Method and system for remotely monitoring a user

Information

  • Patent Grant
  • 11302168
  • Patent Number
    11,302,168
  • Date Filed
    Wednesday, January 22, 2020
    4 years ago
  • Date Issued
    Tuesday, April 12, 2022
    2 years ago
Abstract
A system may include a user monitor device, a supervisory device, and a subscription sub-system. The subscription sub-system may be configured to: obtain a definition of a boundary that includes a radius from a particular location; monitor a location of the user monitor device; determine that the user monitor device has crossed the boundary; and in response to determining that the user monitor device has crossed the boundary, transmit an alert to the supervisory device.
Description
TECHNICAL FIELD

The technical field includes systems and methods for monitoring user well-being, and more specifically monitoring user status on a remote basis.


BACKGROUND

It is often necessary to monitor the well-being of others. For example, because they lack the mature judgment and experience of adults, it is generally desirable to be able to monitor the well-being of children. Similarly, it may be desirable to monitor the well-being of adults who are physically or mentally infirm and, therefore, lack the wherewithal to protect themselves from harm. However, it is often difficult or impossible to monitor the well-being of others on a personal and direct basis for an extended period of time.


Monitoring on a remote basis allows a supervisor to monitor the well-being of others while minimizing the time and effort required. Remote monitoring allows the supervisor to attend to other activities or tasks while maintaining awareness of those to be monitored. Additionally, remote monitoring provides a supplemental means for monitoring when monitoring is conducted primarily on a personal and direct basis.


However, the current systems and methods for remote monitoring are not multifunctional in application.


SUMMARY

What is disclosed is a method for monitoring user well-being. The method includes the steps of providing, at a user monitor module, a first indicator for the user well-being; providing, at a receiving module operably coupled to the user monitor module, a first threshold for the first indicator; receiving, at the receiving module, the first indication; comparing the first indication and the first threshold; generating a secondary indication when the comparison indicates that the first indication equals or exceeds the first threshold; receiving, at a supervisory module coupled to the receiver module, the secondary indication; and informing a supervisor that the first threshold has been reached.


Also disclosed is method for providing a subscription system that monitors user well-being. The method includes the steps of receiving from a user; a request to implement the subscription service; receiving from the user, user profile information; creating a user profile based on the user profile information; receiving a user-selected set of monitoring options; and activating user well-being monitoring based on the user-selected monitoring options.


Further, what is disclosed is a subscription system that monitors user well-being including a subscription module operably coupled to a receiver module and a supervisory module. The subscription module includes means for allowing interactions with one or more customers; means for allowing the one or more customers to select subscription services; means for creating, storing, and updating user profiles; and means for protecting privacy of data used in the user profiles.





DESCRIPTION OF THE DRAWINGS

The detailed description will refer to the following drawings, wherein like numerals refer to like elements, and wherein:



FIG. 1 is a block diagram illustrating the components of a subscription system;



FIG. 2 is a schematic diagram of a first aspect of the subscription system of FIG. 1;



FIG. 3A is a schematic diagram of a second aspect of the subscription system of FIG. 1.



FIG. 3B is a schematic diagram of the second aspect of the subscription system of FIG. 1 using smart software;



FIG. 4 is a schematic diagram of a third aspect of the subscription system of FIG. 1;



FIG. 5 is a schematic diagram illustrating the use of the subscription system of FIG. 1 applied to an electronic boundary;



FIG. 6 is a schematic diagram of a fourth aspect of the subscription system of FIG. 1;



FIGS. 7A-7C and 8 show further aspects of the subscription service of FIG. 1;



FIG. 9 is a block diagram illustrating a service level of a subscription module;



FIG. 10 illustrates a customer profile used by the subscription system of FIG. 1;



FIG. 11 is a block diagram of one aspect of the subscription module of FIG. 9; and



FIG. 12 is a flow chart illustrating an operation of the subscription system of Figure.





DETAILED DESCRIPTION


FIG. 1 is a schematic diagram of the components of a subscription system 10 that may be used to monitor the well-being of a user. As used herein, well-being refers to any parameter associated with the user that may be measured and/or detected, and which provides an indication as to a status of the user The subscription system 10 includes a user monitor module 20 that is operably coupled to a receiver module 30. The receiver module 30 is operably coupled to a supervisory module 40. The user monitor module 20 may also be operably coupled to the supervisory module 40 alone, or in tandem with the receiver module 30. Coupling may be achieved using wireless means, including for example, a satellite system and/or cellular telephone networks. Additionally, coupling may be achieved by using Blue Tooth technology, which provides short range, wireless connectivity between common devices. Blue Tooth systems operate at a frequency of 2.4 GHz. Blue Tooth systems are described in detail in Haartsen, “Bluetooth—The Universal Radio Interface for Ad Hoc, Wireless Connectivity”, Ericcson Review No. 3, 1998, pp. 110-117, which is hereby incorporated by reference. The subscription system 10 allows a supervisor to monitor the well-being of a user from a remote location. The user may be, for example, a child, an adult, an animal or other living entity. The supervisory module 40 may be operated by, or in the possession of the supervisor of the user. For example, the supervisor may be a child's parent, the child may have affixes the user module 20, and the parent may be carrying the supervisory module 40. In the case of adult users, the subscription system 10 may be used, for example, for the mentally or physically infirm.


The user monitor module 20 is a portable device that may include a transmitter capable of emitting one or more kinds of signals and a receiver capable of receiving an external signal. The user monitor module 20 may be capable of being incorporated into common articles of clothing or other personal items, including for example, wrist watches, jewelry, collars and toys, or other devices used by the user (e.g. stroller, bicycle, wheelchair). Alternately, the user monitor module 20 may be a stand-alone device that is designed to be worn or attached to the user. The user monitor module 20 may also be a small device that is designed to be implanted in the body of the user. Additionally, the user monitor module 20 may comprise a radio frequency identification device (RFID) 18 that may comprise a passive transponder in the focus of a micro-thin, wearable electronic chip. The RFID 18 is capable of drawing power from radio frequency waves and using that power to transmit a signal carrying an identification of the RFID 18. Radio frequency identification devices and corresponding systems and methods are described in U.S. Pat. No. 5,528,222, entitled RADIO FREQUENCY CIRCUIT AND MEMORY IN THIN FLEXIBLE PACKAGE, which is hereby incorporated by reference.


The user monitor module 20 may provide a first indication of the user's well-being, where the first indication may have a threshold value. The user monitor module 20 may comprise an alert module 21 and a detection module 22. The alert module 21 is capable of generating and sending an alarm when the user monitor module 20 is subjected to tampering. The alarm from the alert module 21 may be generated at the location of the user monitor module 20, the receiver module 30 or the supervisory module 40. The alarm may be an audible, visual or sensory alarm. The detection module 22 detects the occurrence of one or more events related to the well-being of the user and comprises a location detector 23, a user skin temperature detector 24, a user pulse detector 25, an acceleration detector 26, a water detector 27 and a blood glucose detector 28. Other detectors may also be incorporated into the user module 20 to detect, monitor, measure and report parameters associated with a status of the user.


The receiver module 30 is a remote device that may include a transmitter capable of emitting one or more kinds of signals and a receiver capable of receiving an external signal. The receiver module 30 may also be capable of emitting radio frequency waves, thereby setting up a magnetic field around the receiver module 30. The receiver module 30 may be located at a site remote from the user monitor module 20 and the supervisory module 40. The receiver module 30 may receive the first indication of the user's well-being and generate a second indication when a threshold value of the first indication is reached. The receiver module 30 may include a threshold adjustment module 32 that provides for adjustment of the threshold value of the first indication, a tamper code module 34 adapted to provide a code that arms and disarms the alert module 21 and a display module 36 that provides a display related to the received first indication. The receiver module 30 may display information related to the received first indication on the display module 36 in addition to generating the second indication to be transmitted to the supervisory module 40. The display module 36 may be, for example, a monitor adapted for use in the receiver module 30.



FIG. 1 shows a single receiver module 30. However, the system 10 may include more than one receiver module 30. For example, one receiver module 30 may be located at a location of the supervisor and another receiver module may be located at a site remote from the supervisor. When the receiver module 30 and the supervisory module 40 are at a same location as the supervisor, the receiver module 30 and the supervisory module 40 may be incorporated into a single platform. Alternatively, the receiver module 30 and the supervisory module 40 may be separate, stand-alone devices.


The supervisory module 40 may receive the second indication and may inform the supervisor that the threshold value of the first indication has been reached. Alternately, the supervisory module 40 may receive the first indication transmitted by the user monitor module 20 directly, either alone or in tandem with the receiver module 30. The supervisory module 40 may be operably coupled to or incorporated into various devices, including for example, land based or cellular telephones, pagers, personal computers and televisions. The supervisory module 40 may send an alert in the form of a call to a land based or cellular telephone, a page to a pager, an email to a personal computer or a message for display on a television to inform the supervisor that the threshold value of the first indication has been reached. Alternately, the supervisory module 40 may comprise a stand-alone device that is capable of generating an audible, visual or sensory alarm to inform the supervisor that the threshold value has been reached. The supervisor may utilize one or more of these devices to monitor the user. The supervisory module 40 may employ a round-robin alert scheme to send alerts to all or some subset of the devices, as designated by the supervisor, until an acknowledgement is received from at least one of the devices, to inform the supervisor that the threshold value of the first indication has been reached. The supervisory module 40 may also be capable of emitting radio frequency waves, thereby setting up a magnetic field around the supervisory module 40.


A subscription module 50 may be incorporated into the system to calculate a subscription fee to charge the supervisor for operation of the system 10 in monitoring the status or well-being of one or more users under the care or supervision of the supervisor. The architecture and operation of the subscription module 50 will be described in detail later.



FIG. 2 is a schematic diagram of a first aspect of the subscription system 10. In FIG. 2, the subscription system 10 is used to track the location of the user monitor module 20, which may be worn or attached to a user or may be incorporated into a device used by the user (e.g., stroller, bicycle, wheelchair). Optionally, the supervisor transmits a request from the supervisory module 40 to the receiver module 30 for the location of the user monitor module 20. Through the use of various satellite systems, such as a Global Positioning System (GPS), including GPS satellite 61, the receiver module 30 receives a tertiary indication of the geographical location of the user monitor module 20. Other tracking means may employ low earth orbit satellites and cellular networks. The receiver module 30 is capable of keeping track of the location of the user monitor module 20 at all times. The receiver module 30 receives and processes the request from the supervisory module 40 and transmits the geographical location information for the user monitor module 20 to the supervisory module 40. The receiver module 30 may display the geographical location information on the display module 36 alternately or in addition to transmitting the geographical location information to the supervisory module 40. Such display may include latitude and longitude, distance, reference to map coordinates, or any other means for referencing the user's geographical location.



FIG. 3A is a schematic diagram of a second aspect of the subscription system 10. In FIG. 3A, the subscription system 10 may be used as a personal security alarm system, a drowning alarm system, a personal health warning system and a tampering alarm system.


For a personal security alarm system, the user may activate the alert module 21 of the user monitor module 20 in situations where the user is made aware of personal risk from harm, or becomes ill or injured. Upon activation of the alert module 21, a first indication is transmitted to the receiver module 30. The receiver module 30 receives the first indication and transmits a second indication in the form of an alarm to the supervisory module 40. The supervisory module 40 may inform the supervisor of the alarm through various means, including for example, a land based or cellular telephone, a pager, a personal computer, a television or a stand-alone device that is capable of generating an audible, visual or sensory alarm to inform the supervisor. Alternately, the user monitor module 20 may transmit the first indication directly to the supervisory module 40 alone or in tandem with the receiver module 30. Alternately, the user monitor module 20 may transmit the first indication directly to emergency personnel, including for example, a police department, a fire department, search and rescue workers, and emergency medical technicians, alone or in tandem with the receiver module 30 and the supervisory module 40. The emergency personnel may be able to track the location of the user as described above with respect to the first aspect of the subscription system 10. In an embodiment, the emergency personnel may be equipped with a receiver module 30.


In the case of a drowning alarm system, the user monitor module 20 transmits a first indication of the user's well-being when the user monitor module 20 is immersed in water. The water detector 27 (see FIG. 1) of the detection module 22 detects when the immersion in water reaches a threshold value. The water detector 27 may include a pressure gage, which measures the ambient pressure immediately surrounding the user monitor module 20. Alternately or additionally, the water detector 27 may include a moisture gage capable of measuring the moisture level immediately surrounding the user monitor module 20. The receiver module 30 receives the first indication and transmits a second indication to the supervisory module 40 when the pressure or moisture level immediately surrounding the user monitor module 20 reaches the threshold value. The supervisory module 40 informs the supervisor that the threshold value has been reached. Alternately, the user monitor module 20 may transmit the first indication directly to the supervisory module 40 alone or in tandem with the receiver module 30.


In the case of a personal health warning system, the user monitor module 20 transmits a first indication of the user's well-being to the receiver module 30 when the detection module 22 of the user monitor module 20 detects one or more changes in the physical condition of the user. Referring to FIG. 1, the skin temperature detector 24 detects when a change in skin temperature of the user reaches a threshold value. The pulse detector 25 detects when a change in pulse of the user reaches a threshold value. The acceleration detector 26 detects when a change in acceleration of the user's body reaches a threshold value. Additionally, the acceleration detector 26 detects when a lack of change in acceleration of the user's body reaches a threshold value. The glucose detector 28 detects when a change in the blood glucose level of the user reaches a threshold value. When one of the detectors in the detection module 22 detects a change in physical condition of the user that reaches a respective threshold value, the receiver module 30 transmits a second indication to the supervisory module 40. The supervisory module 40 informs the supervisor that the respective threshold value has been reached. Alternately, the user monitor module 20 may transmit the first indication directly to the supervisory module 40 alone or in tandem with the receiver module 30.


Returning to FIG. 3A, in the case of a tampering alarm system, the user monitor module 20 transmits a first indication to the receiver module 30 when the user monitor module 20 experiences tampering. The supervisor may arm and disarm the alert module 21 of the user monitor module 20 by inputting a code into the tamper code module 34 of the receiver module 30. Tampering may include attempts to remove the user monitor module 20 after the alert module 21 is armed without inputting the appropriate code into the tamper code module 34. Upon tampering, the alert module 21 may generate an alarm at the location of the user monitor module 20 and/or transmit the first indication to the receiver module 30. The receiver module 30 generates and transmits a second indication to the supervisory module 40 upon receiving the first indication. The supervisory module 40 informs the supervisor that the user monitor module 20 has experienced tampering. Alternately, the user monitor module 20 may transmit the first indication directly to the supervisory module 40 alone or in tandem with the receiver module 30.


As noted above, some or all of the features of the receiver module 30 may be incorporated into the supervisory module 40. In particular, the threshold adjustment module 32 and the tamper code module 34 may be incorporated into the supervisory module 40, and interactions between the supervisor and the tamper code module 34 and threshold adjustment module 32 may be made directly by the supervisor.


As shown in the schematic diagram of FIG. 3B, smart software 36 may be installed in the user monitor module 20, the receiver module 30 and/or the supervisory module 40 to determine whether to alert the supervisor when several events related to the well-being of the user occur at the same time. For example, if the acceleration detector 26 detects that there has been a lack of acceleration (or motion) of the user's body that reaches a threshold value and the pulse detector 25 detects a decrease in pulse that also reaches a threshold value, the software 36 may determine that the combination of the two events indicates that the user is asleep. In that situation, the receiver module 30 may defer transmitting the second indication to the supervisory module 40 unless both events continue for a prolonged period of time.



FIG. 4 is a schematic diagram of a third aspect of the subscription system 10. In FIG. 4, the subscription system 10 may be used as an electronic leash or electronic boundary system for keeping track of the distance between the user monitor module 20, which may be worn or attached to the user, and the supervisory module 40 or an electronic boundary. As discussed above, the user may be, for example, a child, a mentally or physically infirm adult, an animal or any other live entity.


In using an electronic leash, the supervisor wants to ensure that the user does not stray beyond a predetermined distance from the supervisor. The user monitor module 20 transmits a first indication when the location detector 23 of the user monitor module 20 detects that the distance between the user monitor module 20 and supervisory module 40 reaches a threshold value. The location detector 23 may detect the distance using various methods. For example, the supervisory module 40 may transmit a signal on a periodic basis that is received by the location detector 23 in the user monitor module 20. The location detector 23 compares the strength of the signal received from the supervisory module 40 at different times, t1 and t2, and correlates the difference in signal strength to a distance between the user monitor module 20 and supervisory module 40. When the location detector 23 detects that the distance between the user monitor module 20 and the supervisory module 40 reaches the threshold value, the user monitor module 20 transmits a first indication to the receiver module 30, which then generates and transmits a second indication to the supervisory module 40. Alternately, the user monitor module 20 may transmit the first indication directly to the supervisory module 40 alone or in tandem with the receiver module 30. The supervisory module 40 informs the supervisor that the threshold value has been reached.



FIG. 5 is a diagram illustrating the use of the subscription system 10 applied to an electronic boundary. The subscription system 10 may be adapted for use in a theme park, a shopping mall, a stadium, a mass transit station and other large locales that typically attract many people, and that may have a large, transitory population, or may have a population that is constantly moving from one place to another within the large locale. For example, in a popular theme park, the population may be large, transitory in the sense that the number of people in the population, and their specific identity varies over time, and mobile, in the sense that individuals move from one venue in the theme park to another venue, typically staying at each venue only for a short time. The user monitor module 20 transmits a first indication to the receiver module 30 when the location detector 23 detects that that the user monitor module 20 is beyond the designated boundary of the large locale. The boundary may be defined using electronic boundary markers physically placed along the perimeter of the boundary. Alternately, the boundary may be defined using a satellite system, such as, for example, the Global Positioning System, in order to avoid using physical boundary markers. By using a satellite system, the boundary may be dynamically configurable and altered in a convenient manner. For example, the GPS may be used to define the overall theme park boundary, or a boundary of a sub-section of the theme park. More specifically, should a supervisor want to monitor a status of a user, with the user expected to remain in a first sub-section of the theme park, the supervisor may specify the dynamically-configurable boundary to be the boundary of the first sub-section. The GPS responds by designating the first sub-section of the theme park as the desired boundary for the specified user. Other users and supervisors using the subscription system 10 may have other boundaries defined for monitoring the status of the user.


The user monitor module 20 transmits the first indication to the receiver module 30 when the location detector 23 detects that the boundary has been crossed by the user. The receiver module 30 generates and transmits a second indication to the supervisory module 40, which informs the supervisor that the user has crossed the boundary. Alternately, the user monitor module 20 may transmit the first indication directly to the supervisory module 40 alone or in tandem with the receiver module 30.



FIG. 6 is a schematic diagram of a fourth aspect of the subscription system 10. In FIG. 6, the subscription system is used to identify the user monitor module 20 in order to identify the user. The receiver module 30 emits radio frequency waves so that a magnetic field is formed around the receiver module 30. Alternately, the supervisory module 40 may emit radio frequency waves so that a magnetic field is formed around the supervisory module 40. The user monitor module 20 may comprise a RFID 18, which may include a passive transponder in the form of a micro-thin wearable, or implantable, electronic chip. The RFID 18 is capable of drawing power from the emitted radio frequency waves and using that power to transmit a signal carrying an identification of the RFID 18. The signal may be transmitted to the receiver module 30 and/or the supervisory module 40 to inform the supervisor of the identity of the RFID 18, which may be correlated to the identity of the user wearing or carrying the user monitor module 20.


A potential application for using multiple user monitor modules 20 includes tracking the location of a number of children or ensuring that none of the children stray too far from the supervisor in order to prevent the children from becoming lost. FIG. 7A illustrates the system 10 used to track the well-being or status of more than one user by a single supervisor. In FIG. 7A, a supervisor S desires to track the location of user UA and user UB. Each of the users UA and UB are equipped with a user monitor module 20. The user monitor modules 20 worn by the users UA and UB may have unique identification numbers to identify the user monitor module 20. Transmissions from the user monitor module 20 may include the unique identification numbers. As an alternative to user monitor module identification numbers, each user monitor 20 module may transmit and receive at a unique frequency. A supervisor S is equipped with a supervisory module 40 to receive alerts and to otherwise communicate, either directly or indirectly, with the subscription system 10. As shown in FIG. 7A, the supervisory module 40 receives tracking or location information for the users UA and UB as the users UA and UB move within boundary B. Note that the boundary B may be established by the supervisory designating a maximum radius from the supervisory module 40 to the user monitor modules 20, and that the specified maximum radius may differ as between the users UA and UB.



FIG. 7B illustrates the effect of movement by the supervisory module 40 on the tracking function performed by the subscription system 10. In FIG. 7B, supervisory module 40 is moved by supervisor S from first position S1 to second position S2 along path S1-S2. User U moves from position U1 to position U2. Boundary B1 denotes the boundary for tracking the location of the user U while the supervisor is at the first position S1. As the supervisor (and the supervisory module 40) moves to the second position S2, the boundary moves to new boundary B2 as shown.



FIG. 7C illustrates yet another application of the subscription system 10. In FIG. 7C, the supervisor S want to monitor a location of the user U. However, the supervisor S wants to confine the user U to an area A having an irregular boundary B as shown. The subscription system 10 can accommodate such a scenario by using the satellite system (e.g., the GPS) to dynamically establish the boundary B. The subscription system 10 components can then be used to track the location of the user U within the boundary B of the area A, and to issue an alert should the user U go outside or beyond the boundary B.



FIG. 8 illustrates still another application of the subscription system 10. In FIG. 8, an area 100, defined by the points A, C, D, F, includes sub-areas 110, defined by A, B, E, F and 120, defined by B, C, D, E. The sub-area 110 includes an exclusion area 112. A first user 111 occupies the sub-area 110. A second user 121 occupies the sub-area 120. The first user 111 and the second user 121 each may be equipped with, or be operably coupled to, or in the vicinity of a user monitor module 20. A supervisor 130, equipped with a supervisory module 40 may be anywhere in the area 100, or may be outside the area 100. An overlap area 140, designated by the vertices E, G, H, I may be provided in which both the first user 111 and the second user 121 may exist simultaneously without precipitating an alert.


The supervisor 130 may desire to monitor well-being of each of the first user 111 and the second user 121. The supervisor 130 may further desire to ensure the first user 111 remains in the first sub-area 110 and that the second user 121 remain in the second sub-area 120. Finally, the supervisory 130 may desire that the first user not enter the exclusion area 112.


The supervisor may designate the boundaries of the area 100, the sub-areas 110 and 120, the exclusion area 112, and the overlap area 140. Such designation may be by way of a drafting protocol available at a Web site associated with the subscription system 10. Other means for designating the allowable boundaries include by reference to latitude and longitude, by submission of a hand-drawn figure, and by reference to specific, fixed landmarks, for example.


The subscription system 10 may be designated to issue an alert to the supervisor 130 when both the first user 111 and the second user 121 are in the same sub-area, except for the overlap area 140. For example, should the second user 121 enter the sub-area 110 while the first user 111 is in the sub-area 110, the subscription system 10 may be designated to issue the alert. The subscription system 10 may include the necessary logic and processing to determine when the first user 111 and the second user 121 are in a same sub-area, and the subscription system 10 will then issue the required alerts. The subscription system 10 may also be designated to issue an alert should either the first user 111 or the second user 121 enter the exclusion area 112.


As an example of an application of the subscription system 10 shown in FIG. 8, the first user 111 may be a dog, the second user 121 a child, the first sub-area a back yard of a residence, the exclusion area 112 a swimming pool, the supervisor 130 the child's parent, the sub-area 120 some or all of a residence, and the overlap area 140 a kitchen and family room of the residence. The supervisor 130 desires to keep the child 121 and the dog 111 out of the pool 112, and keep the child 121 and the dog 111 separated unless both are in the kitchen and/or family room 140.



FIG. 9 is a block diagram illustrating a level of service operation of the subscription module 50. The subscription module 50 may be operably coupled to the Internet 51 and may use a Web site 52 to interact with customers. The subscription module 50 may offer various subscription services 54 displayed on the Web site 52 and may allow customers to select from among the subscription services 54. For example, the subscription services 54 offered may be tiered in levels of service from basic to gold to platinum, with each level of service described on the Web site 52. Levels of service may relate, for example, to geographical coverage, types of monitoring (e.g., location tracking, personal health warning system, electronic leash) and alert options. Customers may select the level of service that suits their needs. The customers may or may not be supervisors.


Subscription fees may be calculated by the subscription module 50 based on the level of service selected and based on a flat rate or a pro rata rate or some combination of a flat and pro rata rate. For a pro rata rate, the subscription module 50 may record each instance when the supervisory module 40 alerts the supervisor, calculate the subscription fee based on a number of the instances recorded and send a request for payment to the customer. For full-time, continuous monitoring, the cost of any hardware may be fully underwritten by the subscription fees. Additionally, reduced rates may be offered if monitoring is not required on a continuous basis. For example, customers may desire monitoring only on weekends or desire to participate in a subscription service 54 on an ad hoc basis for temporary, finite periods of time.


After a customer signs up for a level of service, any required hardware may be shipped to the customer and any required software may be downloaded from the Web site 52 or shipped to the customer along with the hardware. Instructions for using subscription services may be provided on the Web site 52 in a graphical user interface (GUI) format and/or shipped to the customer. Billing may be automated and requests for payment may be deducted directly from the customer's bank account or mailed to the customer. After selecting a level of service, customers may be given a grace period to test the service for satisfactory performance and suitability.


Customers may select alert options on the Web site 52. Customers may register land based telephones, cellular telephones, pagers, televisions and personal computers to receive alerts. Alternately, these devices may be used to signal receipt of an alert, at which time the customer may check the supervisory module 40 or the receiver module 30 for further information. Customers may also use a dedicated, stand-alone device to receive the alert. As discussed above, the supervisory module 40 may employ a round-robin alert scheme to send alerts to all or some subset of the devices, as designated by the supervisor, until an acknowledgement is received from at least one of the devices. If no acknowledgement is received, the supervisory module 40 may alert emergency personnel or perhaps a back-up individual (e.g., a relative of the customer). Alerts may be encrypted so that only a customer's devices may receive alerts intended for the customer. Additionally, customers may allow access to monitoring alerts to third parties, including for example, emergency personnel and back-up individuals.


Customers may change their level of service or any aspect of their current level of service at any time by accessing the Web site 52. Changes may be made by accessing a customer profile saved on the Web site 52 and password protected for privacy. Additionally, the subscription module 50 may perform upgrades as new features or technology become available. For example, a customer's devices may have software upgrades loaded automatically over an appropriate transmission medium.



FIG. 10 illustrates an embodiment of a customer profile, or data structure, 200 that may be used with the subscription system 10 of FIG. 1. The profile 200 may exist as a data structure maintained at a remote location such as the subscription module 50 (see FIG. 1). Portions of the customer profile 200 may be replicated in the user module 20, the receiver module 30 and the supervisory module 40 (see FIG. 1). The customer profile 200 may be completed based on information provided by the customer using the Web site 52 (see FIG. 9) using, for example, an on-screen menu, or by other means, including orally with a representative of the subscription system 10, and by written input from the customer, for example.


The profile 200 includes a user identification (ID) section 201 where a user may be identified and assigned a means for tracking the user, such as an alpha-numeric identification. A subscriber ID section 203 similarly identifies a subscriber and links the subscriber to the user. Next, a communications options section 205 allows the customer to specify which communications options the customer desires for issuing alerts. A monitoring options section 207 allows the customer to specify monitoring options. Examples of monitoring options include standard, where the user is monitored continually, or at a set time and day (for example, 2-4 p.m., Monday through Friday); and ad hoc, where the subscriber requests monitoring on an as-needed basis. A notification option section 209 allows the customer to select notification of the subscriber, and notification of one or more third parties. Different third parties may be designated for receipt of different alerts. An equipment options section 211 specifies the equipment used in monitoring the user identified in the profile. The equipment includes the supervisory module 40 and the user module 20 (see FIG. 1), which may be specified by name, serial number, and model information, for example. An alert options section 213 allows the customer to designate specific alerts for the user. For example, the customer may designate that an alert be issued should the user module 20 pass a designated boundary, or move beyond a designated distance from the supervisory module 40. The data contained in the data structures of the alert options section 213, the equipment options section 211, and the notification options section 209 must be consistent. For example, should the customer specify distance monitoring, the equipment options section would store information related to the types of devices needed for distance monitoring.


Also included in the profile 200 may be a last software update section 215, which contains data related to software used by the customer's designated equipment configuration. An alert history section 217 may store data related to alerts issued for the user designated in the profile 200. Such information may include alert type, time and date, response time to answer the alert, and other information. Finally, a billing options section 219 may be used to specify how the customer is to be billed for the subscription system service. For example, the billing options section 219 may indicate monthly billing using electronic funds transfer from the customer's bank account, and may provide the necessary bank routing code.



FIG. 11 is a block diagram of one embodiment of the subscription module 50. Although FIG. 11 shows various modules incorporated into the subscription module 50, some or all these modules may be incorporated into other components or modules of the subscription system 10, including, for example, the receive module 30. The subscription module 50 may include an input module 220, a storage module 230, a processing module 240, a display module 260, a transmit module 270, an update module 280, and a billing module 290. The input module 220 may be used by the customer to interact with the subscription system 10. Such interactions may include initial sign up for the subscription system service, creation of the profile 200, profile updates, and other interactions. The input module 220 may also be used to receive operational information such as alerts and other monitoring information needed to formulate alerts and to otherwise operate the subscription system 10. Possible input paths, as shown, include web-based inputs, satellite, wireless, telephone, and other inputs. The storage module 230 stores the profiles 200, operating programs, and other data needed to operate the subscription system 10. The processing module 240 may be used to process subscription system information, such as profile information, and to integrate operation of the subscription system 10. The processing module 240 may also be used to process monitoring information and issue alerts. The processing module 240 may include a profiler 241 that is used to generate the profiles 200, a comparator 243 that is used to generate alerts, an interface 245 that is used to translate information received from external sources such as satellites and wireless systems, a transmission determinant 247 that is used to determine how alerts should be sent, and to which parties and which subscriber communications devices, a formatter 249 that is used to format alerts and informational messages to be sent to the components of the subscription system 10; a display driver 251 that generates displays; and a billing interface 253 that cooperates with the billing module 290 to generate bills for the customer.


The display module 260 generates displays that may be used at the location of the subscription module 50. The transmit module 270 is used to transmit information, alerts, and other data to other components of the subscription system, or to other parties. The update module 280 is used to update various services, including providing updated software to the user module 20 and the supervisory module 40, for example. Finally, the billing module calculates the customer's bill based on designated use, issued alerts, and other information.



FIG. 12 is a flow chart representing one possible monitoring set up operation 300 of the subscriptions system 10. The illustrated operation 300 may be an ad hoc monitoring set up operation of a single user. The operation 300 begins in block 302. In block 304, the subscriber notifies the subscription module 50 that the subscriber desires to monitor the user. In block 306, the processing module 240 determines if the subscriber/customer is an active member of the subscription system 10 (e.g., the customer's billing account is up-to-date). If the account is not active, the operation moves to block 308 and the subscription module provides a notification to the subscriber/customer, and waits for the account to be updated. If the service is active, the operation 300 moves to block 310 and the user profile is retrieved. In block 312, the subscription module 50 determines if ad hoc monitoring is in the profile 200. If the ad hoc is selected in the profile 200, the subscription module 50 generates a display for the supervisor to designate the parameters of the ad hoc monitoring, block 314. In block 316, the subscription module 50 receives the parameters, and performs necessary computations to set up the monitoring. The computations may include a test of the system, including the user module 20, the receiver module 30 and the supervisory module 40 to ensure that triggering events will be detected, alerts issued and received b the correct supervisor communications equipment, and alert response received and processed. If in block 312, ad hoc monitoring is not designated, the subscription module 50 will issue a prompt to the subscriber asking if set up of ad hoc monitoring is required, block 318. If such set up is not desired, the operation 300 moves to block 322 and ends. If set up is desired, the subscription module generates a set up display and returns the display to the supervisor/customer, block 321. The operation then returns to block 314.


In block 320, the ad hoc monitoring session is initiated. In block 322, the ad hoc monitoring session ends, either through expiration of the time designated for the ad hoc monitoring, or through some other action, such as issuance of a terminating alert, or at the request of the subscriber/customer.


While the present invention has been described in connection with an exemplary embodiment, it will be understood that many modifications will be readily apparent to those skilled in the art, and this application is intended to cover any variations thereof

Claims
  • 1. A system comprising: a supervisory device;a user monitor device; anda subscription sub-system supporting multiple selectable levels of subscription services, wherein location monitoring of the user monitor device is one of the multiple selectable levels of subscription services, and wherein the multiple selectable levels of subscription services are each associated with types of monitoring and alert options, the subscription sub-system configured to: receive, by way of the supervisory device, user information and monitoring options;create a user profile related to the user monitor device based on the user information;obtain a definition of a particular location from the monitoring options;monitor a location of the user monitor device;determine that the user monitor device is in the particular location; andin response to determining that the user monitor device is in the particular location, transmit an alert to the supervisory device.
  • 2. The system of claim 1, wherein transmitting the alert to the supervisory device comprises transmitting geographical information specifying the location.
  • 3. The system of claim 1, wherein the alert indicates that the particular location has been entered by the user monitor device.
  • 4. The system of claim 1, wherein the alert comprises an email message.
  • 5. The system of claim 1, further comprising: a second user monitor device, wherein the definition of the particular location applies to both the user monitor device and the second user monitor device, and wherein the subscription sub-system is further configured to:monitor a second location of the second user monitor device;determine that the second user monitor device is in the particular location; andin response to determining that the second user monitor device is in the particular location, transmit a further alert to the supervisory device.
  • 6. The system of claim 1, further comprising: a web site through which the supervisory device can be configured as a recipient of the alert.
  • 7. The system of claim 6, wherein the web site allows a plurality of devices, including the supervisory device, to be configured as recipients of the alert, and wherein the subscription sub-system is further configured to: in response to determining that the user monitor device is in the particular location, transmit the alert to the plurality of devices.
  • 8. The system of claim 1, wherein the user monitor device is assigned a unique identifier.
  • 9. The system of claim 1, wherein the subscription sub-system stores the alert in an alert history that includes an alert type and time and date of the alert.
  • 10. The system of claim 1, wherein the supervisory device incurs a flat rate subscription fee.
  • 11. The system of claim 1, wherein the definition of the particular location is received from the supervisory device.
  • 12. The system of claim 1, wherein the subscription sub-system is further configured to: determine that the user monitor device has left the particular location; andin response to determining that the user monitor device has left the particular location, transmit a further alert to the supervisory device.
  • 13. A method comprising: receiving, by way of a supervisory device, user information and monitoring options;creating a user profile related to a user monitor device based on the user information, wherein location monitoring of the user monitor device is one of multiple selectable levels of subscription services, and wherein the multiple selectable levels of subscription services are each associated with types of monitoring and alert options;obtaining a definition of a particular location from the monitoring options;monitoring a location of the user monitor device;determining that the user monitor device is in the particular location; andin response to determining that the user monitor device is in the particular location, transmitting an alert to the supervisory device.
  • 14. The method of claim 13, wherein transmitting the alert to the supervisory device comprises transmitting geographical information specifying the location.
  • 15. The method of claim 13, wherein the alert indicates that the particular location has been entered by the user monitor device.
  • 16. The method of claim 13, wherein the definition of the particular location applies to both the user monitor device and a second user monitor device, the method further comprising: monitoring a second location of the second user monitor device;determining that the second user monitor device is in the particular location; andin response to determining that the second user monitor device is in the particular location, transmitting a further alert to the supervisory device.
CROSS REFERENCE TO RELATED APPLICATIONS

This patent application is a continuation of U.S. patent application Ser. No. 16/157,516, filed Oct. 11, 2018. U.S. patent application Ser. No. 16/157,516 is a continuation of U.S. patent application Ser. No. 15/182,194, filed Jun. 14, 2016 (now U.S. Pat. No. 10,127,787). U.S. patent application Ser. No. 15/182,194 is a continuation of U.S. patent application Ser. No. 14/618,110, filed Feb. 10, 2015 (now U.S. Pat. No. 9,368,013), which is a continuation of U.S. patent application Ser. No. 14/022,612, filed Sep. 10, 2013 (now U.S. Pat. No. 8,952,806), which is a continuation of U.S. patent application Ser. No. 13/585,279, filed Aug. 14, 2012 (now U.S. Pat. No. 8,531,302), which is a continuation of U.S. patent application Ser. No. 13/313,398, filed Dec. 7, 2011 (now abandoned), which is a continuation of U.S. patent application Ser. No. 12/643,592, filed Dec. 21, 2009 (now abandoned), which is a continuation of U.S. patent application Ser. No. 11/976,647, filed Oct. 26, 2007 (now U.S. Pat. No. 7,659,826); which is a continuation of U.S. patent application Ser. No. 10/992,003, filed Nov. 19, 2004 (now U.S. Pat. No. 7,312,710); which is a continuation of U.S. patent application Ser. No. 10/140,064, filed May 8, 2002 (now U.S. Pat. No. 6,825,767), the entire disclosures of which are incorporated herein by reference.

US Referenced Citations (163)
Number Name Date Kind
3781824 Caiati et al. Dec 1973 A
3870894 Brede et al. Mar 1975 A
4241403 Schultz Dec 1980 A
4258421 Juhasz et al. Mar 1981 A
4387587 Faulconer Jun 1983 A
4533962 Decker et al. Aug 1985 A
4591823 Horvat May 1986 A
4593273 Narcisse Jun 1986 A
4638289 Zottnik Jan 1987 A
4644368 Mutz Feb 1987 A
4688244 Hannon et al. Aug 1987 A
4750197 Denekamp et al. Jun 1988 A
4785291 Hawthorne Nov 1988 A
4827943 Bomn et al. May 1989 A
4836024 Woehrl et al. Jun 1989 A
4843578 Wade Jun 1989 A
4899135 Ghahariiran Feb 1990 A
4944401 Groenewegen Jul 1990 A
4992943 McCracken Feb 1991 A
5075670 Bower Dec 1991 A
5119072 Hemingway Jun 1992 A
5129605 Burns et al. Jul 1992 A
5137041 Hall Aug 1992 A
5223844 Mansell et al. Jun 1993 A
5289163 Perez Feb 1994 A
5303163 Ebaugh et al. Apr 1994 A
5305214 Komatsu Apr 1994 A
5412373 Wajda May 1995 A
5412570 Gruler et al. May 1995 A
5446659 Yamawaki Aug 1995 A
5471193 Peterson et al. Nov 1995 A
5475597 Buck Dec 1995 A
5485161 Vaughn Jan 1996 A
5515042 Nelson May 1996 A
5515858 Myllymaki May 1996 A
5528222 Moskowitz et al. Jun 1996 A
5550551 Alesio Aug 1996 A
5570087 Lemelson Oct 1996 A
5581464 Woll et al. Dec 1996 A
5592941 McMorrow Jan 1997 A
5608629 Cuddihy et al. Mar 1997 A
5627520 Grubbs May 1997 A
5646593 Hughes et al. Jul 1997 A
5659290 Haeri Aug 1997 A
5661460 Sallen et al. Aug 1997 A
5689240 Traxler Nov 1997 A
5712619 Simkim Jan 1998 A
5719771 Buck et al. Feb 1998 A
5731757 Layson, Jr. Mar 1998 A
5771001 Cobb Jun 1998 A
5790427 Greer Aug 1998 A
5797134 McMillan et al. Aug 1998 A
5812056 Law Sep 1998 A
5815093 Kikinis Sep 1998 A
5835907 Newman Nov 1998 A
5841352 Prakash Nov 1998 A
5844505 Van Ryzin Dec 1998 A
5862500 Goodwin Jan 1999 A
5877707 Kowalick Mar 1999 A
5900817 Olmassakian May 1999 A
5905461 Neher May 1999 A
5952941 Mardirossian Sep 1999 A
5982168 Westberg et al. Nov 1999 A
6008740 Hopkins Dec 1999 A
6014080 Layson, Jr. Jan 2000 A
6014602 Kithil et al. Jan 2000 A
6034622 Levine Mar 2000 A
6037862 Ying Mar 2000 A
6054928 Lemelson et al. Apr 2000 A
6067018 Skelton et al. May 2000 A
6067488 Tano May 2000 A
6072392 Henderson Jun 2000 A
6072396 Gaukel Jun 2000 A
6076026 Jambhekar et al. Jun 2000 A
6084517 Rabanne et al. Jul 2000 A
6087965 Murphy Jul 2000 A
6100806 Gankel Aug 2000 A
6127931 Mohr Oct 2000 A
6141610 Rothert et al. Oct 2000 A
6141611 Mackey et al. Oct 2000 A
6163277 Gehlot Dec 2000 A
6172640 Durst et al. Jan 2001 B1
6185490 Ferguson Feb 2001 B1
6198394 Jacobsen et al. Mar 2001 B1
6225890 Murphy May 2001 B1
6236358 Durst et al. May 2001 B1
6240365 Bunn May 2001 B1
6240773 Rita et al. Jun 2001 B1
6243572 Chow et al. Jun 2001 B1
6246933 Bague Jun 2001 B1
6246934 Otake et al. Jun 2001 B1
6246948 Thakker Jun 2001 B1
6253129 Jenkins Jun 2001 B1
6263280 Stingone, Jr. Jul 2001 B1
6265974 D'Angelo Jul 2001 B1
6265989 Taylor Jul 2001 B1
6271757 Touchton et al. Aug 2001 B1
6278370 Underwood Aug 2001 B1
6290646 Cosentino et al. Sep 2001 B1
6298290 Abe et al. Oct 2001 B1
6301533 Markow Oct 2001 B1
6304186 Rabanne et al. Oct 2001 B1
6317668 Thibault Nov 2001 B1
6326891 Lin Dec 2001 B1
6333694 Pierce et al. Dec 2001 B2
6339736 Moskowitz Jan 2002 B1
6480147 Durst Jan 2002 B2
6353390 Berl Mar 2002 B1
6362778 Neher Mar 2002 B2
6366207 Murphy Apr 2002 B1
6388612 Neher May 2002 B1
6396403 Haner May 2002 B1
6402691 Peddicord et al. Jun 2002 B1
6416471 Kumar et al. Jul 2002 B1
6421001 Durst et al. Jul 2002 B1
6459913 Cloutier Oct 2002 B2
6473000 Secreet et al. Oct 2002 B1
6493615 Johnston Dec 2002 B1
6509830 Elliott Jan 2003 B1
6556905 Mittelsteadt et al. Apr 2003 B1
6559769 Anthony et al. May 2003 B2
6593851 Bornstein Jul 2003 B1
6665613 Duvall Dec 2003 B2
6678591 Ohmura Jan 2004 B2
6690294 Zierden Feb 2004 B1
6718235 Borugian Apr 2004 B1
6728605 Lash et al. Apr 2004 B2
6748322 Fernandez Jun 2004 B1
6755783 Cosentino et al. Jun 2004 B2
6762684 Camhi Jul 2004 B1
6825767 Humbard Nov 2004 B2
6847871 Malik Jan 2005 B2
6888495 Flick May 2005 B2
6961001 Chang et al. Nov 2005 B1
7022072 Fox et al. Apr 2006 B2
7023333 Blanco et al. Apr 2006 B2
7312710 Humbard Dec 2007 B2
7366522 Thomas Apr 2008 B2
7399277 Saidara et al. Jul 2008 B2
7448996 Khanuja et al. Nov 2008 B2
7659826 Humbard Feb 2010 B2
8269618 Murray et al. Sep 2012 B2
8301158 Thomas Oct 2012 B1
8531302 Humbard Sep 2013 B2
8952806 Humbard Feb 2015 B2
10127787 Humbard Nov 2018 B1
10573152 Humbard Feb 2020 B2
20010052849 Jones Dec 2001 A1
20020123832 Gotvall et al. Sep 2002 A1
20020135484 Ciccolo Sep 2002 A1
20020196147 Lau Dec 2002 A1
20020196151 Troxler Dec 2002 A1
20030016124 Schmidt et al. Jan 2003 A1
20030069481 Hervy et al. Apr 2003 A1
20030154054 Charette et al. Aug 2003 A1
20030163287 Vock et al. Aug 2003 A1
20040015251 Hamada et al. Jan 2004 A1
20040085198 Saito et al. May 2004 A1
20040127198 Roskind et al. Jul 2004 A1
20050137763 Watkins et al. Jun 2005 A1
20130238188 Obradovich et al. Sep 2013 A1
20140309935 Ricci Oct 2014 A1
20150142264 Gormley May 2015 A1
Foreign Referenced Citations (9)
Number Date Country
108534 Feb 1998 IL
8403359 Aug 1984 WO
8809023 Nov 1988 WO
9310510 May 1993 WO
9404975 Mar 1994 WO
9418645 Aug 1994 WO
9847109 Oct 1998 WO
0017721 Mar 2000 WO
0118491 Mar 2001 WO
Non-Patent Literature Citations (7)
Entry
www.WherifyWireless.com, “Frequently Asked Questions”, pp. 1-7, Jul. 22, 2003.
www.WherifyWireless.com, “New Video”, pp. 1-4, Jul. 22, 2002.
www.WherifyWireless.com, “About Us”, pp. 1-4, Jul. 22, 2002.
www.WherifyWireless.com, “GPS Personal Locator for Children”, pp. 1-3, Jul. 22, 2002.
Lewis, Raphael, “Parents of Teenage Drivers Use Monitoring to Reduce Worries,” startribune.com: Minneapolis, MN, Aug. 19, 2000.
Haglund, Rick, “More Than a Set of Wheels,” Start Tribune; Minneapolis, MN Oct. 23, 2000.
Serres, Chris “Big Brother under the dashboard?” Star Tribune; Minneapolis, MN Aug. 10, 2004.
Related Publications (1)
Number Date Country
20200160684 A1 May 2020 US
Continuations (10)
Number Date Country
Parent 16157516 Oct 2018 US
Child 16749497 US
Parent 15182194 Jun 2016 US
Child 16157516 US
Parent 14618110 Feb 2015 US
Child 15182194 US
Parent 14022612 Sep 2013 US
Child 14618110 US
Parent 13585279 Aug 2012 US
Child 14022612 US
Parent 13313398 Dec 2011 US
Child 13585279 US
Parent 12643592 Dec 2009 US
Child 13313398 US
Parent 11976647 Oct 2007 US
Child 12643592 US
Parent 10992003 Nov 2004 US
Child 11976647 US
Parent 10140064 May 2002 US
Child 10992003 US