The present implementations relate generally to wireless communications, and more particularly to reference signaling design and configuration.
In conventional handover/mobility of inter-cell, latency and success rate are issues, and leads to poor connectivity for mobile devices at an intersection of multiple cells.
It is advantageous to improve the latency and success rate of handover/mobility of inter-cell. Thus, a technological solution for reference signaling design and configuration is desired.
Example implementations include a wireless communication method, including receiving, by a wireless communication device, a first downlink signaling indicating a Radio Network Temporary Identifier (RNTI) associated with an element.
Example implementations also include a wireless communication method performed by a wireless communication device and including transmitting a message in a MAC CE or UCI, where the message includes at least one of a UE—Context or information of a connection.
Example implementations also include a wireless communication performed by a wireless communication device and including receiving a message through at least one of a MAC CE or Downlink Control Information (DCI), where the message carries at least one of: a C-RNTI, information associated with a PCI, or information of a connection.
Example implementations also include a wireless communication method including transmitting, by a wireless communication node, a first downlink signaling indicating a Radio Network Temporary Identifier (RNTI) associated with an element.
Example implementations also include a wireless communication method including receiving, by a wireless communication node, a message in a MAC CE or UCI, where the message includes at least one of a UE—Context or information of a connection.
Example implementations also include a wireless communication method including transmitting, by a wireless communication node, a message through at least one of a MAC CE or Downlink Control Information (DCI), where the message carries at least one of: a C-RNTI, information associated with a PCI, or information of a connection.
These and other aspects and features of the present implementations will become apparent to those ordinarily skilled in the art upon review of the following description of specific implementations in conjunction with the accompanying figures, wherein:
The present implementations will now be described in detail with reference to the drawings, which are provided as illustrative examples of the implementations so as to enable those skilled in the art to practice the implementations and alternatives apparent to those skilled in the art. Notably, the figures and examples below are not meant to limit the scope of the present implementations to a single implementation, but other implementations are possible by way of interchange of some or all of the described or illustrated elements. Moreover, where certain elements of the present implementations can be partially or fully implemented using known components, only those portions of such known components that are necessary for an understanding of the present implementations will be described, and detailed descriptions of other portions of such known components will be omitted so as not to obscure the present implementations. Implementations described as being implemented in software should not be limited thereto, but can include implementations implemented in hardware, or combinations of software and hardware, and vice-versa, as will be apparent to those skilled in the art, unless otherwise specified herein. In the present specification, an implementation showing a singular component should not be considered limiting; rather, the present disclosure is intended to encompass other implementations including a plurality of the same component, and vice-versa, unless explicitly stated otherwise herein. Moreover, applicants do not intend for any term in the specification or claims to be ascribed an uncommon or special meaning unless explicitly set forth as such. Further, the present implementations encompass present and future known equivalents to the known components referred to herein by way of illustration.
For example, the BS 102 may operate at an allocated channel transmission bandwidth to provide adequate coverage to the UE 104. The BS 102 and the UE 104 may communicate via a downlink radio frame 118, and an uplink radio frame 124 respectively. Each radio frame 118/124 may be further divided into sub-frames 120/127 which may include data symbols 122/128. In the present disclosure, the BS 102 and UE 104 are described herein as non-limiting examples of “communication nodes,” generally, which can practice the methods disclosed herein. Such communication nodes may be capable of wireless and/or wired communications, in accordance with various implementations of the present solution.
System 200 generally includes a base station 202 (hereinafter “BS 202”) and a user equipment device 204 (hereinafter “UE 204”). The BS 202 includes a BS (base station) transceiver module 210, a BS antenna 212, a BS processor module 214, a BS memory module 216, and a network communication module 218, each module being coupled and interconnected with one another as necessary via a data communication bus 220. The UE 204 includes a UE (user equipment) transceiver module 230, a UE antenna 232, a UE memory module 234, and a UE processor module 236, each module being coupled and interconnected with one another as necessary via a data communication bus 240. The BS 202 communicates with the UE 204 via a communication channel 250, which can be any wireless channel or other medium suitable for transmission of data as described herein.
As would be understood by persons of ordinary skill in the art, system 200 may further include any number of modules other than the modules shown in
In accordance with some implementations, the UE transceiver 230 may be referred to herein as an “uplink” transceiver 230 that includes a radio frequency (RF) transmitter and a RF receiver each comprising circuitry that is coupled to the antenna 232. A duplex switch (not shown) may alternatively couple the uplink transmitter or receiver to the uplink antenna in time duplex fashion. Similarly, in accordance with some implementations, the BS transceiver 210 may be referred to herein as a “downlink” transceiver 210 that includes a RF transmitter and a RF receiver each comprising circuitry that is coupled to the antenna 212. A downlink duplex switch may alternatively couple the downlink transmitter or receiver to the downlink antenna 212 in time duplex fashion. The operations of the two transceiver modules 210 and 230 can be coordinated in time such that the uplink receiver circuitry is coupled to the uplink antenna 232 for reception of transmissions over the wireless transmission link 250 at the same time that the downlink transmitter is coupled to the downlink antenna 212. In some implementations, there is close time synchronization with a minimal guard time between changes in duplex direction.
The UE transceiver 230 and the base station transceiver 210 are configured to communicate via the wireless data communication link 250, and cooperate with a suitably configured RF antenna arrangement 212/232 that can support a particular wireless communication protocol and modulation scheme. In some illustrative implementations, the UE transceiver 210 and the base station transceiver 210 are configured to support industry standards such as the Long Term Evolution (LTE) and emerging 5G standards, and the like. It is understood, however, that the present disclosure is not necessarily limited in application to a particular standard and associated protocols. Rather, the UE transceiver 230 and the base station transceiver 210 may be configured to support alternate, or additional, wireless data communication protocols, including future standards or variations thereof.
In accordance with various implementations, the BS 202 may be an evolved node B (eNB), a serving eNB, a target eNB, a femto station, or a pico station, for example. In some implementations, the UE 204 may be embodied in various types of user devices such as a mobile phone, a smart phone, a personal digital assistant (PDA), tablet, laptop computer, wearable computing device, etc. The processor modules 214 and 236 may be implemented, or realized, with a general purpose processor, a content addressable memory, a digital signal processor, an application specific integrated circuit, a field programmable gate array, any suitable programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof, designed to perform the functions described herein. In this manner, a processor may be realized as a microprocessor, a controller, a microcontroller, a state machine, or the like. A processor may also be implemented as a combination of computing devices, e.g., a combination of a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other such configuration.
Furthermore, the steps of a method or algorithm described in connection with the implementations disclosed herein may be embodied directly in hardware, in firmware, in a software module executed by processor modules 214 and 236, respectively, or in any practical combination thereof. The memory modules 216 and 234 may be realized as RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. In this regard, memory modules 216 and 234 may be coupled to the processor modules 210 and 230, respectively, such that the processors modules 210 and 230 can read information from, and write information to, memory modules 216 and 234, respectively. The memory modules 216 and 234 may also be integrated into their respective processor modules 210 and 230. In some implementations, the memory modules 216 and 234 may each include a cache memory for storing temporary variables or other intermediate information during execution of instructions to be executed by processor modules 210 and 230, respectively. Memory modules 216 and 234 may also each include non-volatile memory for storing instructions to be executed by the processor modules 210 and 230, respectively.
The network communication module 218 generally represents the hardware, software, firmware, processing logic, and/or other components of the base station 202 that enable bi-directional communication between base station transceiver 210 and other network components and communication nodes configured to communication with the base station 202. For example, network communication module 218 may be configured to support internet or WiMAX traffic. In a typical deployment, without limitation, network communication module 218 provides an 802.3 Ethernet interface such that base station transceiver 210 can communicate with a conventional Ethernet based computer network. In this manner, the network communication module 218 may include a physical interface for connection to the computer network (e.g., Mobile Switching Center (MSC)). The terms “configured for,” “configured to” and conjugations thereof, as used herein with respect to a specified operation or function, refer to a device, component, circuit, structure, machine, signal, etc., that is physically constructed, programmed, formatted and/or arranged to perform the specified operation or function.
As shown by way of example in
As shown by way of example in
In this example, the UE receives MAC-CE/DCI which includes one or more of a PCI, RNTI, at least one security algorithm identifier, and SIB information. The UE can use this information after receiving the MAC-CE/DCI. The SIB can be an SIB for target cell. The SIB can include a set of dedicated RACH resources, the association between RACH resources and SSB(s), the association between RACH resources and UE-specific CSI-RS configuration(s), common RACH resources, and system information of the target cell. As shown by way of example in
Further when the MAC-CE/DCI includes RNTI, or RNTI and PCI, the MAC-CE/DCI can also include the index of element for which the indicated RNTI, or RNTI and PCI is applied, wherein the element includes one of: control resource, BWP, serving cell, a Transmission Configuration Indicator (TCI) state, a spatial relation indicator, a TCI state pool, or a spatial relation indicator pool, resource, resource set, wherein the resource includes one of reference signal resource such as SRS resource, CSI-RS resource, RLM-RS resource, channel resource such as PUCCH resource.
As shown by way of example in
As shown by way of example in
In some implementations, the UE receives signaling which includes mapping relationship between PCI and parameter such as RNTI. In some implementations, the UE gets the parameter of the channels or signals from or to the different cells according to PCI associated the channels or signals.
In some implementations, the parameter includes Radio Network Temporary Identifier (RNTI) and/or PCI. The RNTI includes at least one of cell-RNTI (C-RNTI), modulation and coding scheme (MCS)-C-RNTI, CS-RNTI, semi-persistent (SP) channel state information (CSI) SP-CSI-RNTI, or other RNTI to identify the UE. The parameter can also include one or more following parameters including the parameter used to generate scrambling sequence for a channel (such as n ID), rate mating parameters, power control parameters, the parameter used to generate sequence for a signal, timing information, time advance (TA), or SSB information, wherein the power control parameter includes at least one of: a factor associated with a path loss reference signal such as alpha, target receive power p0, closed loop index. The SSB information includes at least one of SSB time domain position, SSB power, or SSB periodicity. The UE receives signaling indicating the parameter for an element of a BWP, wherein the element includes one of: a control resource, a TCI state pool, a TCI state, a resource, a resource group, wherein the resource includes reference signal resource, or channel resource.
The gNB also can inform the UE whether the channels or signals from or to the different cells each of which corresponds a respective PCI are associated with respective parameter.
With respect to
Channels or signals from or to the different cells each of which corresponds a respective PCI are in two BWPs of a serving cell are shown by way of example in
Channels or signals from or to the different cells, each of which corresponds a respective PCI, are in two serving cells of a serving cell group, as shown by way of example in
In some implementations, the gNB configures RNTI/PCI for an element of a frequency unit which includes one of a serving cell group, a serving cell, and a BWP, where the element can be one of: a control resource when the frequency unit is a BWPe, a BWP when the frequency unit is a serving cell group or a serving cell, a BWP set of a serving cell when the frequency unit is a serving cell group or a serving cell, a serving cell when the frequency unit is a serving cell group, a serving cell set when the frequency unit is a serving cell group, a PCI, and a PCI set. The channel or signal associated with element can be received or transmitted according to RNTI/PCI associated with the element. For example, the scrambling sequence of the channel is generated according to the RNTI associated with elements of the channel. The scrambling sequence of PDCCH can include a scrambling sequence with length same as bit sequence after channel code and used to scramble the bit sequence after channel code. The scrambling sequence of PDCCH can also include scrambling sequence with 16 bit and used to scramble cyclic redundancy check (CRC) bit sequence before channel code.
In view of
In some implementations, the UE receives signaling indicating a corresponding relationship between a parameter and an information element. For example, the parameter can be one of a transmission configuration indication (TCI) state, a Spatial relationship indicator, TCI state pool, or a Spatial relation ship indicator pool.
As one example, the UE first determines the parameter of a channel or a signal. Then the UE determines the information element of the channel or signal includes the information element corresponding to the parameter as shown by way of example in
In some implementations, the UE receives signaling indicating a first corresponding relationship between a resource group and an information element. The UE can determine information included in the information element for the resource of a resource group according to the information element corresponding to the resource group as shown by way of example in
Further, the UE can receive signaling with a second corresponding relationship between parameter and the information element as shown by way of example in
As illustrated by way of example in
In accordance with at least
As shown by way of example in
The scrambling sequence of PDSCH can be a pseudo-random sequence generator which is initialized with cinit=(nRNTI2y+1+q2y+nID) mod 231 cinit=nRNTI2y+1+q2y+q2y+nID, where y ∈{10,11,12,13,14,15,16} and y can be configured by a predefined value.
The UE can report its RNTI/PCI using MAC-CE and/or UCI to gNB. For example the UE reports its RNTI/PCI associated with a source gNB to a target gNB. The MAC-CE/UCI can be transmitted during PRACH processes. The MAC-CE/UCI also be transmitted in PUSCH/PUCCH, where the PUSCH/PUCCH is for the target gNB. For example, the spatial of PUSCH/PUCCH can be received based on SSB/CSI-RS from the target gNB. The target gNB can also be a neighboring gNB, or can be a TRP.
The UE can report UE context using MAC-CE and/or UCI to gNB. The UE context can include one or more of the following information: the PCI of the source gNB, the C-RNTI of the UE in the source gNB, RRM-configuration including UE inactive time, basic AS-configuration including antenna Info and DL Carrier Frequency, the current QoS flow to DRB mapping rules applied to the UE, the SIB1 from source gNB, the UE capabilities for different RATs, PDU session related information, and can include the UE reported measurement information including beam-related information if available, EARLY STATUS TRANSFER message. The DL COUNT value conveyed in the EARLY STATUS TRANSFER message indicates PDCP SN and HFN of the first PDCP SDU that the source gNB forwards to the target gNB. The UE can report UE context using MAC-CE and/or UCI to source cell or target cell as shown by way of example in
In some implementations, handover involves transmitting information using RRC signaling, such as RRC resume request, RRC setup, RRC setup complete, RRC release, RRC reestablishment, RRC reestablishment complement, RRC reconfigure, RRC reconfigure complement. The information included in this RRC signaling can be included MAC-CE/UCI to fast the speed of handover/mobility.
The UE can determine one C-RNTI satisfying a predefined condition. The UE can report the determined C-RNTI in msg3 or msg A during a PRACH process. As in the above examples, the UE in RRC_connected state can keep more than one C-RNTI for different cell. When the UE needs to send contention based PRACH, the UE can determine which one will be included in msg(message)3/msg A to be a contention resolution identifier. The UE can determine the first C-RNTI or the C-RNTI received from prior PRACH process, as shown by way of example in
At step 1710, the example system receives first downlink signaling indicating a radio network temporary identifier (RNTI) for an element. The method 1700 then continues to step 1720. At step 1720, the example system generates a scrambling sequence for PDCCH based on an initialization value. In some implementations, the initialization value is determined by a particular equation and the initialization value is determined according the RNTI got according to step 1710, or 1710 and one of 1740, 1750. The method 1700 then continues to step 1730. In some implementation, the method 1700 ends at step 1720.
At step 1730, the example system transmits a channel associated with an element according to an RNTI. The method 1700 then continues to step 1732. At step 1732, the example system receives a signal associated with an element according to an RNTI. The method 1700 then continues to step 1734. At step 1734, the example system transmits a signal associated with an element according to an RNTI. The method 1700 then continues to step 1736. At step 1736, the example system receives second downlink signaling carrying a parameter of a channel or a signal. It is to be understood that the example system can optionally or alternatively perform at least one of steps 1730, 1732, 1734 and 1736. The method 1700 then continues to step 1740. In some implementation, the method 1700 ends at step 1730.
At step 1740, the example system determines RNTI of a channel or signal according to RNTI of an element or parameter. The method 1700 then continues to step 1750. At step 1750, the example system determines an element of a channel or signal according to a parameter of the channel or signal. In some implementations, the method 1700 ends at step 1740.
The herein described subject matter sometimes illustrates different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are illustrative, and that in fact many other architectures can be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being “operably connected,” or “operably coupled,” to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being “operably couplable,” to each other to achieve the desired functionality. Specific examples of operably couplable include but are not limited to physically mateable and/or physically interacting components and/or wirelessly interactable and/or wirelessly interacting components and/or logically interacting and/or logically interactable components.
With respect to the use of plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity.
It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.).
Although the figures and description may illustrate a specific order of method steps, the order of such steps may differ from what is depicted and described, unless specified differently above. Also, two or more steps may be performed concurrently or with partial concurrence, unless specified differently above. Such variation may depend, for example, on the software and hardware systems chosen and on designer choice. All such variations are within the scope of the disclosure. Likewise, software implementations of the described methods could be accomplished with standard programming techniques with rule-based logic and other logic to accomplish the various connection steps, processing steps, comparison steps, and decision steps.
It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation, no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to inventions containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations).
Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general, such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that virtually any disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase “A or B” will be understood to include the possibilities of “A” or “B” or “A and B.”
Further, unless otherwise noted, the use of the words “approximate,” “about,” “around,” “substantially,” etc., mean plus or minus ten percent.
The foregoing description of illustrative implementations has been presented for purposes of illustration and of description. It is not intended to be exhaustive or limiting with respect to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the disclosed implementations. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.
This application claims the benefit of priority under 35 U.S.C. § 120 as a continuation of PCT Patent Application No. PCT/CN2021/084992, filed on Apr. 1, 2021, the disclosure of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2021/084992 | Apr 2021 | US |
Child | 18345842 | US |