Embodiments of the present invention relate to dishwashers and, more particularly, to a method, an associated system for removing a clog from a drain hose in a dishwasher.
Dishwashers have become an integral part of everyday household use. Typical dishwashers use water pumped into a tub to clean dishes and utensils, and wash cycles often use multiple water fills. The water pumped into the dishwasher along with soils from the dishes and utensils are removed through a drain hose. The soils can build up over time especially at a restriction in the drain circuit, making it possible to overwhelm or clog the drain hose with large dense soils. A clog in the drain hose can contribute to flooding of the dishwasher and will likely lead to ineffective cleaning of the dishes and utensils.
Therefore, there exists a need for a method and system for effectively removing clogs in the drain hose to prevent flooding and enable proper cleaning during dishwasher cycles.
In light of the foregoing background, embodiments of the present invention provide an effective method and system for removing a clog from a drain hose in a dishwasher.
One embodiment is directed to a method of manufacturing a dishwasher for removing a clog from a drain hose. The method includes the steps of providing a dishwasher comprising: (i) a drain pump configured to remove water from the dishwasher; (ii) a drain hose in fluid communication with the drain pump; and (iii) a control device in operable communication with the drain pump. The method also includes configuring the control device to execute a drain routine in response to detecting a clog in the drain hose, wherein the drain routine comprises repeatedly activating and deactivating the drain pump to facilitate removal of the clog.
According to one embodiment, the method comprises providing a dishwasher including a detection device for detecting an overfill condition in the dishwasher, the overfill condition corresponding to a water level in the dishwasher that is greater than a predetermined threshold. In another embodiment, the drain routine may comprise repeatedly activating and deactivating the drain pump until the overfill condition is removed.
In some embodiments, the drain routine may further comprise repeating the steps of detecting an overfill condition and executing the drain routine a plurality of times. The drain routine may also comprise signaling a drain clog error upon detection of an overfill condition a plurality of times.
In other embodiments, the drain routine may further comprise activating the drain pump for a first pre-determined time period, deactivating the drain pump for a second pre-determined time period, and activating the drain pump for a third pre-determined time period. The drain routine may further comprise the step of repeating the steps of activating the drain pump for a first pre-determined time period and deactivating the drain pump for a second pre-determined time period a plurality of times before activating the drain pump for a third pre-determined time period.
Another embodiment of the present invention includes a system for removing a clog from a drain hose in a dishwasher. The system comprises a drain pump configured to remove water from the dishwasher, a drain hose in fluid communication with the drain pump, and a control device in operable communication with the drain pump and configured to execute a drain routine in response to detecting a clog in the drain hose, wherein the drain routine comprises repeatedly activating and deactivating the drain pump to facilitate removal of the clog. In one embodiment, the drain routine comprises repeatedly activating and deactivating the drain pump for pre-determined time periods so as to facilitate removal of the clog. In addition, the control device may be configured to provide a signal to resume operation of the dishwasher upon removal of the clog.
According to one aspect, the system further includes a detection device configured to detect a clog in the drain hose, wherein the control device is in operable communication with the detection device and is configured to execute a drain routine in response to the detection device detecting a clog in the drain hose. The detection device may be further configured to detect an overfill condition in the dishwasher, wherein the overfill condition corresponds to a water level in the dishwasher that is greater than a predetermined threshold. The detection device may be further configured to detect removal of the overfill condition, wherein the drain routine comprises repeatedly activating and deactivating the drain pump until the detection device detects removal of the overfill condition. Moreover, the control device may be further configured to signal a drain clog error in response to the detection device detecting an overfill condition a plurality of times.
According to additional aspects, the detection device is further configured to detect a clog based on identifying a reduced drain fluid discharge rate from the dishwasher. The detection device may be further configured to detect removal of the clog, wherein the drain routine comprises repeatedly activating and deactivating the drain pump until the detection device detects removal of the overfill condition. The control device may be further configured to signal a drain clog error in response to the detection device detecting a reduced drain fluid discharge rate a plurality of times.
Other embodiments of the present invention include a method and computer program product for removing a clog from a drain hose in a dishwasher, wherein the dishwasher comprises a drain pump for removing water from the dishwasher and in fluid communication with the drain hose. For example, the method includes detecting a clog in the drain hose and executing a drain routine in response to detecting a clog in the drain hose, wherein the drain routine comprises repeatedly activating and deactivating the drain pump to facilitate removal of the clog.
Having thus described the invention in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all embodiments of the inventions are shown. Indeed, these inventions may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like numbers refer to like elements throughout.
The tub 12 may include a sump 14 in which wash water or rinse water is collected, typically under the influence of gravity. The wash/rinse water may be pumped by a circulation pump to one or more spray arms 20 mounted in the interior of the tub 12 for spraying the wash/rinse water, under pressure, onto the dishes, utensils, and other dishware contained therein.
The sump 14 and spray arms 20 may be in fluid communication with various operational components of the dishwasher 10. For example, a water valve 50 and a drain pump 60 may each be in fluid communication with the sump 14 and spray arms 20. The water valve 50 may be configured to open, or turn ON, to direct water from a fluid supply/source (not shown) or the sump 14 to the spray arms 20 or otherwise to the tub 12 of the dishwasher 10. The water valve 50 may also be configured to close, or turn OFF, to stop directing water to the tub 12. The drain pump 60 may be configured to actuate or activate or turn ON, to remove water from the sump 14 or tub 12, as well as being configured to deactuate or deactivate or turn OFF, to stop removing water from the sump 14 or tub 12. Thus, through selective actuation of the water valve 50/drain pump 60, water may be selectively added or removed from the dishwasher 10. The drain pump 60 and the water valve 50 may be configured to be automatically actuated (i.e., electrically opened and closed), though one skilled in the art will appreciate that such components may be actuated in different ways such as, for example, mechanically, hydraulically, and/or in other appropriate manners.
Water and soil collected in the sump 14 can be pumped out of the dishwasher 10 by the drain pump 60 through a drain hose 35. The drain hose 35 comprises a hose that extends from the drain pump 60, or otherwise from the dishwasher 10, to a typical home drain plumbing system and is configured to remove water and soils from the dishwasher 10 to the home drain plumbing. As shown in
With reference to
The dishwasher 10 typically includes wash programs having various parameters of the dishwashing process. In particular, the dishwasher 10 may be in an operating mode (e.g., rinse cycle, dry cycle, etc.) when using these wash programs, which may require providing water to the dishwasher 10 to clean dishware, utensils, or the like. Thus, with reference to
As shown in
According to one embodiment, the dishwasher 10 may comprise at least one detection device 30 for monitoring the water level 55 and detecting an overfill condition in the tub 12, which may result from a clog 70 in the drain hose 35. The detection device 30 may be configured to indirectly or directly detect a clog 70 in the drain hose 35. In the depicted embodiment, the detection device 30 is configured to detect when the water level 55 reaches the threshold level 25, thereby signaling an overfill condition. The detection device 30 may be any type of device that can detect an overfill condition (e.g., a particularly placed sensor, a float, or the like) and can be located inside the tub 12 to detect the water level 55 of the dishwasher 10. The detection device 30 may also be configured to detect removal of the clog 70 in the drain hose 35 or removal of the overfill condition. For example, the detection device 30 may be configured to detect when the water level 55 recedes below the threshold level 25, indicating a removal of the clog and/or overfill condition. One example of a detection device and system for preventing overfilling in a dishwasher is further described in U.S. patent application Ser. No. 12/827,784, which is assigned to the assignee of the present invention, and which is hereby incorporated by reference in its entirety. Thus, as described herein, embodiments of the present invention may be advantageously used in connection with other methods, systems, devices, and operating routines of a dishwasher.
In other embodiments, the detection device 30 may directly or indirectly detect a clog or forming clog. For example, the detection device may be configured to monitor the rate of water level change during draining, such that a slower than normal drainage rate could be identified, thereby indicating the presence of a clogged drain. Additionally, a forming clog could be identified and the drain routine could be executed even before the clog is fully developed, which would improve the success rate for removing the forming clog. Additionally or alternatively, the detection device may comprise a water sensing device, such as a conductivity probe, which could be placed in the flow path of the draining water. The detection device may then be configured to sense when water is present in the drain hose, such that if water should not be in the drain hose, the drain routine could be executed. In another embodiment, the detection device may comprise a pressure switch or transducer placed in the drain circuit. The pressure switch could determine the pressure level of the water or air in the drain hose and identify a clog based on the rate of pressure dissipation in the drain hose.
Additionally, a control device 40 can be used to communicate with certain components of the dishwasher 10. The control device 40 may be housed inside the base portion 22 of the tub 12 or other location so as to facilitate communication with various components of the dishwasher 10. In the depicted embodiment, the control device 40 is housed in the base portion 22 of the tub 12 and is configured to communicate with the water valve 50, drain pump 60, and detection device 30. In this way, the control device 40 can determine whether the drain pump 60 is activated or deactivated and the water valve 50 is opened or closed as well as being able to actuate or deactuate the drain pump 60 and open or close the water valve 50. Also, the control device 40 may be configured to determine if the detection device 30 is actuated/de-actuated due to a clog or an overfill condition or if the detection device's 30 actuation/de-actuation is due to the removal of the clog or overfill condition. Furthermore, the control device 40 may be configured to communicate with the dishwasher 10 to determine if the dishwasher 10 is in an operating mode, and more particularly, whether the dishwasher 10 requires water to be circulated or drained. In some embodiments, the control device 40 may be configured to detect a clog in the drain hose and detect removal of the clog in the drain hose.
The control device 40 may be any type of device that can communicate with the components of the dishwasher 10, electronically, mechanically, or otherwise. In one embodiment, the control device 40 may include a memory for storing of programming, routines, values and variables. In one embodiment, the control device 40 is a microprocessor or other processor configured to perform the functions described herein and may operate under the control of software. The control device 40 may be configured to automatically control the water valve and drain pump in response to receiving a signal indicative of a clog or an overfill condition. For example, in some embodiments, the control device may be further configured to execute a drain routine in response to the detection device 30 detecting a clog 70 in the drain hose 35. In such a regard, the control device 40 may be configured to execute any of the embodiments or variations of the operation routine or drain routine as described herein.
In other embodiments, the control device 40 may be further configured to indicate or otherwise provide error message signals by either storing them in the control device 40 for later access by a user, signaling the dishwasher 10 to display the error message to the user, or other indicating means. Thus, the control device 40 may be configured to signal a drain clog error in response to the detection device 30 detecting an overfill condition a predetermined number of times.
As noted herein, soils exiting the dishwasher 10 through the drain hose 35 may become trapped, thereby clogging the drain hose 35 and preventing water and other soils from properly draining from the dishwasher 10. Once the drain hose 35 is clogged, a normal drain cycle will not remove the material, and further operation of the drain pump 60 can act to set the clog even harder. Alternatively, attempting clog removal by using a vacuum to pull from the downstream side also wedges the clog harder into the restriction. To clear the clog the consumer would have to remove or uninstall the dishwasher 10 from its position under the counter and then remove the drain hose 35. In order to facilitate unclogging of a drain hose, embodiments of the present invention provide methods and associated systems for removing a clog from a drain hose while it remains in a dishwasher.
At any time during operation of the dishwasher, the operation routine 100 may comprise determining whether a clog exists at 115. As described herein, the detecting of a clog may include detecting an overfill condition. If the operation routine 100 does not detect a clog, the operation routine returns to operating the dishwasher as normal.
Upon detection of a clog, however, the operation routine 100 may execute a drain routine 120. In some embodiments, the drain routine 120 may comprise repeatedly activating and deactivating the drain pump to facilitate removal of the clog. In other embodiments, the drain routine 120 may comprise repeatedly activating and deactivating the drain pump until the overfill condition is removed. “Repeatedly activating and deactivating” the drain pump may include activating/deactivating the drain pump at least one time. As described herein, repeatedly activating and deactivating the drain pump may comprise repeating the step of activating the drain pump for a pre-determined time period and deactivating the drain pump for another pre-determined time period.
In the depicted embodiment, the drain routine 120 comprises activating the drain pump for a first amount of time equal to X at 122. After time X elapses, the drain routine 120 further comprises deactivating the drain pump for a second amount of time equal to Y at 124. The activation and deactivation of the drain pump may be repeated a pre-determined number of times equal to B at 126. Finally, the drain routine 120 comprises activating the drain pump for a third amount of time equal to Z at 128. In some embodiments, time Z may be different than time X and may correspond to fully draining the dishwasher, such as using a 90-second drain. X, Y, and Z may be customizable as any pre-determined length of time (e.g., 10 seconds, 2.5 seconds, 1 minute, etc.). B may be customizable as any pre-determined number (e.g., 2, 10, etc.) or may correspond to an amount of time (e.g., 20 seconds, 1 minute, etc.).
Upon exiting the drain routine 120, the operation routine 100 may comprise detecting for removal of the clog at 129. If the clog is removed, the operation routine 100 may return to operating the dishwasher at 105. If removal of the clog is not detected, however, the operation routine 100 may further comprise determining if the drain routine 120 has been performed a number of times equal to C at 130. If the drain routine 120 has not been performed C times, then the operation routine 100 comprises returning to step 115 to detect for a clog. However, if the drain routine 120 has been performed C times, then the operation routine 100 comprises signaling a DRAIN ERROR at 140, which could be any perceptible signal provided to a user (e.g., an audible or a visual alarm). In other embodiments, the operation routine 100 may further comprise ceasing operation of the dishwasher. C may be customizable as any pre-determined number (e.g.,2, 4, etc.) or may correspond to an amount of time (e.g., 20 seconds, 1 minute, etc.).
In some embodiments, the operation routine 100 may comprise detecting removal of a clog or an overfill condition at any point in the operation routine 100 or drain routine 120. In response to detecting removal of the clog or overfill condition, the operation routine 100 may comprise ceasing the operation routine 100 or drain routine 120 and resuming operation of the dishwasher at step 105.
As shown in
As described above, the drain pump 60 may be repeatedly activated/deactivated. As shown in
As described above, activation and deactivation of the drain pump may be repeated any number of times. Eventually, with reference to
As described herein,
Accordingly, blocks or steps of the flowchart support combinations of means for performing the specified functions, combinations of steps for performing the specified functions and program instruction means for performing the specified functions. It will also be understood that each block or step of the flowchart, and combinations of blocks or steps in the flowchart, can be implemented by special purpose hardware-based computer systems which perform the specified functions or steps, or combinations of special purpose hardware and computer instructions.
Embodiments of the present invention may provide an effective means for removing clogs in a drain hose of a washing appliance. One exemplary advantage of the present invention is that some embodiments may be implemented in existing operation routines of washing appliances using existing operational components. Thus, embodiments of the present invention allow for inexpensive and easy implementation while still effectively removing clogs in the drain hose, thereby preventing flooding or overfilling and allowing for more effective cleaning.
Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the inventions are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included herein. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
Number | Name | Date | Kind |
---|---|---|---|
2882366 | Fay | Apr 1959 | A |
3439687 | Cushing | Apr 1969 | A |
3464437 | Zane | Sep 1969 | A |
3835880 | Hoffman et al. | Sep 1974 | A |
3844299 | Athey et al. | Oct 1974 | A |
3846615 | Athey et al. | Nov 1974 | A |
3986372 | Karklys | Oct 1976 | A |
4069425 | Cushing | Jan 1978 | A |
4180095 | Woolley et al. | Dec 1979 | A |
4241400 | Kiefer | Dec 1980 | A |
4245310 | Kiefer | Jan 1981 | A |
4271861 | Crawford | Jun 1981 | A |
4301829 | Rowe | Nov 1981 | A |
4318084 | Scott et al. | Mar 1982 | A |
4334143 | Cushing | Jun 1982 | A |
4796473 | Custer | Jan 1989 | A |
5018550 | Burdorff | May 1991 | A |
5361439 | Malchow | Nov 1994 | A |
5611867 | Cooper et al. | Mar 1997 | A |
5669983 | Cooper et al. | Sep 1997 | A |
5755244 | Sargeant et al. | May 1998 | A |
5762080 | Edwards et al. | Jun 1998 | A |
5770058 | Jozwiak | Jun 1998 | A |
5797409 | Cooper et al. | Aug 1998 | A |
5806541 | Cooper et al. | Sep 1998 | A |
5957144 | Neff et al. | Sep 1999 | A |
6007640 | Neff et al. | Dec 1999 | A |
6103017 | Thies et al. | Aug 2000 | A |
6125870 | Furmanek | Oct 2000 | A |
6129110 | Kolb | Oct 2000 | A |
6752875 | Kiesler et al. | Jun 2004 | B2 |
6811617 | Elick et al. | Nov 2004 | B2 |
7146670 | McGill et al. | Dec 2006 | B2 |
7232494 | Rappette | Jun 2007 | B2 |
7241347 | Elick et al. | Jul 2007 | B2 |
7472714 | Elick et al. | Jan 2009 | B2 |
7520283 | Lee | Apr 2009 | B2 |
7556050 | Lee | Jul 2009 | B2 |
20020108441 | Liu | Aug 2002 | A1 |
20030056300 | Ruhl et al. | Mar 2003 | A1 |
20040255988 | DuHack et al. | Dec 2004 | A1 |
20050051201 | Ashton et al. | Mar 2005 | A1 |
20050241675 | Jung et al. | Nov 2005 | A1 |
20060174917 | Hedstrom et al. | Aug 2006 | A1 |
20060237035 | Ferguson et al. | Oct 2006 | A1 |
20060237052 | Picardat et al. | Oct 2006 | A1 |
20070017551 | Hartogh | Jan 2007 | A1 |
20080078243 | Jeon et al. | Apr 2008 | A1 |
20080163930 | Ha | Jul 2008 | A1 |
20090078288 | Son | Mar 2009 | A1 |
20120000535 | Poyner et al. | Jan 2012 | A1 |
Number | Date | Country |
---|---|---|
35 13 640 | Oct 1986 | DE |
36 23 081 | Jan 1988 | DE |
38 39 200 | May 1990 | DE |
40 22 439 | Jan 1992 | DE |
42 19 146 | Dec 1992 | DE |
42 38 450 | May 1994 | DE |
103 12 744 | Sep 2004 | DE |
10 2006 013 312 | May 2007 | DE |
0 669 099 | Aug 1985 | EP |
0 461 722 | Dec 1991 | EP |
2 038 171 | Jul 1980 | GB |
2 123 148 | Jan 1984 | GB |
2 139 084 | Nov 1984 | GB |
2002065566 | Mar 2002 | JP |
2002065567 | Mar 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20120199162 A1 | Aug 2012 | US |