1. Field of the Invention
This invention relates generally to the fields of directional microphones, microphone arrays, noise reduction and sound enhancement.
2. Description of the Related Art
Widely used omnidirectional microphones pick up sounds (including various interferences) coming from different directions equally well. It means that noise, echoes, room reverberation and other interferences can significantly degrade quality of signals recorded by such microphones. In order to improve a signal-to-noise ratio (that is a ratio between levels of a useful signal and interfering signals picked up by a microphone), a wide range of means for reduction of noise in microphone signals has been developed.
One of the simplest and widely used approaches to improve the signal-to-noise ratio (SNR) for microphone signals is represented by directional microphones. The directional microphones attenuate sounds coming from particular directions, so that in case interferences are coming from directions, different from that of the signal of interest, they can be attenuated, with a proportionate SNR improvement.
By far the most popular type of the directional microphone is a first order gradient type microphone. This type of microphone can be designed employing acoustic or electronic means.
The prior art electronic directional microphone further includes: a delay line 12 receiving an output signal R(t) of the rear microphone 10R and producing a signal R(t−τ) (delayed in respect to the signal R(t) by a preset time delay τ); and a subtracter-adder 14 for subtracting the signal R(t−τ) from an output signal F(t) of the front microphone 10F.
In a particular case of a sound wave S(t) of unit amplitude and frequency ƒ forming an angle Θ with the microphone axis A-A, an output of such directional microphone is given by the following equation:
D(ƒ,Θ)=e−j2πƒt(1−e−j2πƒ(τ+T cos(Θ))), (1)
where Θ, τ, ƒ are as specified above, T=d/Vsound is a sound propagation time between the microphones 10F, 10R, and Vsound is the sound velocity. Taking the magnitude of Eq. 1 yields
|D(ƒ,Θ)|=2|sin(πƒ(τ+T cos(Θ)))| (2)
Assuming a relatively small distance between the microphones and a small delay (ƒd/Vsound<<1 and ƒτ<1), we obtain:
|D(ƒ,Θ)|=2 πƒ(τ+T cos(Θ)) (3)
Varying the delay τ between 0 and T, it is possible to get, using the directional microphone 5PA shown in
One can see from Eq. 3 that, by varying τ between 0 and T, it is possible to steer the null in the back plane between 90° and 270°. The null cannot be moved to the front plane, and thus, the signal coming from front directions with θ between −90° and 90° cannot be canceled.
In principle, it is possible to make the delay τ adjustable. The choice of an optimal delay τopt depends on the acoustic conditions such as the room reverberation as well as a number, spectral content and a direction of interfering signals. If an appropriate digital signal processor (DSP) is used to perform the delay and subtract operations, then τ may be adjusted automatically to provide the best directivity according to some criteria. However, even with this addition, noise reduction effectiveness of the simple directional microphone of
For example, in case when interferences have different spectral contents, the optimal delay τopt can be different for different frequency bands. Thus, in this case uniform delay in the whole frequency range does not allow to achieve the maximal possible SNR improvement. Further, it follows from Eq. 3 that different values of τ correspond to different front (θ=0) sensitivities inside 6 dB range. Such difference must be automatically compensated to provide constant frequency response.
Eq. 3 shows also that for a fixed τ sensitivity is proportional to the frequency. If a flat frequency response is required, such proportionality should be compensated accordingly. For a small distance between the microphones (where Eq. 3 is valid) such compensation can be achieved by multiplying the output in the frequency domain by the factor 1/ƒ. A problem with such normalization arises, when short time RMS values of sound pressure levels on the two microphones 10 are not equal. This happens for example when the distance between the microphones 10 and the sound source becomes comparable to the distance d between the microphones, so that a “far field” assumption is not valid. A resulting excessive low frequencies amplification due to multiplication by 1/ƒ is called “a proximity effect”. Another example of insufficiency of the described normalization is wind turbulences, when short time RMS values of sound pressure levels on the two microphones fluctuate independently.
A further problem arises in cases of a mismatch between sensitivities of two microphones serving as parts of the described directional microphone. For all such cases the normalized output is given as
Dq(ƒ,Θ)=e−j2πƒt(1−qe−j2πƒ(τ+T cos(Θ)))/ƒ, (4)
where the value of q indicates the degree of the mismatch. Division by ƒ corresponds to a normalization that is necessary to provide a flat frequency response corresponding to an ideal case (q=1). For zero delay τ=0 and the front sound direction Θ=0 the output amplitude is given by
|Dq(ƒ)|=|1−qe−j2πƒT|/ƒ.
The frequency response of such microphone relative to the ideal one (q=1) is correspondingly given as
Eq. 5 shows that, depending on the mismatch q, there may be a significant excessive amplification of low frequencies. For example, for the distance between the microphones equal to 15 mm and relatively small mismatches q=0.9 (expressed in decibels 20 log10(0.9)≅−1 dB mismatch), and q=0.8 (20 log10(0.8)≅−2 dB mismatch)
Bq=0.9 (100 Hz)≅3.7≅11.5 dB
Bq=0.8 (100 HZ)≅7.3≅17.3 dB
To avoid or to alleviate the described and other disadvantages and/or limitations of the simple directional microphone system, many more elaborate methods and systems for processing electrical signals derived from omnidirectional microphones have been designed. U.S. Pat. No. 4,653,102 discloses a system for reduction of noise in microphone signals in a far talk mode by employing two directional microphones and a microcomputer for performing a fast Fourier transform of received signals in order to go from the time domain to the frequency domain, said transform being followed with an area and phase sorting aimed at improving SNR for a wanted sound in a well-defined area, and with an inverse fast Fourier transform. Use of the Fourier transform and the inverse Fourier transform in combination with a manipulation of frequency domain data to produce a noise-reduced signal is described also in U.S. Pat. No.6,668,062.
U.S. Pat. No. 5,182,774 discloses a headset supplied with an earcup and means for generating the anti-noise signal from the microphone signal obtained from a directional microphone, which detects and transduces the acoustical pressure within the earcup cavity. Another headset design that utilizes active noise cancellation and a booster circuit to compensate for low frequency losses when active noise cancellation is in operation is presented in U.S. Pat. No. 5,604,813.
The system described in U.S. Pat. No. 5,664,021 uses a combination of two directional microphones, mixing circuitry, and control circuitry to simulate a signal that would be generated by a single directional microphone pivoted to direct its maximum response at the acoustic signal as the acoustic signal moves about the environment. According to U.S. Pat. No. 6,584,203A, tracking a moving noise source can be performed with an aid of a second-order adaptive differential microphone array (ADMA).A subband implementation of the ADMA can be used for tracking a different moving noise source for each different frequency subband.
A dual microphone noise reduction system intended for use in mobile phones and employing a far-mouth microphone in conjunction with a near-mouth microphone is disclosed in U.S. Pat. No. 6,549,586. Speech enhancement is attained by including spectral subtraction algorithms using linear convolution, causal filtering and/or spectrum dependent exponential averaging of the spectral subtraction gain function.
U.S. Pat. No. 5,917,921 describes a noise reducing microphone apparatus having a pair of microphone units and an adaptive noise canceller receiving a primary input from one of the microphone units and a reference input from another microphone unit. In the adaptive noise canceller, the reference input is subtracted from the primary input through an adaptive filter, which adaptive filter is adaptively controlled by an output signal resulted from the subtraction in such a way as to minimize an output power of the system.
Notwithstanding a substantial progress in regard to noise reduction achieved in modem microphone systems through an application of various methods of digital signal processing, a long-felt need still exists for versatile and cost-effective microphone systems capable to provide sufficient noise reduction and sound enhancement of microphone signals in various far-talk and/or close-talk applications.
Accordingly, the main object of this invention is to provide a method and a system for reduction of noise in microphone signals, said method and system of the invention possessing the following advantageous features:
It is another object of the present invention to provide a compact microphone system suitable for mobile applications.
It is a further object of the invention to provide a directional microphone system demanding only relatively simple digital signal processing of input signals suitable for implementation on relatively inexpensive digital signal processors with fixed point arithmetic.
These and other objects of the present invention are achieved primarily by employing a selective approach to digital processing of microphone signals depending on a particular operative mode of the noise reduction system of the present invention, with the main feature of said selective approach consisting in using a specific constraint on digital filtering of one of microphone signals for each of two main operative modes. More precisely, it was found that, when the system of the invention functions in the far talk operative mode, the optimal form of the said constraint consists in making any of the filter coefficients nonnegative. On the other hand, the optimal form of the said constraint when using the close talk operative mode corresponds to limiting a sum of absolute values of the filter coefficients not to exceed a predetermined value.
A basic method implementing the described selective approach and corresponding to the first aspect of the present invention comprises the following main steps:
According to a preferred embodiment of the invention, the method of noise reduction in microphone signals further comprises a step (e) of optionally performing additional processing of the subtracted signal. When the far talk mode is employed. such processing preferably comprises:
According to another preferred embodiment of the method of the invention, each of the digital signals produced on the base of the front and rear microphone signals is split into M frequency subband signals, and steps (b), (c), (d) and (e) are performed in parallel for each group of signals corresponding to one of the subbands. Then all processed subband signals are combined to form a processed noise reduced signal.
In its second aspect the invention provides a system for implementing the described noise-reduction method.
In its simplest version, the system of the present invention comprises a digital signal processor having at least one adaptive processing unit. The or each adaptive processing unit comprises at least:
The adapting means is advantageously configured to keep any of the filter coefficients nonnegative, when functioning in the far talk operative mode, and/or to restrict the sum of absolute values of the filter coefficients not to exceed a predetermined value, when functioning in the close talk operative mode. The purpose of the constraints employed in each operative mode is to preserve the signal of interest while reducing the interfering signals.
When adapted to implement any or each of the preferred embodiments of the inventive method, the system of the invention can further comprise, in appropriate combinations, such parts, as:
The preferred embodiments of the invention perform several additional functions, including a normalization of the output signal to compensate reduced sensitivity for low frequencies; turbulence noise reduction; and proximity effect control.
In case the method of the invention includes the steps of splitting digital signals obtained from the front and rear microphone signals into M frequency subband signals and parallel processing each group of signals corresponding to one of the subbands, the digital signal processor of the noise-reduction system further comprises M adaptive processing units; a first splitter for splitting the front input digital signal into M frequency subband signals and a second splitter for splitting the rear input digital signal into M frequency subband signals. Also, the system further comprises means configured for receiving the processed signal from each adaptive processing unit and for combining said processed signals into a processed noise reduced signal.
To adapt the system of the invention for functioning selectively either in the far talk or close talk operative mode, the system is preferably provided with a mode selector configured for selectively generating either a far talk mode selecting signal or a close talk mode selecting signal, wherein the adapting means or each adapting means is further adapted for receiving the selecting signal to trigger the adapting means into a far talk operative mode or a close talk operative mode.
By extending the concept of the present invention from two to a larger number of omnidirectional microphones, second order directivity in the far talk mode can be achieved. In other words, the system of the present invention can be implemented as an autodirective quadruple microphone comprising two pairs of omnidirectional microphones. The adaptive processing unit (or each of M adaptive processing units, in case the above described splitting into M subbands is provided) of such autodirective quadruple microphone is structured into a first processing block and a second processing block. While the second processing block by its structure and functions is similar to the described adaptive processing unit of the basic embodiment of the system, the first processing block may be described as comprising an adaptive filtering unit consisting of two filter blocks and two subtracter-adders, but only one adaptive coefficients block. This means that said adaptive coefficients block receives signals from both filter blocks and, in its turn, supplies filter blocks with filter coefficients identical for both filter blocks.
The above-described and further objects, features and advantages of the present invention will become apparent from the following detailed description of the preferred embodiments taken in conjunction with the following drawings.
The front microphone 10F and the rear microphone 10R are connected correspondingly to a front input channel and a rear input channel, each of said channels being represented by an analog-to-digital converter (ADC) 20F, 20R. When the microphones 10F, 10R receive acoustic signals, they correspondingly produce, in response to sound pressure changes, a front microphone signal F(t) and a rear microphone signal R(t), said signals F(t), R(t) being continuous analog electric signals. On receiving signals F(t), R(t), the analog-to-digital converters 20F, 20R of the input channels transform them into front and rear digital signals F(n), R(n).
In their turn, the front and rear input channels are connected to applying means (schematically represented in
As schematically shown in
As will be described in detail below, each APU 60 produces optimal directivity signal Pb(n) in the frequency subband allotted to said APU. Output subband signals {Pb(n)} may be further processed by an optional processor 70 (schematically represented in
As can be further seen from
The main part of each APU 60 is constituted by an adaptive filtering unit 85, said unit providing all the directivity and noise canceling functionality. The adaptive filtering unit 85 consists of filter means formed as a filter block 90; subtracting means formed as a subtracter-adder 92; and adaptive means formed as an adaptive coefficients block 95. Both the filter block 90 and the adaptive coefficients block 95 are connected to the second input terminal 64 via the second upsampling unit 1302 for receiving an upsampled rear digital signal, while one of entrances of the subtracter-adder 92 is connected to an exit of the filter block 90 to receive a filtered rear signal therefrom.
According to the preferred embodiment, the proposed noise reduction system of the invention is configured for functioning either in a far talk operative mode or in a close talk operative mode. In the far talk mode the interfering signals are considered to be all signals coming from the rear hemisphere relative to the microphone axis. For all such signals the front microphone signal is delayed relative to the rear microphone signal. In the close talk mode the interfering signals are considered to be all signals that are relatively far away from the microphone. For all such signals the ratio of amplitudes of the front and rear microphone signals are close to unity.
Switching between said operative modes is performed by means of a mode selector 35 (see
The mode selector 35 also controls, by applying the control signal C, a mode switch 100 that connects, either directly or via a delay line 105, the first upsampling block 1301 to the second entrance of the subtracter-adder 92. As shown, the delay line 105 is enabled in the close talk mode and bypassed in the far talk mode.
A band equalizer 110 is supplied with an output signal Ab(n) from the adaptive coefficients block 95. An equalization coefficient qb(n) from the exit of the band equalizer 110 is applied to one of entrances of first multiplication means formed as a first multiplicator 115. Another entrance of the multiplicator 115 is connected to the exit of the subtracter-adder 92. The connection between the subtracter-adder 92 and the first multiplicator 115 is made via a downsampling block 140.
An equalized signal Qb(n) from the first multiplicator 115 is applied to one of the entrances of an output level controller 120, which controller serves to prevent possible excessive output signal amplification. One of the entrances of the output level controller 120 is connected to the mode selector 35 for receiving therefrom the control signal C. Two remaining entrances of the output level controller 120 are connected to the first and the second input terminals 62, 64 for receiving the first and the second digital input signals.
A preferred structure of the output level controller 120 is shown in
The output level controller 120 comprises also a scaling coefficient calculator 124 performing the computation of the scaling coefficient rb(n), as will be described in more detail below. As can be seen from
The band equalizer 110, the output level controller 120 and two multiplicators 115, 125 constitute a preferred embodiment of processing means of each of the APU 60.
The processed signals Pb(n) from each of the APU 60 are fed into a combiner 80 that produces a full band digital output signal P(n) (see
Functioning of the APU 60b in the far talk and close talk operative modes according to a preferred version of the method of the invention will be now described with reference to
First, the functioning of the APU in the far talk operative mode will be considered.
Far Talk Operative Mode
As explained above, the simultaneous switching of all APU 60 into the far talk mode is performed by a generation by the mode selector 35 of the control signal C at the first preset level CF corresponding to this mode. Setting the level of the control signal to the CF can be performed by an operator of the system of the invention by means of a corresponding switch or button (not shown) provided in the mode selector 35 or by any other appropriate means, i.e. from a keyboard, from some distant control system, etc. The generation of the CF signal also results in switching on the output level controller 120 and in bypassing of the delay line 105 (that is in connecting the upsampling block 1301 directly to the subtracter-adder 92 of the adaptive filtering unit).
In the far talk mode the delay line 105 is bypassed and the adaptive filter length is set as
L=N+1, (6)
where N is proportional to the sound propagation time between the microphones 10. N can be calculated as
N=[d Rs/Vsound], (7)
where d is the distance between the microphones, Rs is the sampling rate of analog-to-digital converters 20, Vsound is the sound velocity in the air and [] denotes here the operation of truncation to the nearest integer value.
As can be seen from
N≅[0.035·8000/341]≅[0.8]=0
According to Eq. 6, N=0 corresponds to unit length L of adaptive filter (90), and, hence, no directivity options except a bi-directional microphone are possible in this case. That is why, in order to provide variable directivity options, sampling rates of the digital input signals Rb(n), Fb(n) first should be increased in upsampling blocks 130 by a factor K to provide better time resolution between samples. For example, for the distance between the microphones 10 equal to 35 mm and upsampling factor K equal to 4
N≅[0.035·4·8000/341]≅[3.3]=3.
This provides enough resolution for most of applications. As shown in the above-cited book of Proakis, upsampling may be accomplished by inserting K zeros between every original sample and filtering the result with a corresponding low-pass digital filter.
The upsampled rear input digital signal is supplied to the filter block 90 of the adaptive filtering unit 85. The filter block 90 filters said rear input digital signal by applying thereto filter coefficients, which are calculated by the adaptive coefficients block 95. The purpose of adaptive filtering is to remove, to a possible degree, interfering signals from the front microphone signal. According to the present invention, specific constraints are imposed on the coefficients of the filter block 90 to guarantee preservation of the main signal coming from the front direction.
As mentioned above, the kind of applied constraints and specific features of some other steps of the method of the invention are determined by the selected operative mode of the noise reduction system.
When the system of the invention functions in the far talk mode, with each new sample n of the input digital signal the adaptive filtering unit 85 performs the following sequence of operations:
In the formulae above an index b corresponds to the bth frequency subband.
Step 1 of filtering is performed by the filter block 90; Step 2 of subtracting the filtered rear signal from the front digital signal Fb(n) is performed by the subtracter-adder 92; and Step 3 of adapting (by updating) the filter coefficients is performed by the adaptive coefficients block 95. In the preferred embodiment of the present invention Step 3 is performed using a kind of Normalized Least Mean Squares (NLMS) algorithm (see the above-cited Clarkson book) as:
where μb(n) is a normalization factor depending on the amplitude of the signal and α is so-called adaptation constant that defines the trade-off between adaptation speed, stability and filter coefficient error in the presence of noise. In the classical NLMS algorithm the normalization factor μb(n) is computed as
In the preferred embodiment of the present invention the normalization factor μb(n) is computed as
μb(n)=L·max(γ·μb(n−1),Rb(n))2, 0<γ<1 (12)
Such normalization factor works like a peak detector, where γ defines how fast the peak value is forgotten. Similar to Eq. 11, μb(n) computed according to Eq. 12 reduces the adaptation step when the signal is strong. However, it reacts faster and it is easier to compute.
In the preferred embodiment of the present invention the following constraint is imposed on filter coefficients Wb,k in the far talk mode: all filter coefficients are forced to be nonnegative after every filter update:
Wb,k(n)=max(Wb,k(n), 0), k=0 . . . L−1 (13)
The output sample computed according to Eq. 8 represents a subtracted signal Ab(n), which signal is supplied from the adaptive filtering unit 85 to the downsampling block 140. Also, as shown in
In the far talk mode the subtracted signal Ab(n) corresponds to an output signal from a directional microphone of a differential type with directivity pattern changing according to current conditions. According to Eq. 3 for small distances between the microphones 10, an amplitude of such signal grows linearly with frequency. Therefore the output of such directional microphone must be equalized to provide a flat frequency response for far sounds coming from the front directions with Θ=0. According to the method of the present invention, such equalization is performed by multiplying the subtracted signal of every filter block 90 by dynamically changing equalization coefficient depending on the current filter coefficients. The equalization coefficient qb(n) is supplied by the band equalizer 110. In the preferred embodiment of the invention said coefficient is computed as:
where coefficients of bth filter Wb,k are normalized to sum to 1 as
and {overscore (ƒ)}b is the central frequency of bth frequency subband. In the preferred embodiment {overscore (ƒ)}b is computed as.
where ƒb+, ƒb− are respectively upper and low cutoff frequencies of the corresponding bandpass filter used in the splitters 50. Detailed mathematical substantiation for computing the equalization coefficient according to Eq. 15 is given in Appendix.
As was already mentioned, the filter coefficients used in the computation of the equalization coefficient qb(n) are supplied to the band equalizer 110 from the adaptive coefficients block 95 of the adaptive filtering unit 85.
Equalization coefficient qb(n) is calculated in the far field assumption of equal sound pressure level on both microphones 10. If it is not the case, multiplication by qb(n) can lead to excessive output signal amplification. For example, relatively small distance between the microphone and the sound source (e.g. mouth) can lead to significantly larger sound pressure on the front microphone. Air turbulences caused by wind can be another reason for random sound pressured level differences on the microphones. The prevention of a possible excessive output signal amplification caused by different levels of sound pressure on microphones 10 when working in the far talk mode is ensured according to the invention with the aid of the output level controller 120, which becomes active on receiving the appropriate control signal CF.
The excessive amplification is eliminated by restricting the level of processed signal Pb(n) at the output terminal 66 of the APU 60 to be not greater than the maximal level of the largest of the raw front and the rear input signals Fb(n), Rb(n) supplied to the corresponding blocks 122 of the band equalizer 120 (see
rb(n)=√{square root over (min(1, max(LF,b(n),LR,b(n)/LQ,b(n)))}, (16)
where LF,b(n),LB,b(n),LQ,b(n) are corresponding instantaneous levels of the digital input signals and the equalized output signal, said levels being determined by corresponding blocks 122 and supplied to the scaling coefficient calculator 124.
While a signal level may be defined in different ways, when a preferred embodiment of the blocks 122 is employed, a level of a signal X(n) is calculated as
LX(n)=max (β·LX(n−1), |X(n)|),
where the coefficient β<1 depends on the sampling rate and is chosen so that LX “forgets” 90% of its peak value in about 5 ms.
The processed signal Pb(n) from the second multiplicator 125 is supplied to the output terminal 66 of the APU 60b.
A digital signal P(n) produced as the output of the DSP 30 may be further transformed into analog signal P(t) by a digital-to-analog converter 40 (
Close Talk Operative Mode
The system is switched into the close talk mode by the generation, by the mode selector 35, of the control signal C at the second preset level CC corresponding to this mode. Such switching results in enabling of the delay line 105 and disabling of the band equalizer 110 and the output level controller 120.
Because in the close talk mode some parts of the APU 60 (i.e. upsapmling and downsampling blocks 130, 140, the subtracter-adder 92, etc.) perform their functions in a way identical to that in the far talk mode, only specific features of the close talk mode will be described in detail below.
Filter block 85 functions essentially in the same regime; however, due to enabling of the delay line 105 corresponding to N samples, the length L of the adaptive filter increases to
L=2N+1 (17)
Another specific feature consists in a change of the constraint imposed by the adaptive coefficients block 95. For the close talk mode the sum of absolute values of the filter coefficients shall not exceed a predetermined value. In other words, said sum is limited after every filter update to some value Umax>1:
In the preferred embodiment of the present invention value Umax is set between 1.5 and 3.
Further, because the band equalizer 110 and the output level controller 120 are disabled, no equalization coefficient qb(n) and scaling coefficient rb(n) are generated, so that the processed signal Pb(n) supplied to the output terminal 66 of the APU 60b is the same as the signal Ab(n).
The detailed mathematical substantiation of the computational scheme according to the present invention (as specified by Eq. 8-18) is supplied in Appendix.
According to the above-described embodiment of the present invention directivity is achieved by subtracting a filtered version of the rear digital input signal Rb(n) representing the rear microphone signal from the front digital input signal Fb(n) representing the front microphone signal. This, first order directivity corresponds to the first derivative of the sound pressure along the microphone axis. In some applications (related mainly to the far talk mode) first order directivity does not provide enough improvement of signal-to-noise ratio, so that second order directivity would be desirable. Such second order directivity can be achieved according to the principles of the present invention by combining outputs of two first order directional microphones (either conventional microphones or ones designed according to the present invention). However, this solution requires accurate matching of phase characteristics of the directional microphones, which matching is, as a rule, difficult to achieve.
More advantageous way to achieve the second order directivity in the far talk mode consists in an appropriate extension of the concept of the present invention from two to a larger number of microphones. An embodiment of the proposed system implemented as an autodirective quadruple microphone generally indicated as 5Q is presented in
Similarly to the previously described noise-reduction system of
As schematically shown in
Each APU 150 of the autodirective quadruple microphone system differs from the APU 60 in that the APU 150 consists of a first adaptive processing block (APB1) 170 and a second adaptive processing block (APB2) 180. Each adaptive processing block 170, 180 operates according to the method of the present invention and corresponds to one (a first or a second) stage of processing digital signals representing 4 microphone signals F1(t), R1(t,) F2(t), R2(t). The first processing block 170 is fed with two pairs of subband signals and at its output it generates two signals F3, R3, said signals corresponding to two first order autodirective dual microphone signals with matching phase characteristics. Consequently, said two signals are fed into the second processing block 180 producing an output signal corresponding to a second order directional microphone signal.
The APU 611 of the first processing block 170b comprises:
Similarly, the second of said two APUs, APU 612, of the first processing block 170b comprises:
With an exception of the band equalizer 110 and the adaptive coefficients block 200 (which will be discussed in more detail below), all parts of the first and second APU 611, 612 of the first processing block 170b are equivalent or identical in their design and functions to the correspondent parts of the of the APU 60b described above with reference to
It may be also noted that, though not shown in
As shown in
The first processing block 150 may be alternatively viewed as comprising an adaptive filtering unit 190 consisting of two filter blocks 90, 90, two subtracter-adders 92, 92, but only one adaptive coefficients block 200. With each new sample n, adaptive filtering unit 190 performs the following sequence of four operations:
It is evident from the above expressions that general principles of operation of the adaptive filtering unit 190 are equivalent to those of the adaptive filtering unit 85 in the far talk operative mode. However, computations of the estimates and the output samples are conducted independently for signals received from each of the APU 601, APU 602, while computations of the normalization constant μb(n) and the filter coefficients Wb,k(n) are conducted for data sets including signals received from both APU 601, APU 602. Correspondingly, Eq. 21 is equivalent to updating the filter coefficients twice for every n.
Using the same filter coefficients for both filter blocks 90 corresponding to the first and second microphone pairs ensures the same phase characteristics of the processed signals. This is important as both the first processed signal P1b(n) and the second processed signal P2b(n) constituting an output of the first processing block 170 are used as input signals for the second processing block 180.
The second processing block 180 of the adaptive filtering unit 160 is equivalent to the APU 60 (shown in
Then all subband signals are combined in the described manner inside the combiner 80 into a full band processed signal P(n).
When the distances d1 between microphones 10, 15 in each microphone pair and the distance d2 between the first and second microphone pairs are equal (d1=d2), two middle microphones (the rear microphone 10R of the first pair and the additional front microphone 15F of the second, additional pair) coincide in space, so it is possible to eliminate one of them (i.e. the additional front microphone 15F). In this case the microphone signal from the remaining middle microphone 10R is used both as the rear microphone signal R1(t) of the first microphone pair and as the additional front microphone signal F2(t) of the additional microphone pair.
The invented microphone system using two microphones and a digital signal processor offers the following advantages over conventional prior art microphone systems:
As for the autodirective quadruple microphone system of the present invention, while conserving all important advantages of the dual microphone system, it can provide much better rejection of interfering sounds.
This description uses several examples to disclose the invention, including its best mode, and also to enable a person skilled in the art to make and use the invention. It will be obvious to those of ordinary skill in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. The patentable scope of the invention is therefore defined by the claims, and it includes other examples that occur to those skilled in the art.
For example, in case requirements for quality of the output processed signal can be made less strict, a step of controlling of the output level of each equalized subband signal Qb(n) can be omitted, with a corresponding simplification of the system of the invention by omitting all output level controllers 120 and all multiplicators 115 associated with said controllers.
Further simplification can be attained by omitting all band equalizers 110 and all associated first multiplicators 115.
Even more substantial simplification (again in cases when a tradeoff between processing quality and costs is permissible) can be achieved by omitting the step of splitting each of the input signals into M subband signals. When said splitting step is not used, the system of the invention can be designed without splitters 50 and the combiner 80. Moreover, only a single adaptive processing unit will be needed.
Further, the method and the system of the invention can be implemented, with all above-listed advantages, not only for processing microphone signals in real time, but also when working in an “off-line” regime, that is when microphone or similar signals are recorded in an appropriate recording medium or memory means. If this is the case, then the steps of receiving and converting the microphone signals are not always necessary for implementing the method of the invention. Correspondingly, the microphones themselves do not constitute necessary parts of the inventive noise-reduction system.
Further, in cases when the input signals are recorded in a digital form, there is no need to supply the system of the invention with any analog-to-digital converters constituting input channels.
All discussed options of simplifying the method and the system of the invention are fully applicable to all described embodiments of the invention, including those corresponding to the autodirective quadruple microphone system presented in FIGS. 6 to 8. Still further simplification is possible in relation to the embodiment corresponding to the autodirective dual microphone system presented in FIGS. 2 to 5. More specifically, instead of using such system selectively in either far talk or close talk modes, it can be adapted for only any one of such operative modes. Evidently, such system will not need the mode selector 35 and the mode switch 100. Moreover, a system intended only for the far talk mode will have no use for the delay line 105, while a system intended only for the close talk mode will not use the band equalizer 110 and the output level controller 120.
Far Talk Mode
The corresponding gain is thus given as
For 90°≦Θ≦270° the sound propagation delay between microphones corresponds to T(Θ)≦0. It follows that gb(ƒ, Θ)=0 when i=−T(Θ))/ Δτ and Wb(i)=Rb/Fb. Thus, for sounds originating from the back plane a perfect cancellation is achieved. For a mixture of signals coming from directions with 90°≦Θ≦270° a combination of non-negative Wb(i) selected such that
will provide the perfect cancellation. Alternatively, for −90°<Θ<90° and Wb(i) restricted to be non-negative, the sound wave is attenuated, but cannot be completely cancelled. For a wave of frequency ƒ coming from front direction (Θ=0) the gain is given by
For a plane incident wave (far field case) and equal sensitivities of microphones 10F, 10R Rb=Fb so that
To provide a frequency response equal for all frequencies of signals with Θ=0, the output for the narrow band signal with frequency ƒ must be multiplied by the equalization coefficient qb(ƒ) that is inverse to the gain (23)
For a wide band signal each frequency is to be normalized differently. Assuming that the gain difference for frequencies inside each band is small enough, the equalization coefficient qb(n) is computed for the band central frequency {overscore (ƒ)}b as
Close Talk Mode
In the close talk mode there is no preferred direction. All sounds originating outside a close proximity to the microphone are to be cancelled. Positive delays in Eq. 22 make it possible to cancel sounds arriving from directions [90°, 270°]. To cancel sounds arriving from directions [0°, 90°], computations according to Eq. 22 are modified to include negative delays as follows:
Introducing a negative delay into the rear microphone signal Rb(n) is equivalent to introducing an equivalent positive delay into the front microphone signal Fb(n). Rb(n). According to the present invention, in the close talk mode the delay line 105 is enabled and the length L of the filter block 90 is computed according to Eq. 17 to incorporate N negative, zero and N positive delays.
For a plane incident wave (distant sounds, far field case) and equal sensitivities of microphones 10F, 10R Rb=Fb. With real microphones
where γ<1 defines a maximal sensitivity difference between microphones 10. With good quality microphones γ>0,8 (2 dB). According to the inverse law, the sound pressure amplitude is inversely proportional to the distance to a sound source. Therefore, for sounds generated at zero angle and with ideal microphones 10F, 10R:
for all frequency bands, where D is the distance between the sound source and the front microphone 10F, d is the distance between microphones 100F, 10R. For real microphones
where γ<1 again defines the maximal sensitivity difference between microphones 10. Coefficients Wb(i) of the adaptive filter in Eq. 25 are chosen to provide the minimal output signal amplitude. Due to incorporating delays corresponding to sounds coming from all directions, unconstrained filter coefficients Wb(i) may provide complete cancellation of all sounds. Amplitude differences caused by factors B and γ are compensated by scaling the filter coefficients accordingly. This is not the desirable situation as close signals with factor B exceeding some threshold must be preserved. This is achieved by constraining the sum of absolute values of coefficients Wb(i). After every filter adaptation step the filter coefficients Wb(i) are modified as
to satisfy the constraints.