The present invention relates to a method and a system for reading and/or writing data from/on radiofrequency identification (RFID) tags integrated/embedded in, or applied on/to, tires conveyed on conveyor belts.
In tire sector, it is felt the need for solutions enabling automated and univocal identification of tires during manufacturing, use and disposal thereof.
For example, with specific reference to tire manufacture, automated and univocal identification of tires may allow optimizing manufacturing processes and logistics operations, boosting the use of automated control systems, performing an efficient tire tracking/tracing and, hence, realizing smart tire factories.
In this context, the use of barcodes applied to tires to manage tire production and production history of individual tires is known. However, this solution has its limitations since printed barcodes run the risk of being deleted or corrupted during manufacturing and/or normal operation of tires, thereby becoming illegible or, anyway, difficult to read.
In order to solve such limitations, US 2016/0092814 A1 proposes using a tire identification system based on radiofrequency identification (RFID) tags. In particular, US 2016/0092814 A1 discloses a tire production management system using RFID tags, whose operation includes: attaching an RFID tag to a tire before producing a finished tire in tire manufacturing processes; recognizing the tire tag attached to the tire in each of manufacturing processes; and thus managing information according to a manufacturing process on an individual tire. The tire production management system according to US 2016/0092814 A1 comprises: an RFID tag attachment part; a plurality of RFID readers; a plurality of management terminals for respective processes; a lot management server; and a tire production management server. US 2016/0092814 A1 also describes code recognition of an RFID tag attached to a tire conveyed on a conveyor belt, wherein the code recognition is performed by an RFID reader adjacent to said conveyor belt.
Moreover, Italian patent application No. 102016000009727 discloses a configurable and tunable radiofrequency wireless sensor device that may be advantageously integrated/incorporated into, or applied to, a tire to provide automatic identification of the tire during its manufacturing, during logistics operations and also during its normal operation. Additionally, the configurable and tunable radiofrequency wireless sensor device according to 102016000009727 may be conveniently configured to provide also diagnostic data, such as temperature or pressure data.
WO2016095922 discloses a method of handling and processing tyres in a tyre production facility. The method includes positioning an uncured tyre in a support and moving the support with the tire in a conveyor system.
DE202017102186 discloses a pneumatic tire with an inner surface defining a cavity and an outer surface facing away from the inner surface; the tyre comprising a radio chip having an antenna, wherein the radio chip is adapted to operate with electromagnetic waves and wherein the electromagnetic waves have a wavelength; wherein the antenna over its entire length is at a distance to the outer surface, which is on average less than 1/10 of the wavelength and/or smaller than 25 mm.
EP1792685 discloses a method and apparatus for identifying 3-D coordinates of a target region on a tire including: taking a digital image of a tire; finding an edge of a tire bead using pixel brightness values from the tire image; calculating tire bead circle center and radius using a plurality of image pixels on the tire bead edge; and performing a pixel brightness search around the bead circumference using the bead circle's center and radius to identify the target area X, Y coordinates. The Z-coordinate and slope of the target area are determined from multiple point distance calculations across the region.
The Applicant has carried out an in-depth study in order to develop an improved methodology and system for reading and/or writing data from/on RFID tags integrated/embedded in, or applied on/to, tires conveyed on conveyor belts, thereby conceiving the present invention.
Thence, an object of the prevent invention is that of providing a methodology and a system of the above type providing, in general, excellent RFID-based reading/writing performance and, in particular, univocal detection of RFID tags with enhanced performance with respect to that of currently known solutions.
This object is achieved by the present invention in that it relates to a method and a system for reading and/or writing data from/on radiofrequency identification (RFID) tags of tires conveyed on a conveyor belt, as defined in the appended claims.
More specifically, the present invention concerns a method for reading and/or writing data from/on RFID tags of tires conveyed on a conveyor belt in a conveyance direction, wherein each tire is fitted with a respective RFID tag storing a univocal identifier of said tire. Said method comprises providing:
The method comprises also carrying out a preliminary calibration step including calibrating the reader by:
Moreover, the method further comprises carrying out a reading and/or writing step that includes operating the calibrated reader to:
Conveniently, the reading and/or writing step includes operating the calibrated reader also to:
Preferably, the antenna is configured to have a radiation pattern such that to result in the footprint area covering:
Conveniently, the antenna is planar and parallel to the conveyor belt, and has a predefined length parallelly to the conveyance direction and a predefined width perpendicularly to said conveyance direction, wherein the predefined length is larger than the predefined width.
Preferably, the first, second, third and fourth received power levels are indicative of received power amplitude and phase measurements.
Additionally, the present invention concerns also a system for reading and/or writing data from/on RFID tags of tires conveyed on a conveyor belt in a conveyance direction, wherein each tire is fitted with a respective RFID tag storing a univocal identifier of said tire. Said system comprises:
Preferably, the system comprises a plurality of antennas that are:
For a better understanding of the present invention, preferred embodiments, which are intended purely by way of non-limiting examples, will now be described with reference to the attached drawings (all not to scale), where:
The following discussion is presented to enable a person skilled in the art to make and use the invention. Various modifications to the embodiments shown and described will be readily apparent to those skilled in the art, without departing from the scope of the present invention as claimed. Thence, the present invention is not intended to be limited to the embodiments shown and described, but is to be accorded the widest scope of protection consistent with the principles and features disclosed herein and defined in the appended claims.
The present invention concerns the use of one or more RFID reading and/or writing systems (hereinafter called RFID gate(s)) installed along the path of a conveyor belt to monitor tires conveyed on said conveyor belt and fitted, each, with a respective RFID tag storing tire-related data including a univocal identifier of the tire and, conveniently, also additional information (e.g., information items indicating tire model, date and/or place of production, tire materials, etc.).
The present invention is advantageously exploitable for automatic control, monitoring and tracking applications in (smart) tire manufacturing, sorting and disposal plants employing conveyor belts. In fact, by using the present invention, it is possible to deploy RFID gates along the paths of the conveyor belts to control/monitor/track tires moving on said conveyor belts, wherein the RFID gates, in use, read the tire-related data stored on the RFID tags of passing tires and, if required, may conveniently also write (i.e., store) data thereon (for example, the univocal identifiers and/or, as previously explained, also additional information).
In particular, in use, an RFID gate according to the present invention has the capability to univocally and singularly identify each passing tire, avoiding the problem of multiple reads from adjacent tires/conveyors. This allows to automatically perform specific actions on each single passing tire and to univocally track/monitor the sequence of passing tires.
For a better understanding of the present invention,
In particular, the RFID gate 1 includes an antenna 2 (conveniently, an array antenna) arranged over a conveyor belt 3 conveying tires 4 along (i.e., parallelly to) a given direction of conveyance, wherein each tire 4 is fitted with a respective RFID tag (not shown in
The antenna 2 is substantially planar and parallel to both the conveyor belt 3 and a reference plane xy defined by:
The antenna 2 has a predefined length L along (i.e., parallelly to) the first reference direction x and a predefined width W along (i.e., parallelly to) the second reference direction y, wherein the predefined length L is larger than the predefined width W (i.e., L>W)
The antenna 2 is spaced apart from the conveyor belt 3, along (i.e., parallelly to) a third reference direction z orthogonal to the first and second reference directions x and y, by a predefined distance D.
Preferably, in order to facilitate detection of passing tires 4, the antenna 2 is a directional antenna configured to radiate and receive radiofrequency (RF) signals to/from a footprint area covering:
Conveniently, the antenna 2 is a directional antenna configured to have a blade-shaped radiation pattern, which is oriented orthogonally to the given direction of conveyance of the tires 4 on the conveyor belt 3 (i.e., perpendicularly to the first reference direction x and parallelly to the second reference direction y) and that has a main lobe covering the whole width of the conveyor belt 3 along the second reference direction y and a limited length along the first reference direction x.
In this connection,
Conveniently, the antenna 2 is operable to radiate/receive RF signals having frequencies in Ultra High Frequency (UHF) band, preferably in 860-960 MHz frequency range, more preferably in 865-868 MHz frequency sub-range and/or 902-928 MHz frequency sub-range.
Additionally, optional requirements for the antenna 2 may conveniently include:
Again with reference to
Conveniently, the reader 6 may be connected to a plurality of antennas 2 installed in different positions along the path of the conveyor belt 3. For example, the reader 6 might be conveniently connected to up to four antennas 2 directly or through a multiplexer (e.g., time/power division strategies could be conveniently adopted for feeding the different antennas 2).
Additionally, optional requirements for the reader 6 may conveniently include:
In view of the foregoing, in use, when the tires 4 are conveyed on the conveyor belt 3, the RFID gate 1 is able to univocally detect and automatically identify each tire 4 passing under the antenna 2. Thence, a control/monitoring system employing a plurality of RFID gates 1 (and/or a plurality of antennas 2 connected to one or more readers 6) installed along the path of the conveyor belt 3 (or along the paths of a plurality of conveyor belts 3) is able to exactly locate each moving tire 4.
Furthermore, by conveniently using a proper processing of the transmitted and received RF signals (in amplitude, phase and time), it is possible also to monitor/track the sequence of tires 4 passing the/each RFID gate 1 (or, in case of multiple antennas 2 connected to one or more readers 6, the sequence of tires 4 passing under each antenna 2).
Moreover, the/each reader 6 may be conveniently configured to:
In this connection, it is worth noting that, as it is clear, the/each reader 6 may be conveniently used to write also the univocal identifiers on the RFID tags 5.
The reading and/or writing operations may be conveniently controlled by:
More in general, a method for reading and/or writing data from/on RFID tags 5 of tires 4 conveyed on a conveyor belt 3 according to a preferred embodiment of the present invention includes:
Hereinafter a preferred (albeit non-limiting) embodiment of said method will be described in detail with specific reference to the RFID gate 1, namely in the case of one single antenna 2, one single reader 6 and one single control and processing unit 7, remaining clear that the following teachings may be applied, mutatis mutandis, to different system architectures involving the use of one or more control and processing units 7, each connected to one or more readers 6, each connected to one or more antennas 2 (which can conveniently have also a different spatial arrangement with respect to the conveyor belt, e.g., can be arranged adjacent/close to an edge thereof).
Preferably, RFID tag detection is based on a combined use of power amplitude and phase of the RF signals transmitted by the reader 6 via the antenna 2 to an RFID tag 5 and backscattered from the latter to the antenna 2 and, hence, received by the reader 6.
Conveniently, some preliminary operations may be common to both the preliminary calibration step and the reading and/or writing step, such as:
Conveniently, at the beginning of a reader-to-tag communication, the reader 6 activates a RFID tag 5 passing under the antenna 2 by sending a continuous wave. Then, the activated RFID tag 5 receives commands from the reader 6 and, finally, sends back data (i.e., the univocal identifier and/or the additional tire-related data) through a backscattered modulation of the continuous wave received from the RFID gate 1. The backscattered and transmitted powers are measured in terms of received signal strength indicators (RSSIs) at reader side (RSSIR, in amplitude and phase) and at RFID tag side (RSSIT, in amplitude and phase).
For a better understanding of the preliminary calibration step, hereinafter a preferred (albeit non-limiting) embodiment thereof will be described in detail.
In this connection,
In particular, as shown in
Then, a transmission power value PTX=Pmin+Psm—where Psm denotes a safety margin (e.g., equal to 3 dB)—is conveniently set to ensure a rather robust communication between the reader 6 and the RFID tag 51 regardless of the position of the RFID tag 51 in/on the tire 41 (polar orientation).
Said transmission power PTX is, then, used to transmit RF signals from the antenna 2, while RSSI values are measured at both RFID tag and reader sides (RSSIT, RSSIR), in both amplitude/module and phase.
Then, a size of a footprint area 21 of the antenna 2 on the conveyor belt 3 (i.e., the area wherein there is maximum likelihood that the RFID tag 51 is detected) can be experimentally determined by increasingly moving the tire 41 back and forth (manually or by operating the conveyor belt 3) from its initial position until the RFID tag 51 stops responding. In this connection, it is worth noting that the footprint area's size typically depends on the specific configuration used (i.e., transmission power PTX, antenna beam width, conveyor belt type, etc.).
In order to reduce multiple responses from RFID tags 51, 52, 53 of adjacent tires 41, 42, 43, it may be convenient to properly space out the adjacent tires 41, 42, 43 on the conveyor belt 3 so as to have only one tire 41/42/43 at a time within the determined footprint area 21 (e.g., by approximately assuming an ellipsoid-shaped read volume 22, the minimum distance dmin between adjacent tires 41, 42, 43 may be conveniently assumed greater than a semi-major axis ax/2 of the footprint area 21 parallel to the direction of conveyance of the tires 41, 42, 43 on the conveyor belt 3).
For additional information about RFID footprint, reference can be made, for example, to G. Casati et al., “The Interrogation Footprint of RFID-UAV: Electromagnetic Modeling and Experimentations”, IEEE Journal of Radio Frequency Identification, Volume 1, Issue 2, pages 155-162, 25 Oct. 2017.
Conveniently, in order to take account of the variability of setup, the above procedure is repeated N times (e.g., at least three times) with different tires 41, 42, 43 to determine an average transmission power value PTX-av, average RSSI values RSSIT-av, RSSIR-av (amplitude and phase) and an average size of the footprint area 21.
Therefore, at the end of the preliminary calibration step, the transmission power value to be used for carrying out the reading and/or writing step is set equal to PTX-av, whereas the average RSSI values RSSIT-av, RSSIR-av are used to set one or more thresholds to be used to detect passing tires and to discriminate between/among multiple reads (e.g., due to tires not spaced enough, multiple tires on adjacent conveyor belts, stochastic multipath phenomena, etc.).
Different threshold computation choices may be conveniently adopted based on the average RSSI values RSSIT-av, RSSIR-av and depending on various factors, such as the specific configuration used (i.e., transmission power PTX, antenna beam width, conveyor belt type, etc.). For example, it is possible to compute:
The final choice about threshold computation for a particular configuration/installation may be conveniently made based on assessments performed during the preliminary calibration step carried out for such a particular configuration/installation.
Moreover, in the preliminary calibration step it is possible to determine also an interrogation rate to be used to detect passing tires. In fact, being ax the determined average size of the footprint area along the direction of conveyance of the tires on the conveyor belt (e.g., the major axis of the elliptical footprint area 21 shown in
Additionally, for a better understanding of the reading and/or writing step, a preferred (albeit non-limiting) embodiment of tire detection operations performed in said reading and/or writing step will be described in detail in the following.
Conveniently, during normal operation, the reader 6 continuously transmits “read” commands via the antenna 2 by using, as transmission power value, the average transmission power value PTX-av determined in the preliminary calibration step, wherein PTX-av is such to allow reading only one single RFID tag passing under the antenna.
Moreover, the thresholds computed based on the average step are used to detect RFID tags passing under the antenna 2 and to discriminate between/among multiple reads (which, as previously explained, could be due to an insufficient spacing of adjacent tires on one and the same conveyor belt, or the presence of multiple tires on adjacent conveyor belts, or stochastic multipath phenomena, etc.).
Conveniently, the detection of an RFID tag may be synthetically expressed in the following way:
wherein RSSIR/T-m denotes the amplitude and/or phase RSSI value(s) measured at reader and/or RFID tag side(s), and RSSIth denotes the threshold(s) determined, as previously explained, in the preliminary calibration step based on the average RSSI values RSSIT-av, RSSIR-av.
Conveniently, the threshold(s) RSSIth can be also modified dynamically and in real time so as to adapt the detection to a particular installation and/or environment (e.g., by adding an offset value for improving detection robustness/reliability).
Conveniently, a proper processing of time variation of the value(s) RSSIR/T-m allows also to monitor/track the sequence of passing tires, as shown in
From the foregoing, the technical advantages and the innovative features of the present invention are immediately clear to those skilled in the art.
In particular, it is important to point out that the present invention provides, in general, excellent RFID-based reading/writing performance and, in particular, univocal detection of RFID tags with enhanced performance with respect to that of currently known solutions.
Therefore, the present invention is advantageously exploitable for automatic control, monitoring and tracking applications in (smart) tire manufacturing, sorting and disposal plants employing conveyor belts.
Moreover, the present invention allows realizing tire inventory databases that store significant data related to each produced tire and are accessible (e.g., via Internet) to relevant stakeholders (e.g., manufacturing operators, logistics operators, dealers, customers, etc.).
In conclusion, it is clear that numerous modifications and variants can be made to the present invention, all falling within the scope of the invention, as defined in the appended claims. In this connection, it is worth noting that, although the invention has been previously described with specific reference to an antenna arranged over a conveyor belt, the teachings of the present invention can be immediately applied, mutatis mutandis, to different spatial configurations/arrangements of the antenna with respect to the conveyor. For example, the antenna can be conveniently installed along a lateral edge of the conveyor belt, adjacent to, or in proximity of, said conveyor belt, extending perpendicularly to, or tilted with respect to, conveyor belt's plane (i.e., the aforesaid reference plane xy) and parallelly to the direction of conveyance. More in general, the antenna might be arranged nearby the conveyor belt, still having a radiation pattern such that to result in a footprint area covering a whole width of the conveyor belt perpendicularly to the conveyance direction and a limited length parallelly to said conveyance direction (conveniently, being planar and having a predefined length parallelly to the conveyance direction and a predefined width perpendicularly to said conveyance direction, with the predefined length being larger than said predefined width).
Number | Date | Country | Kind |
---|---|---|---|
102018000020134 | Dec 2018 | IT | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2019/084705 | 12/11/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/126757 | 6/25/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5266785 | Sugihara | Nov 1993 | A |
5884754 | Fromm | Mar 1999 | A |
5929760 | Monahan | Jul 1999 | A |
6028518 | Rankin | Feb 2000 | A |
6114961 | Denholm | Sep 2000 | A |
6218942 | Vega | Apr 2001 | B1 |
6714121 | Moore | Mar 2004 | B1 |
6943688 | Chung | Sep 2005 | B2 |
7084768 | Hartmann | Aug 2006 | B2 |
7088248 | Forster | Aug 2006 | B2 |
7183922 | Mendolia | Feb 2007 | B2 |
7187288 | Mendolia | Mar 2007 | B2 |
7195159 | Sloan | Mar 2007 | B2 |
7218231 | Higham | May 2007 | B2 |
7227469 | Varner | Jun 2007 | B2 |
7710275 | Phillips | May 2010 | B2 |
8256607 | Wallace | Sep 2012 | B2 |
8446256 | Pinkham | May 2013 | B2 |
8593283 | Smith | Nov 2013 | B2 |
8854212 | Goidas | Oct 2014 | B2 |
8890657 | Lin | Nov 2014 | B2 |
9183717 | Diorio | Nov 2015 | B1 |
9409716 | Bastian, II | Aug 2016 | B2 |
9760826 | Stine | Sep 2017 | B1 |
9830486 | Roth | Nov 2017 | B2 |
9922218 | Roth | Mar 2018 | B2 |
10062025 | Roesner | Aug 2018 | B2 |
10117080 | Wilkinson | Oct 2018 | B2 |
10331923 | Roth | Jun 2019 | B2 |
10372951 | Forster | Aug 2019 | B2 |
10432239 | Peitz | Oct 2019 | B2 |
10565410 | Shmulevich | Feb 2020 | B1 |
11544484 | St-Jean | Jan 2023 | B2 |
20030075416 | Prutu | Apr 2003 | A1 |
20040070503 | Monahan | Apr 2004 | A1 |
20040213177 | Moritani | Oct 2004 | A1 |
20060022826 | Higham | Feb 2006 | A1 |
20060176152 | Wagner | Aug 2006 | A1 |
20060226989 | Hillegass | Oct 2006 | A1 |
20060232423 | Cox | Oct 2006 | A1 |
20070075866 | Hohler | Apr 2007 | A1 |
20070194921 | Watanabe | Aug 2007 | A1 |
20080007410 | Rosenbaum | Jan 2008 | A1 |
20080117055 | Blake | May 2008 | A1 |
20080265031 | Liu | Oct 2008 | A1 |
20120187194 | Svetal | Jul 2012 | A1 |
20120205448 | Hoskinson | Aug 2012 | A1 |
20120212327 | Torabi | Aug 2012 | A1 |
20130078385 | Hendricks, Sr. | Mar 2013 | A1 |
20130148143 | Ooyanagi | Jun 2013 | A1 |
20130175339 | Svetal | Jul 2013 | A1 |
20140027511 | Plocher | Jan 2014 | A1 |
20160321481 | Bottazzi | Nov 2016 | A1 |
20170223810 | Bernsen | Aug 2017 | A1 |
20170259376 | Beransky | Sep 2017 | A1 |
20180004992 | Jacobsen | Jan 2018 | A1 |
20180157873 | Roth | Jun 2018 | A1 |
20180157879 | Forster | Jun 2018 | A1 |
20180219624 | Tsang | Aug 2018 | A1 |
20180333964 | Sawamura | Nov 2018 | A1 |
20190283181 | Beransky | Sep 2019 | A1 |
20200309890 | Aliakseyeu | Oct 2020 | A1 |
Number | Date | Country |
---|---|---|
202017102186 | Jun 2017 | DE |
2016095922 | Jun 2016 | WO |
2018189258 | Oct 2018 | WO |
Entry |
---|
Caccami et al., Method and system for reading RFID tags embedded into tires on conveyors (Year: 2019). |
Rao et al., Antenna design for UHF RFID tags A review and a practical application (Year: 2006). |
International Searching Authority: International Search Report for corresponding International Patent Application No. PCT/EP2019/084705 dated Jan. 23, 2020, 3 pages. |
Intellectual Property India: Examination report issued in corresponding India Patent Application No. 202117029644 dated Jul. 18, 2022. |
Number | Date | Country | |
---|---|---|---|
20220048264 A1 | Feb 2022 | US |