Conventional heat assisted magnetic recording (HAMR) utilizes a laser in a conjunction with magnetic recording technology to write to magnetic media in a disk drive. Light is provided from a laser to a waveguide in a HAMR transducer fabricated on a slider. The light travels through the waveguide toward the air-bearing surface (ABS) and is coupled into a near-field transducer (NFT) via evanescent coupling. Thus, the exponential tail of the waveguide mode in the cladding of the waveguide may excite the plasmons in the NFT. Through these plasmons, the NFT couples light into the media at a spot size smaller than the optical diffraction limit, heating a region of the media. Coils in the transducer energize the main pole to magnetically write to a portion of the media heated by the spot size at a relatively modest field. Thus, data may be written to the media.
In order to obtain the desired performance, lifetime and reliability of the HAMR transducer, various factors are desired to be optimized. For extended laser and NFT lifetime, a high coupling efficiency is desired between the optical components. For example, optical coupling from the laser to the waveguide and from the waveguide to the NFT are desired to be improved. In addition, leakage of light from the components is desired to be small. For example, leakage of light from the waveguide to the media is undesirable because such leakage adversely affects writing performance and may degrade adjacent tracks. The laser power is also desired to be stable, both for improved writing efficiency and for laser lifetime. Other factors may also contribute to the performance and reliability of the HAMR writer. Thus, continued improvements in the HAMR transducer are desired.
The HAMR disk drive 100 includes media 102, a slider 110, a laser subassembly 120 and a HAMR transducer 130. Additional and/or different components may be included in the HAMR disk drive 100. The slider 110, the laser subassembly 120 and HAMR transducer 120 are generally attached to a suspension (not shown). The HAMR transducer 130 is fabricated on the slider 110 and includes an air-bearing surface (ABS) proximate to and facing the media 102 during use.
In general, the HAMR disk drive 100 includes a write transducer and a read transducer. However, for clarity, only the write portion (HAMR transducer 130) is shown. The HAMR transducer 130 includes optional near-field transducer (NFT) 132, a write pole 134, coil(s) 136, waveguide 140 and antireflective mechanism 150. In other embodiments, different and/or additional components may be used in the HAMR transducer 130. The pole 134 includes a portion that faces the media 102. In the embodiment shown, this portion of the pole 134 is at the ABS and is used to magnetically write data to the media 102. For simplicity, only one turn of one coil 136 is shown. However, multiple turns are typically used. In addition, multiple coils may be used. The coil 136 may be a helical coil (having its turns wound around the pole 134) or a spiral coil (having its turns residing completely on one side of the pole 134). A write current driven through the coil 136 is used to energize the pole 134.
The laser subassembly 120 includes a laser 124, a submount 122. An optional photodetector (not shown) may also be present. The laser 124 may be an edge emitting laser diode or other laser. The laser subassembly 120 is generally affixed to the back side (the side opposite the ABS) of the slider 110. However, other locations are possible. The submount 122 is a substrate to which the laser 124 may be affixed for mechanical stability and ease of integration with the slider 110. The photodetector may be used to sample the light provided from the laser 124 to the HAMR transducer 130. Thus, the laser 122 may be controlled via feedback obtained from the photodetector. However, other configurations are possible.
The waveguide 140 is optically coupled with the laser 124 and NFT 132, which resides near the ABS. The waveguide 140 may include multiple components and/or may have a geometry that is configured for a particular function. For example, tapered sections, inverse tapered sections, mode converter(s) and/or light concentrating sections might be included within the waveguide 140. The waveguide 140 carries light from the laser 124 toward the NFT 132. In some embodiments, the waveguide terminates at the NFT 132. The light carried by the waveguide 140 is predominantly localized within the waveguide core. Thus, the core can be considered to be depicted in
Also shown in
For example, the antireflective mechanism 150 may be a dielectric trench, located within the waveguide 140. The dielectric trench is so termed because it may be fabricated by forming a trench and refilling the trench with the dielectric. Reflected light traveling back toward the laser 124 (in the opposite direction of the transmission direction shown in
In operation, the light from the laser 124 is transmitted to the waveguide 140. The light is propagated through the waveguide 140 and coupled into the NFT 132. Instead of an evanescent coupling, light concentrated in the core of the waveguide 140 coupled into the NFT 132 to excite plasmons in the NFT 132. This is termed direct fire coupling because the NFT 132 may be aligned with the core of the waveguide 140 in the direction of transmission of the light. Thus, light localized in the core of the waveguide 140 may be directly fired at the NFT 132. The NFT 132 transfers energy to the media 102 in a desired region. The desired portion of the media 102 may be heated. Coil(s) 136 energize the pole 134, which writes to the desired portion of the media. Further, the antireflective mechanism 150 resides in the optical path between the laser 124 and the media 102. The antireflective mechanism 150 is configured to reduce or eliminate reflected light in the optical path between the laser 124 and the media 102. Thus, the antireflective mechanism 150 may mitigate issues that arise due to reflections in the light traveling from the laser 124 to the NFT 132.
The HAMR disk drive 100 may have improved performance. Because the NFT 132 is aligned with the waveguide core (i.e. in the transmission direction for part of the energy carried by the waveguide), the coupling between the waveguide 140 and the NFT 132 may have improved efficiency. Thus, fewer losses may result. However, there may be reflections from the NFT 132. Such reflections will be propagated in the opposite direction through the waveguide 140 and back to the laser 124. Without the antireflective mechanism 150, such reflections may adversely affect performance. For example, the reflections that travel back to the laser 124 might destabilize the operation of the laser 124. The antireflective mechanism 150 may reduce or eliminate such reflections. Thus, the stability of the laser power may be improved. Thus, optical coupling may be improved without adversely impacting the laser performance. Consequently, performance, reliability and lifetime of the HAMR disk drive 100 may be enhanced.
The waveguide 205 is analogous to the waveguide 140. The waveguide 205 is shown as explicitly including a core 208 and cladding 206. As discussed above, light from the laser (not shown in
In the HAMR write apparatus 200, the antireflective mechanism 204 is located within the waveguide 205. The antireflective mechanism 204 may account for reflections at the interface 201. The interface 201 may also be considered the entrance surface of the NFT 202 because the interface 201 is the boundary between the waveguide 205 and the NFT 202. The antireflective mechanism 204 may be an antireflective trench. To fabricate the antireflective trench 204, portions of both the core 208 and cladding 206 of the waveguide 205 may be removed. A trench is thus formed in the waveguide 205. The trench is filled with a material that can be used to reduce or eliminate reflected light. Thus, the antireflective trench 204 is provided. The antireflective trench 204 has a thickness, t1, in the transmission direction and is a distance, l1, from the interface 201 with the NFT. The thickness along the transmission direction, t1, is selected to reduce reflections in a reflection direction opposite to the transmission direction. For example, if the antireflective trench 204 is a dielectric trench, then the material used to fill the trench is a dielectric. In such an embodiment, the thickness of the antireflective trench 204 may be one-fourth of the wavelength plus an integral number of one-half wavelengths, where the wavelength is the wavelength in the antireflective trench 204. The wavelength measures described herein are to within processing limitations in some embodiments. In addition, other thicknesses may be used. The dielectric used for the antireflective trench 204 may have a high index of refraction as compared with the remainder of the waveguide 205. Thus, the antireflective trench 204 may have an index of refraction that is not less than the index of refraction of the core 208. Dielectric materials that might be used for the antireflective trench 204 include but are not limited to titanium dioxide, strontium titanate, lead titanate, silicon carbide, gallium arsenide, tantalum oxide, silicon oxide and silicon carbide. In other embodiments, the antireflective trench 204 may be a metal trench in which the material used to fill the trench is a metal. In such an embodiment, the thickness of the antireflective trench 204 is not more than one and one half multiplied by a metal skin depth. Materials that might be used for the antireflective trench 204 in such an embodiment may include gold, chromium and/or titanium. In other embodiments, the antireflective mechanism 204 may be another structure. However, in discussing
In operation, light from the laser (not shown) travels through the waveguide 205 in the transmission direction and is coupled into the NFT 202. Writing may take place as described above. Light reflected at the interface 201 with the NFT 202 travels in the opposite direction. Because of the presence of the antireflective trench 204, the reflected light undergoes destructive interference. Thus, reflected light reaching the laser may be reduced or eliminated.
The HAMR write apparatus 200 may have improved performance. As discussed above for the HAMR disk drive 100, optical coupling may be improved without adversely affecting stability and performance of other components, such as the laser. Thus, performance, reliability and lifetime of the HAMR write apparatus 200 may be improved.
The waveguide 215 is analogous to the waveguides 140 and 205. The waveguide 215 explicitly includes a core 218 and cladding 216 analogous to the core 208 and cladding 206, respectively. The light propagates through the waveguide 215 toward the NFT 212 in a direction of transmission shown by the arrow in the core 218. Although shown as nominally straight, in other embodiments, the waveguide 215 may have another geometry including but not limited to a curved path. The core 218 of the waveguide 215 is shown as having multiple tapers, which may function to concentrate light propagating through the waveguide. To this extent, the waveguide 215 may be considered to include light concentrating elements. Other components could be included in the waveguide 215.
The NFT 212 is in the direct fire configuration and analogous to the NFTs 132 and 202. The NFT 212 is aligned with the core 218 of the waveguide 215. In the embodiment shown, the NFT 212 may be metal. In other embodiments, other materials might be used. At the interface 211 between the waveguide 215 and the NFT 212, significant reflections may occur. To counteract this, the antireflective mechanism 214 is included.
The antireflective mechanism 214 is located within the waveguide 215 and is analogous to the antireflective mechanisms 204 and 150. The antireflective mechanism 214 is an antireflective trench. The antireflective trench 214 is configured to reduce reflections in a reflection direction opposite to the transmission direction. The geometry and materials used in the antireflective trench 214 are thus analogous to those for the antireflective trench 204. Thus, the thickness, t1, distance to the interface 211, l1 and/or materials used may be analogous to the thickness, distance to the interface 201 and materials used in the antireflective trench 204. Because of the presence of the antireflective trench 214, the light reflected from the interface 211, as well as other interfaces between the antireflective trench and media (not shown) may undergo destructive interference. In this configuration, the antireflective trench 214 may account for reflections at the interface 211. Thus, reflected light reaching the laser may be reduced or eliminated.
The HAMR write apparatus 210 may have improved performance. Through the use of the antireflective trench 214, optical coupling may be improved without adversely affecting stability and performance of other components, such as the laser. Thus, performance, reliability and lifetime of the HAMR write apparatus 210 may be improved.
The waveguide 225 is analogous to the waveguides 140, 205 and 215. The waveguide 225 explicitly includes a core 228 and cladding 226 analogous to the core and cladding, respectively, of the waveguides 205 and 215. The light propagates through the waveguide 225 toward the NFT 222 in a direction of transmission shown by the arrow in the core 228. Although shown as nominally straight, in other embodiments, the waveguide 225 may have another geometry including but not limited to a curved path. The core 228 of the waveguide 225 is shown being straight but may have one or more tapers or other components.
The NFT 222 is in the direct fire configuration and analogous to the NFTs 132, 202 and 212. The NFT 222 is aligned with the core 228 of the waveguide 225. In the embodiment shown, the NFT 222 may be metal. In other embodiments, other materials might be used. At the interface 221 between the light concentrating element 229 and the NFT 222, significant reflections may occur. To counteract this, the antireflective mechanism 224 is included.
In addition, the optical path of the HAMR write apparatus 220 includes a light concentrating element 229. In the embodiment shown, the light concentrating element 229 is a microdisk. However, other light concentrating elements and/or other components might be used. Also shown is a gap 223 between the core 228 of the waveguide 225 and the light concentrating element 229. Thus, light from the laser traverses the waveguide 225, is transmitted to the light concentrating element 229 and then coupled into the NFT 222.
The antireflective mechanism 224 is located within the light concentrating element 229 and is analogous to the antireflective mechanisms 204, 214 and 150. The antireflective mechanism 224 may be an antireflective trench. The antireflective trench 224 is configured to reduce reflections in a reflection direction opposite to the transmission direction. The geometry and materials used in the antireflective trench 224 are thus analogous to those for the antireflective trenches 204 and/or 214. Thus, the thickness, t2, distance to the interface 221, l2, and/or materials used may be analogous to the thickness (t1), distance to the interface 201 (l1) and materials used in the antireflective trenches 204 and/or 214. Because of the presence of the antireflective trench 224, the light reflected from the interface 221, as well as other interfaces between the antireflective trench and media (not shown) may undergo destructive interference. In this configuration, the antireflective mechanism 224 may account for reflections at the interface 221. Thus, reflected light reaching the laser may be reduced or eliminated.
The HAMR write apparatus 220 may have improved performance. Through the use of the antireflective trench 224, optical coupling may be improved without adversely affecting stability and performance of other components, such as the laser. Thus, performance, reliability and lifetime of the HAMR write apparatus 220 may be improved.
The antireflective mechanism 234 is located within the light concentrating element 239 and is analogous to the antireflective mechanisms 204, 214, 224 and 150. In this case, however, the antireflective mechanism is at the interface 231 between the light concentrating element 239 and the NFT 232. Stated differently, l2 is zero. In this configuration, the antireflective mechanism 234 may account for reflections at the interface 231.
The HAMR write apparatus 230 may have improved performance. Through the use of the antireflective trench 234, optical coupling may be improved without adversely affecting stability and performance of other components, such as the laser. Thus, performance, reliability and lifetime of the HAMR write apparatus 230 may be improved.
The antireflective mechanism 244 is located within the waveguide 245 and is analogous to the antireflective mechanisms 204, 214, 224, 234 and 150. In this case, however, the antireflective mechanism is at the interface between the waveguide 245 and the light concentrating element 249 and the NFT 232. The thickness, t3, of the antireflective mechanism 244 is selected to provide for destructive interference. The antireflective mechanism is located a distance l3 from the interface 241. In this location, the antireflective mechanism 244 may account for reflections at the interface 241 (between the light concentrating element 249 and the NFT 242) and for reflections between the waveguide 245 and the light concentrating element 249.
The HAMR write apparatus 240 may have improved performance. Through the use of the antireflective trench 244, optical coupling may be improved without adversely affecting stability and performance of other components, such as the laser. Thus, performance, reliability and lifetime of the HAMR write apparatus 240 may be improved.
The antireflective mechanism 254 is located within the waveguide 255 and is analogous to the antireflective mechanisms 204, 214, 224, 234, 244 and 150. In this case, however, the antireflective mechanism is at the within the waveguide 255. The thickness, t3, of the antireflective mechanism 254 is selected to provide for destructive interference. The antireflective mechanism is located a distance l3 from the interface 251 and is recessed from the interface of the waveguide core 258 with the gap 253. In this location, the antireflective mechanism 254 may account for reflections at the interface 251 (between the light concentrating element 259 and the NFT 252) and for reflections between the waveguide 255 and the light concentrating element 259.
The HAMR write apparatus 250 may have improved performance. Through the use of the antireflective trench 254, optical coupling may be improved without adversely affecting stability and performance of other components, such as the laser. Thus, performance, reliability and lifetime of the HAMR write apparatus 260 may be improved.
The antireflective mechanism 264 is a dielectric trench 264. Thus, portions of both the core 263 and cladding 262 of the waveguide 261 may be removed to form the dielectric trench 264. The dielectric trench 264 has a thickness, w1, in the transmission direction (along the direction of the core 263). The thickness along the transmission direction, w1, is selected to reduce reflections in a reflection direction opposite to the transmission direction. The thickness of the dielectric trench 264 may be one-fourth of the wavelength plus an integral number of one-half wavelengths, where the wavelength is the wavelength in the dielectric trench 264. The dielectric used for the dielectric trench 264 may have a high index of refraction as compared with the remainder of the waveguide 265. Thus, the dielectric trench 264 may have an index of refraction that is not less than the index of refraction of the core 263. Materials that might be used for the dielectric trench 204 include but are not limited to titanium dioxide, strontium titanate, lead titanate, silicon carbide, gallium arsenide, tantalum oxide, silicon oxide and silicon carbide. Reflected light from the NFT (not shown) or other interfaces may undergo destructive interference in the dielectric trench 264. Thus, reflected light reaching the laser may be reduced or eliminated. Through the use of the antireflective trench 264, optical coupling may be improved without adversely affecting stability and performance of other components, such as the laser. Thus, performance, reliability and lifetime of the HAMR write apparatus 260 may be improved.
The antireflective mechanism 269 is a dielectric trench 269. Thus, portions of both the core 263 and cladding 262 of the waveguide 261 may be removed to form the dielectric trench 264. However, in contrast to the antireflective trench 264 depicted in
The antireflective mechanism 274 is a dielectric trench 274 having a thickness, w3, in the transmission direction (along the direction of the core 263). However, in the embodiment shown, the dielectric trench 274 is formed only in the core 273. The thickness along the transmission direction, w3, is selected to reduce reflections in a reflection direction opposite to the transmission direction, as discussed above. Materials that might be used for the dielectric trench 274 are also analogous to those discussed above. Reflected light from the NFT (not shown) or other interfaces may undergo destructive interference in the dielectric trench 274. Thus, reflected light reaching the laser may be reduced or eliminated. Through the use of the antireflective trench 274, optical coupling may be improved without adversely affecting stability and performance of other components, such as the laser. Thus, performance, reliability and lifetime of the HAMR write apparatus 270 may be improved.
The antireflective mechanism 279 is a dielectric trench 279. However, the dielectric trench 279 may also be viewed as an extension of the core 278. Thus, the core material, or another dielectric having analogous characteristics extends into the upper and/or lower cladding layers 277. However, for simplicity, the antireflective mechanism is still termed a dielectric trench. The dielectric trench 279 has a thickness, w4, in the transmission direction that is selected to reduce reflections in a reflection direction opposite to the transmission direction. The thickness of the dielectric trench 279 may be one-fourth of the wavelength plus an integral number of one-half wavelengths. Reflected light from the NFT (not shown) or other interfaces may undergo destructive interference in the dielectric trench 279. Thus, reflected light reaching the laser may be reduced or eliminated. Through the use of the antireflective trench 279, optical coupling may be improved without adversely affecting stability and performance of other components, such as the laser. Thus, performance, reliability and lifetime of the HAMR write apparatus 270 may be improved.
The antireflective mechanism 284 is metal trench 284 having a thickness, w5, in the transmission direction. The thickness along the transmission direction, w5, is selected to reduce reflections in a reflection direction opposite to the transmission direction. For example, the thickness may be not more than one and one half of the skin depth of the metal used in the metal trench 284. Materials that might be used for the metal trench 284 are also analogous to those discussed above, such as gold, chromium and titanium. Reflected light from the NFT (not shown) or other interfaces may undergo destructive interference in the metal trench 284. Thus, reflected light reaching the laser may be reduced or eliminated. Through the use of the antireflective trench 284, optical coupling may be improved without adversely affecting stability and performance of other components, such as the laser. Thus, performance, reliability and lifetime of the HAMR write apparatus 280 may be improved.
The antireflective mechanisms 294 and 299 are each a metal trench. However, the metal trenches 294 and 299 do not extend through the core 293 or 298. Instead, the metal trenches 294 and 299 may be seen as inclusions in the cladding 292 and 297. The metal trenches 294 and 299 each has a thickness, w7, in the transmission direction that is selected to reduce reflections in a reflection direction opposite to the transmission direction. The thickness of the metal trenches 294 and 299 may be not more than one and one half the skin depth of the metal in the trenches 294 and 299. Reflected light from the NFT (not shown) or other interfaces may undergo destructive interference in the metal trench 294 or 299. Thus, reflected light reaching the laser may be reduced or eliminated. Through the use of the antireflective trench 294 and/or 299, optical coupling may be improved without adversely affecting stability and performance of other components, such as the laser. Thus, performance, reliability and lifetime of the HAMR write apparatus 290 and 299 may be improved.
The NFT 310 is in the direct fire configuration. Thus, the NFT 310 is aligned with the core 306 of the waveguide 302. In addition, the NFT 310 is a metal-insulator-metal (MIM) NFT. The insulating layer 314 lies between the metal layers 312 and 316 of the NFT 310 in a deposition direction. Stated differently, the metal layer 312 may be deposited first, follows by the insulating layer 314 and then the metal layer 316. Plasmons in the NFT 310 may be excited by the energy carried by the core 306.
The metal layers 312 and 316 have entrance surfaces (or interfaces with the waveguide 302) 313 and 317, respectively. As can be seen in
In operation, light from the laser (not shown) travels through the waveguide 302 in the transmission direction and is coupled into the NFT 310. Writing may take place as described above. Light reflected at the interfaces 313 and 317 of the NFT 310 travels in the opposite direction. Because of the offset d1 that forms the antireflective mechanism 318, the light reflected from the interfaces 313 and 317 undergoes destructive interference. Thus, reflected light reaching the laser may be reduced or eliminated. Further, the offset may move the peak of the energy coupled from the NFT 310 to the media (not shown) closer to the pole 301, which is desirable. The HAMR write apparatus 300 may have improved performance because optical coupling may be improved without adversely affecting stability and performance of other components, such as the laser.
The NFT 330 is in the direct fire configuration and, like the NFT 310, is a MIM including metal layers 332 and 336 separated by insulating layer 334. The insulating layer 334 lies between the metal layers 332 and 336 of the NFT 330 in a deposition direction. Thus, the metal layer 332 may be deposited first, follows by the insulating layer 334 and then the metal layer 336. Plasmons in the NFT 330 may be excited by the energy carried by the core 326. The metal layers 332 and 336 have entrance surfaces 333 and 337, respectively, that are offset in the direction of transmission. The distance, d2, that these entrance surfaces 333 and 337 are offset is generally greater than one quarter of a wavelength. The distance d2 is selected such that destructive interference may occur for light reflected off of the surfaces 333 and 337 because of their difference in phase/path as described above. Further, the entrance of the core 334 is offset from the entrance surfaces 337 and 333. Because of the offset d2, the light reflected from the interfaces 333 and 337 undergoes destructive interference. Thus, reflected light reaching the laser may be reduced or eliminated. Further, the offset may move the peak of the energy coupled from the NFT 330 to the media (not shown) closer to the pole 321, which is desirable. The HAMR write apparatus 320 may have improved performance because optical coupling may be improved without adversely affecting stability and performance of other components, such as the laser.
The NFT 350 is in the direct fire configuration and, like the NFTs 310 and 330, is a MIM including metal layers 352 and 356 separated by insulating layer 354. The metal layers 352 and 356 have entrance surfaces 353 and 357, respectively, that are offset in the direction of transmission. Note, however, that only a portion of the surface 353 is offset from the surface 357. The portion closest to each insulating layer 354 is aligned with the surface 357. The distance, d3, that these entrance surfaces 353 and 357 are offset is generally greater than one quarter of a wavelength and selected such that destructive interference may occur for light reflected off of the surfaces 353 and 357 because of their difference in phase/path as described above. Because of the offset d3, the light reflected from the interfaces 353 and 357 undergoes destructive interference. Thus, reflected light reaching the laser may be reduced or eliminated. Further, the offset may move the peak of the energy coupled from the NFT 350 to the media (not shown) closer to the pole 341, which is desirable. The HAMR write apparatus 340 may have improved performance because optical coupling may be improved without adversely affecting stability and performance of other components, such as the laser.
The NFT 370 is in the direct fire configuration and, like the NFTs 310, 330 and 350, is a MIM including metal layers 372 and 376 separated by insulating layer 374. The metal layers 372 and 376 have entrance surfaces 373 and 377, respectively, that are offset in the direction of transmission as discussed above. Note, however, that only a portion of the surface 373 is offset from the surface 377. In addition, the core of the waveguide 266 is offset from the insulating layer 274. The distance, d4, that these entrance surfaces 373 and 377 are offset analogous to that described above. Thus, reflected light reaching the laser may be reduced or eliminated. Further, the offset may move the peak of the energy coupled from the NFT 370 to the media (not shown) closer to the pole 361, which is desirable. The HAMR write apparatus 360 may have improved performance because optical coupling may be improved without adversely affecting stability and performance of other components, such as the laser.
The NFT 390 is in the direct fire configuration and, like the NFTs 310, 330, 350 and 370, is a MIM including metal layers 392 and 396 separated by insulating layer 394. The metal layers 392 and 396 have entrance surfaces 393 and 397, respectively, that are offset in the direction of transmission as discussed above. Note, however, that only a portion of the surface 393 is offset from a portion of the surface 397. The distance, d5, that these entrance surfaces 393 and 397 are offset analogous to that described above. Thus, reflected light reaching the laser may be reduced or eliminated. Further, the offset may move the peak of the energy coupled from the NFT 390 to the media (not shown) closer to the pole 361, which is desirable. The HAMR write apparatus 380 may have improved performance because optical coupling may be improved without adversely affecting stability and performance of other components, such as the laser.
The NFT 390′ is in the direct fire configuration and, like the NFTs 310, 330, 350 and 370, is a MIM including metal layers 392 and 396′ separated by insulating layer 394. The metal layers 392 and 396′ have entrance surfaces 393 and 397′, respectively, that are offset in the direction of transmission as discussed above. Portions of the surface 397′ are offset from portions of the surface 393 by different distances. The distance, d5, still offsets portions of the surface 393 of the metal layer 392. However, the metal layer 396′ has two steps. Thus, portions of the surface 397′ are offset by distances d6 and d7. The surfaces 393 and 397′ are different in the embodiment shown. In other embodiments, the surfaces 393 and 397′ may be the same. For example, both surfaces may have multiple steps as the surface 397′. Alternatively, both surfaces might have only a single step but of different heights. Because of these offsets, the antireflective mechanism 398′ may reduce or eliminate the reflected light reaching the laser. Further, the offset may move the peak of the energy coupled from the NFT 390 to the media (not shown) closer to the pole 361, which is desirable. The HAMR write apparatus 380 may have improved performance because optical coupling may be improved without adversely affecting stability and performance of other components, such as the laser.
Various HAMR write apparatuses, waveguides, NFTs and antireflective mechanisms having different features highlighted are described herein. One of ordinary skill in the art will recognize that one or more of the features of various embodiments may be combined in manners not inconsistent with the systems and methods described herein.
The write pole 134 is fabricated, via step 502. Step 502 may include forming top and/or bottom bevels in the pole tip and otherwise shaping the main pole. The coil(s) 136 may be provided, via step 504. The waveguide 140 is fabricated, via step 506. Step 506 may include depositing the core layer on a cladding layer, providing a photoresist mask in the desired shape of the core for the waveguide 130, removing the exposed portions of the core and depositing a cladding layer. The NFT 132 may also be provided, via step 508. Fabrication of the transducer may then be completed. The antireflective mechanism 150 may also be provided, via step 510. Step 510 may include incorporating the antireflective mechanism 150 into the waveguide, incorporating the antireflective mechanism 150 into the NFT or forming the antireflective mechanism 150 between the waveguide 140 and the NFT 132.
Thus, using the method 500, the HAMR disk drive 100 may be provided. Similarly, analogous write apparatus 200, 210, 220, 230, 240, 250, 255, 260, 265, 270, 275, 280, 285, 290, 295, 300, 320, 340, 360, 380, 400, 410, 420, 430 and 440. Consequently, the benefits of the HAMR writer(s) 200, 210, 220, 230, 240, 250, 255, 260, 265, 270, 275, 280, 285, 290, 295, 300, 320, 340, 360, 380, 400, 410, 420, 430 and 440 may be achieved.
Number | Name | Date | Kind |
---|---|---|---|
6016290 | Chen et al. | Jan 2000 | A |
6018441 | Wu et al. | Jan 2000 | A |
6025978 | Hoshi et al. | Feb 2000 | A |
6025988 | Yan | Feb 2000 | A |
6032353 | Hiner et al. | Mar 2000 | A |
6033532 | Minami | Mar 2000 | A |
6034851 | Zarouri et al. | Mar 2000 | A |
6043959 | Crue et al. | Mar 2000 | A |
6046885 | Aimonetti et al. | Apr 2000 | A |
6049650 | Jerman et al. | Apr 2000 | A |
6055138 | Shi | Apr 2000 | A |
6058094 | Davis et al. | May 2000 | A |
6073338 | Liu et al. | Jun 2000 | A |
6078479 | Nepela et al. | Jun 2000 | A |
6081499 | Berger et al. | Jun 2000 | A |
6094803 | Carlson et al. | Aug 2000 | A |
6099362 | Viches et al. | Aug 2000 | A |
6103073 | Thayamballi | Aug 2000 | A |
6108166 | Lederman | Aug 2000 | A |
6118629 | Huai et al. | Sep 2000 | A |
6118638 | Knapp et al. | Sep 2000 | A |
6125018 | Takagishi et al. | Sep 2000 | A |
6130779 | Carlson et al. | Oct 2000 | A |
6134089 | Barr et al. | Oct 2000 | A |
6136166 | Shen et al. | Oct 2000 | A |
6137661 | Shi et al. | Oct 2000 | A |
6137662 | Huai et al. | Oct 2000 | A |
6160684 | Heist et al. | Dec 2000 | A |
6163426 | Nepela et al. | Dec 2000 | A |
6166891 | Lederman et al. | Dec 2000 | A |
6173486 | Hsiao et al. | Jan 2001 | B1 |
6175476 | Huai et al. | Jan 2001 | B1 |
6178066 | Barr | Jan 2001 | B1 |
6178070 | Hong et al. | Jan 2001 | B1 |
6178150 | Davis | Jan 2001 | B1 |
6181485 | He | Jan 2001 | B1 |
6181525 | Carlson | Jan 2001 | B1 |
6185051 | Chen et al. | Feb 2001 | B1 |
6185077 | Tong et al. | Feb 2001 | B1 |
6185081 | Simion et al. | Feb 2001 | B1 |
6188549 | Wiitala | Feb 2001 | B1 |
6190764 | Shi et al. | Feb 2001 | B1 |
6193584 | Rudy et al. | Feb 2001 | B1 |
6195229 | Shen et al. | Feb 2001 | B1 |
6198608 | Hong et al. | Mar 2001 | B1 |
6198609 | Barr et al. | Mar 2001 | B1 |
6201673 | Rottmayer et al. | Mar 2001 | B1 |
6204998 | Katz | Mar 2001 | B1 |
6204999 | Crue et al. | Mar 2001 | B1 |
6212153 | Chen et al. | Apr 2001 | B1 |
6215625 | Carlson | Apr 2001 | B1 |
6219205 | Yuan et al. | Apr 2001 | B1 |
6221218 | Shi et al. | Apr 2001 | B1 |
6222707 | Huai et al. | Apr 2001 | B1 |
6229782 | Wang et al. | May 2001 | B1 |
6230959 | Heist et al. | May 2001 | B1 |
6233116 | Chen et al. | May 2001 | B1 |
6233125 | Knapp et al. | May 2001 | B1 |
6237215 | Hunsaker et al. | May 2001 | B1 |
6252743 | Bozorgi | Jun 2001 | B1 |
6255721 | Roberts | Jul 2001 | B1 |
6258468 | Mahvan et al. | Jul 2001 | B1 |
6266216 | Hikami et al. | Jul 2001 | B1 |
6271604 | Frank, Jr. et al. | Aug 2001 | B1 |
6275354 | Huai et al. | Aug 2001 | B1 |
6277505 | Shi et al. | Aug 2001 | B1 |
6282056 | Feng et al. | Aug 2001 | B1 |
6296955 | Hossain et al. | Oct 2001 | B1 |
6297955 | Frank, Jr. et al. | Oct 2001 | B1 |
6304414 | Crue, Jr. et al. | Oct 2001 | B1 |
6307715 | Berding et al. | Oct 2001 | B1 |
6310746 | Hawwa et al. | Oct 2001 | B1 |
6310750 | Hawwa et al. | Oct 2001 | B1 |
6317290 | Wang et al. | Nov 2001 | B1 |
6317297 | Tong et al. | Nov 2001 | B1 |
6322911 | Fukagawa et al. | Nov 2001 | B1 |
6330136 | Wang et al. | Dec 2001 | B1 |
6330137 | Knapp et al. | Dec 2001 | B1 |
6333830 | Rose et al. | Dec 2001 | B2 |
6340533 | Ueno et al. | Jan 2002 | B1 |
6349014 | Crue, Jr. et al. | Feb 2002 | B1 |
6351355 | Min et al. | Feb 2002 | B1 |
6353318 | Sin et al. | Mar 2002 | B1 |
6353511 | Shi et al. | Mar 2002 | B1 |
6356412 | Levi et al. | Mar 2002 | B1 |
6359779 | Frank, Jr. et al. | Mar 2002 | B1 |
6369983 | Hong | Apr 2002 | B1 |
6376964 | Young et al. | Apr 2002 | B1 |
6377535 | Chen et al. | Apr 2002 | B1 |
6381095 | Sin et al. | Apr 2002 | B1 |
6381105 | Huai et al. | Apr 2002 | B1 |
6389499 | Frank, Jr. et al. | May 2002 | B1 |
6392850 | Tong et al. | May 2002 | B1 |
6396660 | Jensen et al. | May 2002 | B1 |
6399179 | Hanrahan et al. | Jun 2002 | B1 |
6400526 | Crue, Jr. et al. | Jun 2002 | B2 |
6404600 | Hawwa et al. | Jun 2002 | B1 |
6404601 | Rottmayer et al. | Jun 2002 | B1 |
6404706 | Stovall et al. | Jun 2002 | B1 |
6410170 | Chen et al. | Jun 2002 | B1 |
6411522 | Frank, Jr. et al. | Jun 2002 | B1 |
6417998 | Crue, Jr. et al. | Jul 2002 | B1 |
6417999 | Knapp et al. | Jul 2002 | B1 |
6418000 | Gibbons et al. | Jul 2002 | B1 |
6418048 | Sin et al. | Jul 2002 | B1 |
6421211 | Hawwa et al. | Jul 2002 | B1 |
6421212 | Gibbons et al. | Jul 2002 | B1 |
6424505 | Lam et al. | Jul 2002 | B1 |
6424507 | Lederman et al. | Jul 2002 | B1 |
6430009 | Komaki et al. | Aug 2002 | B1 |
6430806 | Chen et al. | Aug 2002 | B1 |
6433965 | Gopinathan et al. | Aug 2002 | B1 |
6433968 | Shi et al. | Aug 2002 | B1 |
6433970 | Knapp et al. | Aug 2002 | B1 |
6437945 | Hawwa et al. | Aug 2002 | B1 |
6445536 | Rudy et al. | Sep 2002 | B1 |
6445542 | Levi et al. | Sep 2002 | B1 |
6445553 | Barr et al. | Sep 2002 | B2 |
6445554 | Dong et al. | Sep 2002 | B1 |
6447935 | Zhang et al. | Sep 2002 | B1 |
6448765 | Chen et al. | Sep 2002 | B1 |
6451514 | Iitsuka | Sep 2002 | B1 |
6452742 | Crue et al. | Sep 2002 | B1 |
6452765 | Mahvan et al. | Sep 2002 | B1 |
6456465 | Louis et al. | Sep 2002 | B1 |
6459552 | Liu et al. | Oct 2002 | B1 |
6462920 | Karimi | Oct 2002 | B1 |
6466401 | Hong et al. | Oct 2002 | B1 |
6466402 | Crue, Jr. et al. | Oct 2002 | B1 |
6466404 | Crue, Jr. et al. | Oct 2002 | B1 |
6468436 | Shi et al. | Oct 2002 | B1 |
6469877 | Knapp et al. | Oct 2002 | B1 |
6477019 | Matono et al. | Nov 2002 | B2 |
6479096 | Shi et al. | Nov 2002 | B1 |
6483662 | Thomas et al. | Nov 2002 | B1 |
6487040 | Hsiao et al. | Nov 2002 | B1 |
6487056 | Gibbons et al. | Nov 2002 | B1 |
6490125 | Barr | Dec 2002 | B1 |
6496330 | Crue, Jr. et al. | Dec 2002 | B1 |
6496334 | Pang et al. | Dec 2002 | B1 |
6504676 | Hiner et al. | Jan 2003 | B1 |
6512657 | Heist et al. | Jan 2003 | B2 |
6512659 | Hawwa et al. | Jan 2003 | B1 |
6512661 | Louis | Jan 2003 | B1 |
6512690 | Qi et al. | Jan 2003 | B1 |
6515573 | Dong et al. | Feb 2003 | B1 |
6515791 | Hawwa et al. | Feb 2003 | B1 |
6532823 | Knapp et al. | Mar 2003 | B1 |
6535363 | Hosomi et al. | Mar 2003 | B1 |
6552874 | Chen et al. | Apr 2003 | B1 |
6552928 | Qi et al. | Apr 2003 | B1 |
6577470 | Rumpler | Jun 2003 | B1 |
6583961 | Levi et al. | Jun 2003 | B2 |
6583968 | Scura et al. | Jun 2003 | B1 |
6597548 | Yamanaka et al. | Jul 2003 | B1 |
6611398 | Rumpler et al. | Aug 2003 | B1 |
6618223 | Chen et al. | Sep 2003 | B1 |
6629357 | Akoh | Oct 2003 | B1 |
6633464 | Lai et al. | Oct 2003 | B2 |
6636394 | Fukagawa et al. | Oct 2003 | B1 |
6639291 | Sin et al. | Oct 2003 | B1 |
6650503 | Chen et al. | Nov 2003 | B1 |
6650506 | Risse | Nov 2003 | B1 |
6654195 | Frank, Jr. et al. | Nov 2003 | B1 |
6657816 | Barr et al. | Dec 2003 | B1 |
6661621 | Iitsuka | Dec 2003 | B1 |
6661625 | Sin et al. | Dec 2003 | B1 |
6674610 | Thomas et al. | Jan 2004 | B1 |
6680863 | Shi et al. | Jan 2004 | B1 |
6683763 | Hiner et al. | Jan 2004 | B1 |
6687098 | Huai | Feb 2004 | B1 |
6687178 | Qi et al. | Feb 2004 | B1 |
6687977 | Knapp et al. | Feb 2004 | B2 |
6691226 | Frank, Jr. et al. | Feb 2004 | B1 |
6697294 | Qi et al. | Feb 2004 | B1 |
6700738 | Sin et al. | Mar 2004 | B1 |
6700759 | Knapp et al. | Mar 2004 | B1 |
6704158 | Hawwa et al. | Mar 2004 | B2 |
6707083 | Hiner et al. | Mar 2004 | B1 |
6713801 | Sin et al. | Mar 2004 | B1 |
6721138 | Chen et al. | Apr 2004 | B1 |
6721149 | Shi et al. | Apr 2004 | B1 |
6721203 | Qi et al. | Apr 2004 | B1 |
6724569 | Chen et al. | Apr 2004 | B1 |
6724572 | Stoev et al. | Apr 2004 | B1 |
6729015 | Matono et al. | May 2004 | B2 |
6735850 | Gibbons et al. | May 2004 | B1 |
6737281 | Dang et al. | May 2004 | B1 |
6744608 | Sin et al. | Jun 2004 | B1 |
6747301 | Hiner et al. | Jun 2004 | B1 |
6751055 | Alfoqaha et al. | Jun 2004 | B1 |
6754049 | Seagle et al. | Jun 2004 | B1 |
6756071 | Shi et al. | Jun 2004 | B1 |
6757140 | Hawwa | Jun 2004 | B1 |
6760196 | Niu et al. | Jul 2004 | B1 |
6762910 | Knapp et al. | Jul 2004 | B1 |
6765756 | Hong et al. | Jul 2004 | B1 |
6775902 | Huai et al. | Aug 2004 | B1 |
6778358 | Jiang et al. | Aug 2004 | B1 |
6781927 | Heanuc et al. | Aug 2004 | B1 |
6785955 | Chen et al. | Sep 2004 | B1 |
6791793 | Chen et al. | Sep 2004 | B1 |
6791807 | Hikami et al. | Sep 2004 | B1 |
6798616 | Seagle et al. | Sep 2004 | B1 |
6798625 | Ueno et al. | Sep 2004 | B1 |
6801408 | Chen et al. | Oct 2004 | B1 |
6801411 | Lederman et al. | Oct 2004 | B1 |
6803615 | Sin et al. | Oct 2004 | B1 |
6806035 | Atireklapvarodom et al. | Oct 2004 | B1 |
6807030 | Hawwa et al. | Oct 2004 | B1 |
6807332 | Hawwa | Oct 2004 | B1 |
6809899 | Chen et al. | Oct 2004 | B1 |
6816345 | Knapp et al. | Nov 2004 | B1 |
6828897 | Nepela | Dec 2004 | B1 |
6829160 | Qi et al. | Dec 2004 | B1 |
6829819 | Crue, Jr. et al. | Dec 2004 | B1 |
6833979 | Knapp et al. | Dec 2004 | B1 |
6834010 | Qi et al. | Dec 2004 | B1 |
6859343 | Alfoqaha et al. | Feb 2005 | B1 |
6859997 | Tong et al. | Mar 2005 | B1 |
6861937 | Feng et al. | Mar 2005 | B1 |
6870712 | Chen et al. | Mar 2005 | B2 |
6873494 | Chen et al. | Mar 2005 | B2 |
6873547 | Shi et al. | Mar 2005 | B1 |
6879464 | Sun et al. | Apr 2005 | B2 |
6888184 | Shi et al. | May 2005 | B1 |
6888704 | Diao et al. | May 2005 | B1 |
6891702 | Tang | May 2005 | B1 |
6894871 | Alfoqaha et al. | May 2005 | B2 |
6894877 | Crue, Jr. et al. | May 2005 | B1 |
6906894 | Chen et al. | Jun 2005 | B2 |
6909578 | Missell et al. | Jun 2005 | B1 |
6912106 | Chen et al. | Jun 2005 | B1 |
6934113 | Chen | Aug 2005 | B1 |
6934129 | Zhang et al. | Aug 2005 | B1 |
6940688 | Jiang et al. | Sep 2005 | B2 |
6942824 | Li | Sep 2005 | B1 |
6943993 | Chang et al. | Sep 2005 | B2 |
6944938 | Crue, Jr. et al. | Sep 2005 | B1 |
6947258 | Li | Sep 2005 | B1 |
6950266 | McCaslin et al. | Sep 2005 | B1 |
6954332 | Hong et al. | Oct 2005 | B1 |
6958885 | Chen et al. | Oct 2005 | B1 |
6961221 | Niu et al. | Nov 2005 | B1 |
6969989 | Mei | Nov 2005 | B1 |
6975486 | Chen et al. | Dec 2005 | B2 |
6987643 | Seagle | Jan 2006 | B1 |
6989962 | Dong et al. | Jan 2006 | B1 |
6989972 | Stoev et al. | Jan 2006 | B1 |
7006327 | Krounbi et al. | Feb 2006 | B2 |
7007372 | Chen et al. | Mar 2006 | B1 |
7012832 | Sin et al. | Mar 2006 | B1 |
7023658 | Knapp et al. | Apr 2006 | B1 |
7026063 | Ueno et al. | Apr 2006 | B2 |
7027268 | Zhu et al. | Apr 2006 | B1 |
7027274 | Sin et al. | Apr 2006 | B1 |
7035046 | Young et al. | Apr 2006 | B1 |
7041985 | Wang et al. | May 2006 | B1 |
7046490 | Ueno et al. | May 2006 | B1 |
7054113 | Seagle et al. | May 2006 | B1 |
7057857 | Niu et al. | Jun 2006 | B1 |
7059868 | Yan | Jun 2006 | B1 |
7092195 | Liu et al. | Aug 2006 | B1 |
7106935 | Challener | Sep 2006 | B2 |
7110289 | Sin et al. | Sep 2006 | B1 |
7111382 | Knapp et al. | Sep 2006 | B1 |
7113366 | Wang et al. | Sep 2006 | B1 |
7114241 | Kubota et al. | Oct 2006 | B2 |
7116517 | He et al. | Oct 2006 | B1 |
7124654 | Davies et al. | Oct 2006 | B1 |
7126788 | Liu et al. | Oct 2006 | B1 |
7126790 | Liu et al. | Oct 2006 | B1 |
7131346 | Buttar et al. | Nov 2006 | B1 |
7133253 | Seagle et al. | Nov 2006 | B1 |
7134185 | Knapp et al. | Nov 2006 | B1 |
7154715 | Yamanaka et al. | Dec 2006 | B2 |
7170725 | Zhou et al. | Jan 2007 | B1 |
7177117 | Jiang et al. | Feb 2007 | B1 |
7193815 | Stoev et al. | Mar 2007 | B1 |
7196880 | Anderson et al. | Mar 2007 | B1 |
7199974 | Alfoqaha | Apr 2007 | B1 |
7199975 | Pan | Apr 2007 | B1 |
7211339 | Seagle et al. | May 2007 | B1 |
7212384 | Stoev et al. | May 2007 | B1 |
7238292 | He et al. | Jul 2007 | B1 |
7239478 | Sin et al. | Jul 2007 | B1 |
7248431 | Liu et al. | Jul 2007 | B1 |
7248433 | Stoev et al. | Jul 2007 | B1 |
7248449 | Seagle | Jul 2007 | B1 |
7280325 | Pan | Oct 2007 | B1 |
7283327 | Liu et al. | Oct 2007 | B1 |
7284316 | Huai et al. | Oct 2007 | B1 |
7286329 | Chen et al. | Oct 2007 | B1 |
7289303 | Sin et al. | Oct 2007 | B1 |
7292409 | Stoev et al. | Nov 2007 | B1 |
7296339 | Yang et al. | Nov 2007 | B1 |
7307814 | Seagle et al. | Dec 2007 | B1 |
7307818 | Park et al. | Dec 2007 | B1 |
7310204 | Stoev et al. | Dec 2007 | B1 |
7318947 | Park et al. | Jan 2008 | B1 |
7333295 | Medina et al. | Feb 2008 | B1 |
7337530 | Stoev et al. | Mar 2008 | B1 |
7342752 | Zhang et al. | Mar 2008 | B1 |
7349170 | Rudman et al. | Mar 2008 | B1 |
7349179 | He et al. | Mar 2008 | B1 |
7354664 | Jiang et al. | Apr 2008 | B1 |
7363697 | Dunn et al. | Apr 2008 | B1 |
7371152 | Newman | May 2008 | B1 |
7372665 | Stoev et al. | May 2008 | B1 |
7375926 | Stoev et al. | May 2008 | B1 |
7379269 | Krounbi et al. | May 2008 | B1 |
7386933 | Krounbi et al. | Jun 2008 | B1 |
7389577 | Shang et al. | Jun 2008 | B1 |
7417832 | Erickson et al. | Aug 2008 | B1 |
7419891 | Chen et al. | Sep 2008 | B1 |
7428124 | Song et al. | Sep 2008 | B1 |
7430098 | Song et al. | Sep 2008 | B1 |
7436620 | Kang et al. | Oct 2008 | B1 |
7436638 | Pan | Oct 2008 | B1 |
7440220 | Kang et al. | Oct 2008 | B1 |
7443632 | Stoev et al. | Oct 2008 | B1 |
7444740 | Chung et al. | Nov 2008 | B1 |
7493688 | Wang et al. | Feb 2009 | B1 |
7508627 | Zhang et al. | Mar 2009 | B1 |
7522377 | Jiang et al. | Apr 2009 | B1 |
7522379 | Krounbi et al. | Apr 2009 | B1 |
7522382 | Pan | Apr 2009 | B1 |
7542246 | Song et al. | Jun 2009 | B1 |
7551406 | Thomas et al. | Jun 2009 | B1 |
7552523 | He et al. | Jun 2009 | B1 |
7554767 | Hu et al. | Jun 2009 | B1 |
7583466 | Kermiche et al. | Sep 2009 | B2 |
7595967 | Moon et al. | Sep 2009 | B1 |
7639457 | Chen et al. | Dec 2009 | B1 |
7660080 | Liu et al. | Feb 2010 | B1 |
7672080 | Tang et al. | Mar 2010 | B1 |
7672086 | Jiang | Mar 2010 | B1 |
7684160 | Erickson et al. | Mar 2010 | B1 |
7688546 | Bai et al. | Mar 2010 | B1 |
7691434 | Zhang et al. | Apr 2010 | B1 |
7695761 | Shen et al. | Apr 2010 | B1 |
7719795 | Hu et al. | May 2010 | B2 |
7726009 | Liu et al. | Jun 2010 | B1 |
7729086 | Song et al. | Jun 2010 | B1 |
7729087 | Stoev et al. | Jun 2010 | B1 |
7736823 | Wang et al. | Jun 2010 | B1 |
7785666 | Sun et al. | Aug 2010 | B1 |
7796356 | Fowler et al. | Sep 2010 | B1 |
7800858 | Bajikar et al. | Sep 2010 | B1 |
7819979 | Chen et al. | Oct 2010 | B1 |
7829264 | Wang et al. | Nov 2010 | B1 |
7846643 | Sun et al. | Dec 2010 | B1 |
7855854 | Hu et al. | Dec 2010 | B2 |
7869160 | Pan et al. | Jan 2011 | B1 |
7872824 | Macchioni et al. | Jan 2011 | B1 |
7872833 | Hu et al. | Jan 2011 | B2 |
7910267 | Zeng et al. | Mar 2011 | B1 |
7911735 | Sin et al. | Mar 2011 | B1 |
7911737 | Jiang et al. | Mar 2011 | B1 |
7916426 | Hu et al. | Mar 2011 | B2 |
7918013 | Dunn et al. | Apr 2011 | B1 |
7968219 | Jiang et al. | Jun 2011 | B1 |
7982989 | Shi et al. | Jul 2011 | B1 |
8008912 | Shang | Aug 2011 | B1 |
8012804 | Wang et al. | Sep 2011 | B1 |
8015692 | Zhang et al. | Sep 2011 | B1 |
8018677 | Chung et al. | Sep 2011 | B1 |
8018678 | Zhang et al. | Sep 2011 | B1 |
8024748 | Moravec et al. | Sep 2011 | B1 |
8072705 | Wang et al. | Dec 2011 | B1 |
8074345 | Anguelouch et al. | Dec 2011 | B1 |
8077418 | Hu et al. | Dec 2011 | B1 |
8077434 | Shen et al. | Dec 2011 | B1 |
8077435 | Liu et al. | Dec 2011 | B1 |
8077557 | Hu et al. | Dec 2011 | B1 |
8079135 | Shen et al. | Dec 2011 | B1 |
8081403 | Chen et al. | Dec 2011 | B1 |
8091210 | Sasaki et al. | Jan 2012 | B1 |
8097846 | Anguelouch et al. | Jan 2012 | B1 |
8104166 | Zhang et al. | Jan 2012 | B1 |
8116043 | Leng et al. | Feb 2012 | B2 |
8116171 | Lee | Feb 2012 | B1 |
8125856 | Li et al. | Feb 2012 | B1 |
8134794 | Wang | Mar 2012 | B1 |
8136224 | Sun et al. | Mar 2012 | B1 |
8136225 | Zhang et al. | Mar 2012 | B1 |
8136805 | Lee | Mar 2012 | B1 |
8141235 | Zhang | Mar 2012 | B1 |
8146236 | Luo et al. | Apr 2012 | B1 |
8149536 | Yang et al. | Apr 2012 | B1 |
8151441 | Rudy et al. | Apr 2012 | B1 |
8163185 | Sun et al. | Apr 2012 | B1 |
8164760 | Willis | Apr 2012 | B2 |
8164855 | Gibbons et al. | Apr 2012 | B1 |
8164864 | Kaiser et al. | Apr 2012 | B2 |
8165709 | Rudy | Apr 2012 | B1 |
8166631 | Tran et al. | May 2012 | B1 |
8166632 | Zhang et al. | May 2012 | B1 |
8169473 | Yu et al. | May 2012 | B1 |
8171618 | Wang et al. | May 2012 | B1 |
8179636 | Bai et al. | May 2012 | B1 |
8191237 | Luo et al. | Jun 2012 | B1 |
8194365 | Leng et al. | Jun 2012 | B1 |
8194366 | Li et al. | Jun 2012 | B1 |
8196285 | Zhang et al. | Jun 2012 | B1 |
8200054 | Li et al. | Jun 2012 | B1 |
8203800 | Li et al. | Jun 2012 | B2 |
8208350 | Hu et al. | Jun 2012 | B1 |
8220140 | Wang et al. | Jul 2012 | B1 |
8222599 | Chien | Jul 2012 | B1 |
8225488 | Zhang et al. | Jul 2012 | B1 |
8227023 | Liu et al. | Jul 2012 | B1 |
8228633 | Tran et al. | Jul 2012 | B1 |
8231796 | Li et al. | Jul 2012 | B1 |
8233248 | Li et al. | Jul 2012 | B1 |
8248896 | Yuan et al. | Aug 2012 | B1 |
8254060 | Shi et al. | Aug 2012 | B1 |
8257597 | Guan et al. | Sep 2012 | B1 |
8259410 | Bai et al. | Sep 2012 | B1 |
8259539 | Hu et al. | Sep 2012 | B1 |
8262918 | Li et al. | Sep 2012 | B1 |
8262919 | Luo et al. | Sep 2012 | B1 |
8264797 | Emley | Sep 2012 | B2 |
8264798 | Guan et al. | Sep 2012 | B1 |
8270126 | Roy et al. | Sep 2012 | B1 |
8276258 | Tran et al. | Oct 2012 | B1 |
8277669 | Chen et al. | Oct 2012 | B1 |
8279719 | Hu et al. | Oct 2012 | B1 |
8284517 | Sun et al. | Oct 2012 | B1 |
8288204 | Wang et al. | Oct 2012 | B1 |
8289821 | Huber | Oct 2012 | B1 |
8291743 | Shi et al. | Oct 2012 | B1 |
8307539 | Rudy et al. | Nov 2012 | B1 |
8307540 | Tran et al. | Nov 2012 | B1 |
8308921 | Hiner et al. | Nov 2012 | B1 |
8310785 | Zhang et al. | Nov 2012 | B1 |
8310901 | Batra et al. | Nov 2012 | B1 |
8315019 | Mao et al. | Nov 2012 | B1 |
8316527 | Hong et al. | Nov 2012 | B2 |
8320076 | Shen et al. | Nov 2012 | B1 |
8320077 | Tang et al. | Nov 2012 | B1 |
8320219 | Wolf et al. | Nov 2012 | B1 |
8320220 | Yuan et al. | Nov 2012 | B1 |
8320722 | Yuan et al. | Nov 2012 | B1 |
8322022 | Yi et al. | Dec 2012 | B1 |
8322023 | Zeng et al. | Dec 2012 | B1 |
8325569 | Shi et al. | Dec 2012 | B1 |
8333008 | Sin et al. | Dec 2012 | B1 |
8334093 | Zhang et al. | Dec 2012 | B2 |
8336194 | Yuan et al. | Dec 2012 | B2 |
8339738 | Tran et al. | Dec 2012 | B1 |
8341826 | Jiang et al. | Jan 2013 | B1 |
8343319 | Li et al. | Jan 2013 | B1 |
8343364 | Gao et al. | Jan 2013 | B1 |
8349195 | Si et al. | Jan 2013 | B1 |
8351307 | Wolf et al. | Jan 2013 | B1 |
8357244 | Zhao et al. | Jan 2013 | B1 |
8373945 | Luo et al. | Feb 2013 | B1 |
8375564 | Luo et al. | Feb 2013 | B1 |
8375565 | Hu et al. | Feb 2013 | B2 |
8381391 | Park et al. | Feb 2013 | B2 |
8385157 | Champion et al. | Feb 2013 | B1 |
8385158 | Hu et al. | Feb 2013 | B1 |
8394280 | Wan et al. | Mar 2013 | B1 |
8400731 | Li et al. | Mar 2013 | B1 |
8404128 | Zhang et al. | Mar 2013 | B1 |
8404129 | Luo et al. | Mar 2013 | B1 |
8405930 | Li et al. | Mar 2013 | B1 |
8409453 | Jiang et al. | Apr 2013 | B1 |
8413317 | Wan et al. | Apr 2013 | B1 |
8416540 | Li et al. | Apr 2013 | B1 |
8419953 | Su et al. | Apr 2013 | B1 |
8419954 | Chen et al. | Apr 2013 | B1 |
8422176 | Leng et al. | Apr 2013 | B1 |
8422342 | Lee | Apr 2013 | B1 |
8422841 | Shi et al. | Apr 2013 | B1 |
8424192 | Yang et al. | Apr 2013 | B1 |
8441756 | Sun et al. | May 2013 | B1 |
8443510 | Shi et al. | May 2013 | B1 |
8444866 | Guan et al. | May 2013 | B1 |
8449948 | Medina et al. | May 2013 | B2 |
8451556 | Wang et al. | May 2013 | B1 |
8451563 | Zhang et al. | May 2013 | B1 |
8454846 | Zhou et al. | Jun 2013 | B1 |
8455119 | Jiang et al. | Jun 2013 | B1 |
8456961 | Wang et al. | Jun 2013 | B1 |
8456963 | Hu et al. | Jun 2013 | B1 |
8456964 | Yuan et al. | Jun 2013 | B1 |
8456966 | Shi et al. | Jun 2013 | B1 |
8456967 | Mallary | Jun 2013 | B1 |
8458892 | Si et al. | Jun 2013 | B2 |
8462592 | Wolf et al. | Jun 2013 | B1 |
8468682 | Zhang | Jun 2013 | B1 |
8472288 | Wolf et al. | Jun 2013 | B1 |
8480911 | Osugi et al. | Jul 2013 | B1 |
8486285 | Zhou et al. | Jul 2013 | B2 |
8486286 | Gao et al. | Jul 2013 | B1 |
8488272 | Tran et al. | Jul 2013 | B1 |
8491801 | Tanner et al. | Jul 2013 | B1 |
8491802 | Gao et al. | Jul 2013 | B1 |
8493693 | Zheng et al. | Jul 2013 | B1 |
8493695 | Kaiser et al. | Jul 2013 | B1 |
8495813 | Hu et al. | Jul 2013 | B1 |
8498084 | Leng et al. | Jul 2013 | B1 |
8506828 | Osugi et al. | Aug 2013 | B1 |
8514517 | Batra et al. | Aug 2013 | B1 |
8518279 | Wang et al. | Aug 2013 | B1 |
8518832 | Yang et al. | Aug 2013 | B1 |
8520336 | Liu et al. | Aug 2013 | B1 |
8520337 | Liu et al. | Aug 2013 | B1 |
8524068 | Medina et al. | Sep 2013 | B2 |
8526275 | Yuan et al. | Sep 2013 | B1 |
8531801 | Xiao et al. | Sep 2013 | B1 |
8532450 | Wang et al. | Sep 2013 | B1 |
8533937 | Wang et al. | Sep 2013 | B1 |
8537494 | Pan et al. | Sep 2013 | B1 |
8537495 | Luo et al. | Sep 2013 | B1 |
8537502 | Park et al. | Sep 2013 | B1 |
8545999 | Leng et al. | Oct 2013 | B1 |
8547659 | Bai et al. | Oct 2013 | B1 |
8547667 | Roy et al. | Oct 2013 | B1 |
8547730 | Shen et al. | Oct 2013 | B1 |
8555486 | Medina et al. | Oct 2013 | B1 |
8559141 | Pakala et al. | Oct 2013 | B1 |
8563146 | Zhang et al. | Oct 2013 | B1 |
8565049 | Tanner et al. | Oct 2013 | B1 |
8576517 | Tran et al. | Nov 2013 | B1 |
8578594 | Jiang et al. | Nov 2013 | B2 |
8582238 | Liu et al. | Nov 2013 | B1 |
8582241 | Yu et al. | Nov 2013 | B1 |
8582253 | Zheng et al. | Nov 2013 | B1 |
8588039 | Shi et al. | Nov 2013 | B1 |
8593914 | Wang et al. | Nov 2013 | B2 |
8597528 | Roy et al. | Dec 2013 | B1 |
8599520 | Liu et al. | Dec 2013 | B1 |
8599657 | Lee | Dec 2013 | B1 |
8603593 | Roy et al. | Dec 2013 | B1 |
8607438 | Gao et al. | Dec 2013 | B1 |
8607439 | Wang et al. | Dec 2013 | B1 |
8611035 | Bajikar et al. | Dec 2013 | B1 |
8611054 | Shang et al. | Dec 2013 | B1 |
8611055 | Pakala et al. | Dec 2013 | B1 |
8614864 | Hong et al. | Dec 2013 | B1 |
8619512 | Yuan et al. | Dec 2013 | B1 |
8625233 | Ji et al. | Jan 2014 | B1 |
8625941 | Shi et al. | Jan 2014 | B1 |
8628672 | Si et al. | Jan 2014 | B1 |
8630068 | Mauri et al. | Jan 2014 | B1 |
8634280 | Wang et al. | Jan 2014 | B1 |
8638529 | Leng et al. | Jan 2014 | B1 |
8643980 | Fowler et al. | Feb 2014 | B1 |
8649123 | Zhang et al. | Feb 2014 | B1 |
8665561 | Knutson et al. | Mar 2014 | B1 |
8670211 | Sun et al. | Mar 2014 | B1 |
8670213 | Zeng et al. | Mar 2014 | B1 |
8670214 | Knutson et al. | Mar 2014 | B1 |
8670294 | Shi et al. | Mar 2014 | B1 |
8670295 | Hu et al. | Mar 2014 | B1 |
8675318 | Ho et al. | Mar 2014 | B1 |
8675455 | Krichevsky et al. | Mar 2014 | B1 |
8681594 | Shi et al. | Mar 2014 | B1 |
8689430 | Chen et al. | Apr 2014 | B1 |
8693141 | Elliott et al. | Apr 2014 | B1 |
8703397 | Zeng et al. | Apr 2014 | B1 |
8705205 | Li et al. | Apr 2014 | B1 |
8711518 | Zeng et al. | Apr 2014 | B1 |
8711528 | Xiao et al. | Apr 2014 | B1 |
8717709 | Shi et al. | May 2014 | B1 |
8720044 | Tran et al. | May 2014 | B1 |
8721902 | Wang et al. | May 2014 | B1 |
8724259 | Liu et al. | May 2014 | B1 |
8749790 | Tanner et al. | Jun 2014 | B1 |
8749920 | Knutson et al. | Jun 2014 | B1 |
8753903 | Tanner et al. | Jun 2014 | B1 |
8760807 | Zhang et al. | Jun 2014 | B1 |
8760818 | Diao et al. | Jun 2014 | B1 |
8760819 | Liu et al. | Jun 2014 | B1 |
8760822 | Li et al. | Jun 2014 | B1 |
8760823 | Chen et al. | Jun 2014 | B1 |
8763235 | Wang et al. | Jul 2014 | B1 |
8780498 | Jiang et al. | Jul 2014 | B1 |
8780505 | Xiao | Jul 2014 | B1 |
8786983 | Liu et al. | Jul 2014 | B1 |
8790524 | Luo et al. | Jul 2014 | B1 |
8790527 | Luo et al. | Jul 2014 | B1 |
8792208 | Liu et al. | Jul 2014 | B1 |
8792312 | Wang et al. | Jul 2014 | B1 |
8793866 | Zhang et al. | Aug 2014 | B1 |
8797680 | Luo et al. | Aug 2014 | B1 |
8797684 | Tran et al. | Aug 2014 | B1 |
8797686 | Bai et al. | Aug 2014 | B1 |
8797692 | Guo et al. | Aug 2014 | B1 |
8813324 | Emley et al. | Aug 2014 | B2 |
8848318 | Tsuchiyama et al. | Sep 2014 | B2 |
20070242921 | Matsumoto | Oct 2007 | A1 |
20100290157 | Zhang et al. | Nov 2010 | A1 |
20110086240 | Xiang et al. | Apr 2011 | A1 |
20120111826 | Chen et al. | May 2012 | A1 |
20120216378 | Emley et al. | Aug 2012 | A1 |
20120237878 | Zeng et al. | Sep 2012 | A1 |
20120298621 | Gao | Nov 2012 | A1 |
20130216702 | Kaiser et al. | Aug 2013 | A1 |
20130216863 | Li et al. | Aug 2013 | A1 |
20130257421 | Shang et al. | Oct 2013 | A1 |
20130279310 | Zhong et al. | Oct 2013 | A1 |
20140133284 | Heidmann | May 2014 | A1 |
20140154529 | Yang et al. | Jun 2014 | A1 |
20140175050 | Zhang et al. | Jun 2014 | A1 |