS), Windows Desktop Sharing, retrieved on May 4, 2014 from http://en.wikipedia.org/wiki/Remote—Desktop—Services, 9 pages.
International Search Report, dated Feb. 19, 2010, in connection with International Application No. PCT/CA2009/001704.
International Preliminary Report on Patentability and Written Opinion, dated May 31, 2011, in connection with International Application No. PCT/CA2009/001704.
International Search Report, dated May 12, 2010, in connection with International Application No. PCT/CA2010/000154.
International Preliminary Report on Patentability and Written Opinion, dated Aug. 9, 2011, in connection with International Application No. PCT/CA2010/000154.
International Search Report and Written Opinion, dated Jul. 31, 2012, in connection with International Application No. PCT/IB2012/000562.
International Search Report, dated Dec. 20, 2012, in connection with International Application No. PCT/IB2012/001589.
International Preliminary Report on Patentability and Written Opinion, dated Feb. 18, 2014, in connection with International Application No. PCT/IB2012/001589.
International Search Report, dated Dec. 28, 2012, in connection with International Application No. PCT/IB2012/001590.
International Preliminary Report on Patentability and Written Opinion, dated Feb. 18, 2014, in connection with International Application No. PCT/IB2012/001590.
International Search Report and Written Opinion, dated Aug. 21, 2013, in connection with International Application No. PCT/IB2013/000676.
International Search Report and Written Opinion, dated Jul. 31, 2013, in connection with International Application No. PCT/IB2013/000720.
Extended European Search Report, dated Jun. 2, 2014, received in connection with European Application No. 12760310.8.
International Search Report and Written Opinion, dated Mar. 19, 2015, received in connection with International Application No. PCT/US2014/064243.
Search Report and Written Opinion, dated Nov. 16, 2015, received in connection with SG Application No. 2013087150.
International Preliminary Report on Patentability and Written Opinion, dated May 31, 2016, received in connection International Patent Application No. PCT/US2014/064243.
International Search Report and Written Opinion, dated Jun. 30, 2016, received in connection International Patent Application No. PCT/IB2016/000277.
Search Report, dated Dec. 30, 2016, received in connection with CN Application No. 2012800398130. (and English Translation).
Related Publications (1)
Number Date Country
20130346482 A1 Dec 2013 US
Provisional Applications (1)
Number Date Country
61662561 Jun 2012 US