Typical systems for removing exudates from a wound site can be bulky, low capacity and/or passive. As a result, the systems cannot be readily portable or provide satisfactory exudate management. Also, typical systems can be prone to leak failures, thus rendering them less useful for use on even moderately sized wounds. Further, typical systems having an air-based pump can be too large, expensive and inefficient to be usable in wearable applications.
For example, a typical bulky system for removing exudates uses air-based accumulators that move a lot of air to sustain a vacuum, and has a large container with a gravity trap for exudates, which increases the size of the system independent of the amount of exudate being removed. Such systems typically can introduce leaks into the fluid flow lines of the system, and also overcompensate on power capability to ensure a vacuum is maintained in the presence of a substantial leak. Further, such systems usually are designed to handle the largest expected wounds, and to have a large configuration.
Typical low capacity systems for removing exudates, although being more portable, have very small containment systems. Such smaller containment systems often may not be sufficiently large enough to hold the volume of exudates liberated daily from moderately or highly exuding wounds. In many cases, the containment systems cannot hold more fluid than a moist wound dressing.
Further, typical passive systems for removing exudates, which have spring-loaded canisters and apply a vacuum until the canisters become full or until a leak forms at a dressing, can be very leak prone, such as at connectors, around dressing seals, etc. Also, typical passive systems cannot apply a vacuum intermittently. The passive systems further can include disposable canisters, such that they are not environmentally friendly.
Therefore, there exists a need for a system for removing exudates from a wound site which is portable, may be manufactured under less demanding component tolerances, may be of relatively small size, may sustain therapy in the event of a leak, may provide effective intermittent vacuum therapies and may provide therapy for larger wounds.
In accordance with an aspect of the invention, an apparatus for controlling flow of fluid from a wound site of a patient may include a chamber connectable in fluid communication with the wound site and a reservoir for receiving and holding fluid. The chamber may have a first state, in which the chamber is deformed, and a second state, in which the chamber is not deformed or less deformed than in the first state. The chamber may be adapted to manage fluid flow between the wound site and the reservoir during transition of the chamber between the first state and the second state. In addition, the apparatus may include an actuator element adapted to operate on the chamber to transition the chamber from the second state to the first state.
In accordance with another aspect of the invention, an apparatus for controlling flow of fluid from a wound site of a patient may include a passive pump unit including a chamber having an input for receiving the fluid from the wound site of the patient conveyed over a conduit connectable in fluid communication with the input and an output for providing the received fluid from the chamber. The apparatus may further include an actuator element operable to create a pressure within the chamber for drawing the fluid from the wound site through the conduit and the input and into the chamber. The chamber may be adapted to hold the received fluid without the received fluid flowing through the input and the output, and to provide the received fluid from the chamber through the output without the received fluid flowing through the input.
In another embodiment of the present disclosure there is provided a vacuum wound therapy apparatus including a chamber having a first wall and a second wall and a cavity disposed within the chamber. The cavity is configured for fluid communication with a wound site and with a reservoir that receives and holds wound exudate. The cavity includes an input for communication with the wound site, an output for communication with the reservoir, and a first non-rigid, deformable wall in fluid communication with the chamber with the first non-rigid, deformable wall opposing at least one of the first wall and the second wall. The cavity includes a first state being deformed and a second state being non-deformed or less deformed than the first state, wherein the cavity is adapted to draw exudate from the wound site into the cavity and to manage exudate flow between the wound site and the reservoir during transition of the cavity between the first state and the second state. A piezoelectric device is located at the first wall and in contact with the cavity, wherein the piezoelectric device is adapted to deform the first non-rigid deformable wall of the cavity in the direction of the second wall to transition the cavity from the second state to the first state.
In a further embodiment of the present invention, there is provided a vacuum wound therapy apparatus including an active element having a wall defining a chamber and a pump having an outlet in fluid communication with the chamber. A cavity is disposed within the chamber and includes an input for communication with a wound site, an output for communication with a reservoir, and a non-rigid deformable wall in fluid communication with the chamber. A controller is operatively connected to the pump and includes a processor and a memory, configured to store instructions. Thee processor is configured to execute the stored instructions to: actuate the pump to apply a fluid pressure within the chamber to transition the cavity from an expanded state to a compressed state to force exudate from the cavity to a reservoir.
In one embodiment, the reservoir 16 may be a collapsible chamber that slowly expands as it fills with exudates and fluid. In addition, the reservoir may be in the form of a bag, and may be adapted to couple to clips, bands or the like that may be used to fasten the bag-shaped reservoir to clothing, a patient's appendage or a bedside table, etc., during use. In another embodiment, the reservoir may include a filter for gas liberation, and a charcoal filter to minimize odor.
In one embodiment, the conduits 24 may be tubes formed using film processes or by extrusion processes. For example, the conduit may be a flexible conduit adapted not to collapse during use. In addition, the conduits may include odor barriers to reduce smell during use of the inventive system. In another embodiment, the conduits may be flat, thermoformed channels.
In a further embodiment, one or more of the conduits may be formed from two flat strips of thin flexible material welded or bonded together along their long edges to form a channel. The channel may also contain one or more spacer strips welded or bonded to the walls of the channel to ensure a fluid path is maintained even when the channel is folded or crushed or subjected to a vacuum pressure. The advantage provided by this feature is that the channel is low profile and lightweight to assist with portability and discretion. See, for example, PCT/GB2006/002806 and PCT/GB2006/002097, incorporated by reference herein.
The outlet valve 22 may be arranged in the system 10 to permit fluid flow only in a direction from the apparatus 12 to the reservoir 16. The inlet valve 18 may be arranged in the system 10 to permit fluid flow only in a direction from the dressing 14 to the apparatus 12. The valves 18 and 22, which are inline to the flow to and from the apparatus 12, may seal upon application of back pressure, such as may occur during a process to purge material from within the apparatus 12 and cause the purged material to be conveyed to and into the reservoir 16. Exemplary valves may include flap valves, flappers, flanges, anti-reflux valves, ball valves, duck bill valves, etc.
In one embodiment, the valve 18 may include a pilot valve that automatically, when pressure in one direction closes the valve, does not allow flow, and when there is pressure in the opposite direction, immediately opens the valve and allows flow. In an alternative embodiment, the pilot valve 18 may remain positively closed in either direction, or open in a desired direction only upon application of a separate pilot signal 19. The pilot signal 19 may be an electrical signal, such as from a controller of the apparatus 12, to open the valve. Alternatively, the pilot signal may be based on fluid pressure increasing to a certain level through a pilot port, which then fully opens a main valve.
In another embodiment, the one-way valves 18 and 22 may be optimized to avoid their becoming obstructed by gels, proteins and solid masses in the fluids being communicated there through.
The closure device 20 may be a valve operable to prevent fluid flow in any direction therethrough, and also permit fluid flow therethrough in a single direction, such as from the dressing to the apparatus 12.
The apparatus 12 may include a pump element 26 associated with an inline, self-filling pump cavity or chamber 28. The pump element 26 may be an active or mechanically operated component which may operate to create a pressure or a vacuum in the pump cavity, so as to draw exudates from a wound site into the pump cavity and to force exudates being retained in the pump cavity from the pump cavity into a storage element, such as the reservoir 16.
Referring to
When a force acting upon the top wall 30 is released after the top wall 30 is deformed by application of such force, such as shown in
Referring to
In one embodiment, the cavity 28 may have a diameter of about 50 mm, and be adapted such that the top wall is spaced from the bottom plate about 5 mm and 10 mm when, respectively, 10 ml and 20 ml of exudate is contained within the cavity. In one embodiment, the cavity may have a one inch diameter and be operable to maintain a vacuum at −80 mm Hg.
Referring to
Referring to
In one embodiment of the system 10, the conduits 24, the cavity portion of the apparatus 12 and the reservoir 16 may be combined into a single unit that is disposable with no air entrainment. For example, the system 10 may be supplied in an fully assembled state with the reservoir empty and the flexure pump chamber pre-collapsed, such that when the dressing 14 is applied to a wound site and the system 10 is activated, the pump chamber 28 expands to draw fluid from the wound site without first expelling air from the pump chamber into the reservoir 16.
In a further embodiment, the system 10 may be adapted to be air free, so as to decrease escape of odors from microleaks in joints and seals. Advantageously, the absence of air in the system 10 may improve efficiencies of the micropump, and also improve control of conduit barrier properties, in that air is more compressible than liquid and therefore more energy usually is expended to achieve a desired pressure in a system with air entrained than in one without.
In a further embodiment, the cavity 28 may include or be formed from absorptive filler material, similar to material used in the dressing applied to a wound site. The absorptive filler material of the cavity may include open cell foams, alginates, hydrofibers, CMC based materials and hydrocolloids. Desirably, the filler material can store fluids in a liquid form or absorb the wound fluid and form a gel to retain the exudate. In one embodiment in which the system 10 is used with the reservoir 16, the filler material may be a foam, which permits the fluid to be held as a fluid and then displaced into the reservoir when the pump chamber is compressed. In an embodiment in which the cavity 28 is of filler material that forms a gel, the system 10 may be used without the reservoir 16 and the non-return valve 22, such that the system 10 can be discarded when the pump chamber becomes full.
In one embodiment, the entire system, including the conduits, the passive pump apparatus including the cavity and pump element, valves and reservoir, may be made using a roll to roll process, such as with a tubular sheath at the outlet for attachment to a cover dressing. In one embodiment, all of the elements of the system may be made from relatively thin sheet materials which are unrolled, cut or perforated, and bonded together to form the different connected elements and then wound back onto a roll as a finished item, such that the system can be dispensed from the roll. Such system advantageously may have a very low cost construction, and minimizes packaging materials.
In another embodiment, referring to
The proximity detector 66 may be a sensor, such as an infrared (IR) detector, that detects distance between the detector and an opposing object, such as the top wall 30. The detector 66 may provide detection information representative of the detected distance to the controller 62.
The controller 62 may include a processor and a memory including instructions executable by the processor to control actuation of the actuator device 64 based on detection information from the proximity detector 66. The instructions in the memory may also provide for active control of pressure within the cavity, by controlling operation of the actuator device 64. In addition, the active element may include a power supply 67, such as a battery, for providing electrical power to the components within the active element.
Referring to
The controller 62 may operate the micropump 71 to create a desired pressure, such as positive pressure or a vacuum, within the chamber 74. The creation of a positive pressure within the chamber 74, in turn, may cause the top wall 30 to deform and, thus, compress the cavity 28 to create a vacuum within the cavity 28. Alternatively, the creation of a vacuum within the chamber 74 may cause or allow the top wall to become less deformed or return to its non-deformed state.
In one embodiment, after the top wall transitions to a less deformed or its non-deformed state, such as may occur when a leak is formed at the dressing attachment to the wound site, the controller may cause the pump 71 to create a positive pressure in the chamber 74 tore-start withdrawal of exudate from a wound site, after the leak that formed at the dressing attachment to the wound site has been sealed.
In an exemplary operation of the apparatus 12, the active element 60 may control the micropump 71 to maintain or change pressure within the chamber 74 to ensure that either continuous or intermittent vacuums are applied to the wound site, while a primary vacuum is sustained at the wound site based on the configuration of the cavity. The primary vacuum is a function of the extent that the top wall is or has been deformed. The cavity, thus, may serve as a passive pump that can be acted upon by the active element 60, such as based on controlled operation of the micropump 71, so that a vacuum is continuously or intermittently applied to the wound site. Advantageously, the active element 60 may operate to reset or re-prime the passive pump during a reset process, in other words, to re-establish a desired pressure within the cavity 28, by suitably creating a positive pressure in the chamber 74. The reset process functionality of the active element may permit the apparatus 12 to continue to operate even if a leak is developed at the wound site, which may cause a vacuum within the cavity, which is in fluid communication with the wound site, to be at least partially lost.
In one embodiment, during a process to reset the passive pump, exudates collected within the cavity may be forced from the cavity, through the valve 22 and into the reservoir 16, and the vacuum within the cavity 28 may be re-established by creating a positive pressure within the chamber 74.
The valves 18 and 22 may provide for a desired direction of fluid flow in the system 10, such as movement of fluid from the wound site, through the apparatus 12 including a pumping means, to the reservoir, and avoid fluid from being pushed back to the wound site when resetting the actuator device. In one embodiment, the size and configuration of the chamber 74 and the cavity 28, and the capacity of the pump 71, may be designed to optimize the reset process. In one embodiment, the cavity and the reservoir may be independently optimized. For example, the reservoir may have a low profile and become filled to accommodate only the amount of exudate liberated from the wound. In one embodiment, the reservoir may be arranged so that a sum of the volume of the reservoir and volume of fluid in the reservoir is less than 25%, less than 15% or less than 10% greater than the volume of the fluid.
In a further embodiment, the detector 66 may be attached to the interior surface 76 of the outer wall 68 to oppose a portion of the top wall 28 that may become deformed. The controller 62 may, based on detection information provided by the detector 66 indicating the distance between the opposing portion of the top wall and the detector, determine when the cavity is full or nearly full of exudate, and also monitor the rate at which the cavity 28 fills with exudate. Depending on a determination of the extent the cavity is filled with exudate, the controller may control the pump 71 to generate positive pressure within the chamber 74, to cause the contents of the cavity to empty into the reservoir 16 and create a vacuum within the cavity, which can result in additional exudate to be drawn from the wound site to the cavity.
In another embodiment, the controller 62 may use detection information obtained from the detector 66 to assess exudate evolution rates and detect leaks at the dressing 14. Also, the controller 62 may provide for a controlled rate of return of exudates to optimize vacuum pressure levels in the passive pump cavity.
Advantageously, the evolution rates and leak detection may be determined by a device, in particular, the active element 60, which is maintained isolated from fluids and exudate drawn from the wound site, and which also may be a separate and re-usable part of the system. The isolation of the active element may provide for reduced cost in terms of disposable and non-disposable elements of the system.
In one embodiment, in an apparatus adapted to have low energy consumption, the active element 60 may utilize less rigorous seals 72, or no seals may be needed on the active element, due to the ease with which pressure within the cavity may be reset using the micropump. In such embodiment, although more energy is used to reset pressure, a higher cost associated with manufacture of the apparatus with seals that make the apparatus relatively leak free, and difficulties with reliably manufacturing a leak free apparatus, may be avoided.
Also, the system of the invention may be made sufficiently small and portable, and also sized according to patient need, independent of the size of the micropump.
In a further embodiment, referring to
In one embodiment, referring to
In one embodiment, the controller 62 may operate to provide that mismatches between the stroke capacities of the active element, such as the micropump, and mechanical impedance to fluid flow in system components are overcome, thereby providing higher pumping efficiency.
Also, the controller 62 may operate the pump so as to optimize electrical power utilization of the battery.
In addition, the controller 62 may cause one or more of the indicators 104 to illuminate when the controller 62 determines a low battery level.
In one embodiment, a system for removing exudates from a wound site 140 having the same or similar components and functionality as components of the system 10 may be adapted for mounting to an object or a patient, as illustrated in
In another embodiment, a system for removing exudates from a wound site 180 having the same or similar components and functionality as components of the system 100 may be adapted for mounting to a belt of a patient, such as shown in
In another aspect, the actuator device of the apparatus of the disclosure may be a piezoelectric device arranged to act on a wall defining the self-filling cavity, so as to deform the wall and, thus, compress the cavity to decrease the volumetric capacity of the cavity and, hence, create a desired pressure or vacuum in the cavity. Referring to
In one exemplary embodiment, the apparatus 200 may provide that the piezoelectric device 226 is operated to vibrate at up to 1.8 KHz and cause movement of the wall of the cavity opposing the device 226 away from the device 226 a distance of about 25 microns.
In another exemplary operation of the apparatus 200, the piezoelectric devices may be used to drive a fluid coupled “reset,” such as by being actuated over several cycles, similarly as described above with reference to
In another embodiment, the base plate 208 of the apparatus 200 may include resilient material to provide a bias against the bottom wall 214 that defines the cavity 210.
In another embodiment, referring to
Overall, the invention advantageously may provide therapy by way of a minimally sized, airless and disposable system. The reservoir desirably may be reduced in size in relation to the expected amount of fluid to be drawn from a wound site. In addition, disposable and reusable components may be combined in a cost effective manner and to make the system practical for use in a home setting. Further, the system may be adapted to address inefficiency by controlling the amount of air moved during treatment, as suitable. Also, the system may be made environmentally sound.
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. The following numbered paragraphs additionally describe embodiments of the invention as set forth herein.
This application is a continuation of U.S. patent application Ser. No. 13/992,623, having the title “Method and System for Removing Exudates from a Wound Site”, filed Jul. 26, 2013, which is a U.S. National Phase of International Application No. PCT/US2011/63686, filed on Dec. 7, 2011, that claims benefit of the filing date of U.S. Provisional Patent Application No. 61/421,012, filed Dec. 8, 2010, entitled “Method and System for Removing Exudates from a Wound Site”, and U.S. Provisional Patent Application No. 61/421,006, filed Dec. 8, 2010, entitled “System and Method for Applying Oscillating Pressure to a Wound Site”, the disclosures of which are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4850955 | Newkirk | Jul 1989 | A |
10016537 | Menon et al. | Jul 2018 | B2 |
10046096 | Askem et al. | Aug 2018 | B2 |
10076447 | Barta et al. | Sep 2018 | B2 |
10076587 | Locke et al. | Sep 2018 | B2 |
10143784 | Walton et al. | Dec 2018 | B2 |
10426670 | von Blucher et al. | Oct 2019 | B2 |
10426747 | Johnson | Oct 2019 | B2 |
10426874 | Chien et al. | Oct 2019 | B2 |
10426875 | Blott et al. | Oct 2019 | B2 |
10426938 | Locke et al. | Oct 2019 | B2 |
10434015 | Taylor et al. | Oct 2019 | B2 |
10434142 | Niazi et al. | Oct 2019 | B2 |
10434210 | Olson et al. | Oct 2019 | B2 |
10434284 | Hanson et al. | Oct 2019 | B2 |
10449094 | Donda et al. | Oct 2019 | B2 |
D866756 | Allen et al. | Nov 2019 | S |
10463760 | Karthikeyan et al. | Nov 2019 | B2 |
10463773 | Haggstrom et al. | Nov 2019 | B2 |
10470933 | Riesinger | Nov 2019 | B2 |
10470936 | Wohlgemuth et al. | Nov 2019 | B2 |
10471122 | Shi et al. | Nov 2019 | B2 |
10471190 | Locke et al. | Nov 2019 | B2 |
10478345 | Barta et al. | Nov 2019 | B2 |
10478346 | Knutson | Nov 2019 | B2 |
10478394 | Yu | Nov 2019 | B2 |
10485707 | Sexton | Nov 2019 | B2 |
10485891 | Andrews et al. | Nov 2019 | B2 |
10485892 | Hands et al. | Nov 2019 | B2 |
10485906 | Freedman et al. | Nov 2019 | B2 |
10486135 | Yang et al. | Nov 2019 | B2 |
10492956 | Zamierowski | Dec 2019 | B2 |
10493178 | Marchant et al. | Dec 2019 | B2 |
10493184 | Collinson et al. | Dec 2019 | B2 |
10493185 | Stokes et al. | Dec 2019 | B2 |
10500099 | Hung et al. | Dec 2019 | B2 |
10500103 | Croizat et al. | Dec 2019 | B2 |
10500104 | Sookraj | Dec 2019 | B2 |
10500173 | Yang et al. | Dec 2019 | B2 |
10500235 | Wardell | Dec 2019 | B2 |
10500300 | Dybe et al. | Dec 2019 | B2 |
10500301 | Laurensou | Dec 2019 | B2 |
10500302 | Holm et al. | Dec 2019 | B2 |
10501487 | Andrews et al. | Dec 2019 | B2 |
10506928 | Locke et al. | Dec 2019 | B2 |
10507141 | Allen et al. | Dec 2019 | B2 |
10507259 | Cree et al. | Dec 2019 | B2 |
10512707 | Whalen, III et al. | Dec 2019 | B2 |
10525170 | Havenstrite et al. | Jan 2020 | B2 |
10532137 | Pratt et al. | Jan 2020 | B2 |
10532194 | Locke et al. | Jan 2020 | B2 |
10537657 | Phillips et al. | Jan 2020 | B2 |
10542936 | Goldberg et al. | Jan 2020 | B2 |
10543133 | Shaw et al. | Jan 2020 | B2 |
10543293 | Suschek | Jan 2020 | B2 |
10548777 | Locke et al. | Feb 2020 | B2 |
10549008 | Yoo | Feb 2020 | B2 |
10549016 | Bushko et al. | Feb 2020 | B2 |
10549017 | Hsiao et al. | Feb 2020 | B2 |
10555838 | Wu et al. | Feb 2020 | B2 |
10555839 | Hartwell | Feb 2020 | B2 |
10556044 | Robinson et al. | Feb 2020 | B2 |
10561533 | Hoggarth et al. | Feb 2020 | B2 |
10561536 | Holm et al. | Feb 2020 | B2 |
10568767 | Addison et al. | Feb 2020 | B2 |
10568768 | Long et al. | Feb 2020 | B2 |
10568770 | Robinson et al. | Feb 2020 | B2 |
10568771 | MacDonald et al. | Feb 2020 | B2 |
10568773 | Tuck et al. | Feb 2020 | B2 |
10568983 | Gerdes et al. | Feb 2020 | B2 |
10575991 | Dunn | Mar 2020 | B2 |
10575992 | Sarangapani et al. | Mar 2020 | B2 |
10576037 | Harrell | Mar 2020 | B2 |
10576189 | Locke et al. | Mar 2020 | B2 |
10583042 | Sarangapani et al. | Mar 2020 | B2 |
10583228 | Shuler et al. | Mar 2020 | B2 |
10589007 | Coulthard et al. | Mar 2020 | B2 |
10590184 | Kuo | Mar 2020 | B2 |
10610414 | Hartwell et al. | Apr 2020 | B2 |
10610415 | Griffey et al. | Apr 2020 | B2 |
10610623 | Robinson et al. | Apr 2020 | B2 |
10617569 | Bonn | Apr 2020 | B2 |
10617608 | Shin et al. | Apr 2020 | B2 |
10617769 | Huang | Apr 2020 | B2 |
10617784 | Yu et al. | Apr 2020 | B2 |
10617786 | Kluge et al. | Apr 2020 | B2 |
10618266 | Wright et al. | Apr 2020 | B2 |
10624984 | Courage et al. | Apr 2020 | B2 |
10625002 | Locke et al. | Apr 2020 | B2 |
10632019 | Vitaris | Apr 2020 | B2 |
10632224 | Hardy et al. | Apr 2020 | B2 |
10639206 | Hu et al. | May 2020 | B2 |
10639350 | Arber et al. | May 2020 | B2 |
10639404 | Lichtenstein | May 2020 | B2 |
10646614 | Grinstaff et al. | May 2020 | B2 |
10653562 | Robinson et al. | May 2020 | B2 |
10653782 | Ameer et al. | May 2020 | B2 |
10653810 | Datt et al. | May 2020 | B2 |
10653821 | Nichols | May 2020 | B2 |
10653823 | Bharti et al. | May 2020 | B2 |
10660799 | Wu et al. | May 2020 | B2 |
10660851 | Millis et al. | May 2020 | B2 |
10660992 | Canner et al. | May 2020 | B2 |
10660994 | Askem et al. | May 2020 | B2 |
10667955 | Allen et al. | Jun 2020 | B2 |
10667956 | Van Holten et al. | Jun 2020 | B2 |
10682257 | Lu | Jun 2020 | B2 |
10682258 | Manwaring et al. | Jun 2020 | B2 |
10682259 | Hunt et al. | Jun 2020 | B2 |
10682318 | Twomey et al. | Jun 2020 | B2 |
10682386 | Ellis-Behnke et al. | Jun 2020 | B2 |
10682446 | Askem et al. | Jun 2020 | B2 |
10687983 | Dahlberg et al. | Jun 2020 | B2 |
10687985 | Lee et al. | Jun 2020 | B2 |
10688215 | Munro et al. | Jun 2020 | B2 |
10688217 | Hanson et al. | Jun 2020 | B2 |
RE48117 | Albert et al. | Jul 2020 | E |
10702419 | Locke et al. | Jul 2020 | B2 |
10702420 | Hammond et al. | Jul 2020 | B2 |
10703942 | Tunius | Jul 2020 | B2 |
10709760 | Gronberg et al. | Jul 2020 | B2 |
10709807 | Kshirsagar | Jul 2020 | B2 |
10709883 | Spector | Jul 2020 | B2 |
10716711 | Locke et al. | Jul 2020 | B2 |
10716874 | Koyama et al. | Jul 2020 | B2 |
10729589 | Dorian et al. | Aug 2020 | B2 |
10729590 | Simmons et al. | Aug 2020 | B2 |
10729826 | Lin | Aug 2020 | B2 |
10736787 | Hannigan et al. | Aug 2020 | B2 |
10736788 | Locke et al. | Aug 2020 | B2 |
10736985 | Odermatt et al. | Aug 2020 | B2 |
10737003 | Fujisaki | Aug 2020 | B2 |
10743900 | Ingram et al. | Aug 2020 | B2 |
10744040 | Kazala, Jr. et al. | Aug 2020 | B2 |
10744041 | Hartwell | Aug 2020 | B2 |
10744225 | Lindgren et al. | Aug 2020 | B2 |
10744237 | Guidi et al. | Aug 2020 | B2 |
10744238 | Guidi et al. | Aug 2020 | B2 |
10744239 | Armstrong et al. | Aug 2020 | B2 |
10744240 | Simmons et al. | Aug 2020 | B2 |
10751212 | Raza et al. | Aug 2020 | B2 |
10751442 | Bonnefin et al. | Aug 2020 | B2 |
10751452 | Topaz | Aug 2020 | B2 |
10758423 | Pigg et al. | Sep 2020 | B2 |
10758424 | Blott et al. | Sep 2020 | B2 |
10758425 | Blott et al. | Sep 2020 | B2 |
10758426 | Eddy | Sep 2020 | B2 |
10758651 | Blott et al. | Sep 2020 | B2 |
10765561 | Lattimore et al. | Sep 2020 | B2 |
10765783 | Locke et al. | Sep 2020 | B2 |
10772767 | Bjork et al. | Sep 2020 | B2 |
10772999 | Svensby | Sep 2020 | B2 |
10779993 | Bishop et al. | Sep 2020 | B2 |
10780114 | Udagawa et al. | Sep 2020 | B2 |
10780194 | Flach et al. | Sep 2020 | B2 |
10780201 | Lin | Sep 2020 | B2 |
10780202 | Askem et al. | Sep 2020 | B2 |
10780203 | Coulthard et al. | Sep 2020 | B2 |
10782238 | Hicks et al. | Sep 2020 | B2 |
10792191 | Robinson et al. | Oct 2020 | B2 |
10792192 | Tout et al. | Oct 2020 | B2 |
10792337 | Leung et al. | Oct 2020 | B2 |
10792404 | Hu et al. | Oct 2020 | B2 |
10792482 | Randolph et al. | Oct 2020 | B2 |
10800905 | Delli-Santi et al. | Oct 2020 | B2 |
10806819 | Shuler | Oct 2020 | B2 |
11400204 | Coulthard et al. | Aug 2022 | B2 |
11813058 | Shuler | Nov 2023 | B2 |
20020013545 | Soltanpour | Jan 2002 | A1 |
20060155260 | Blott et al. | Jul 2006 | A1 |
20060172000 | Cullen et al. | Aug 2006 | A1 |
20070185426 | Ambrosio et al. | Aug 2007 | A1 |
20070219512 | Heaton et al. | Sep 2007 | A1 |
20070239078 | Jaeb | Oct 2007 | A1 |
20080108977 | Heaton | May 2008 | A1 |
20090234307 | Vitaris | Sep 2009 | A1 |
20090259203 | Hu et al. | Oct 2009 | A1 |
20090293887 | Wilkes et al. | Dec 2009 | A1 |
20090299303 | Seegert | Dec 2009 | A1 |
20100015208 | Kershaw et al. | Jan 2010 | A1 |
20100030178 | MacMeccan et al. | Feb 2010 | A1 |
20100125233 | Edward S. et al. | May 2010 | A1 |
20100125258 | Coulthard et al. | May 2010 | A1 |
20100137775 | Hu et al. | Jun 2010 | A1 |
20100185163 | Heagle | Jul 2010 | A1 |
20100298790 | Guidi et al. | Nov 2010 | A1 |
20110015595 | Robinson et al. | Jan 2011 | A1 |
20110028918 | Hartwell | Feb 2011 | A1 |
20110112457 | Holm et al. | May 2011 | A1 |
20110178451 | Robinson et al. | Jul 2011 | A1 |
20110224593 | Tunius | Sep 2011 | A1 |
20110224630 | Simmons et al. | Sep 2011 | A1 |
20110230849 | Coulthard et al. | Sep 2011 | A1 |
20110251566 | Zimnitsky et al. | Oct 2011 | A1 |
20110257572 | Locke et al. | Oct 2011 | A1 |
20110257573 | Hong et al. | Oct 2011 | A1 |
20110275972 | Rosenberg | Nov 2011 | A1 |
20110288511 | Locke | Nov 2011 | A1 |
20120071845 | Hu et al. | Mar 2012 | A1 |
20120130332 | Cotton et al. | May 2012 | A1 |
20120136325 | Allen et al. | May 2012 | A1 |
20120209226 | Simmons et al. | Aug 2012 | A1 |
20130053795 | Coulthard et al. | Feb 2013 | A1 |
20130123728 | Pratt et al. | May 2013 | A1 |
20130226063 | Taylor et al. | Aug 2013 | A1 |
20140005618 | Locke et al. | Jan 2014 | A1 |
20140074053 | Locke et al. | Mar 2014 | A1 |
20140188060 | Robinson et al. | Jul 2014 | A1 |
20140194838 | Wibaux et al. | Jul 2014 | A1 |
20140200532 | Robinson et al. | Jul 2014 | A1 |
20140236112 | Von Wolff et al. | Aug 2014 | A1 |
20140256925 | Catchmark et al. | Sep 2014 | A1 |
20140276499 | Locke et al. | Sep 2014 | A1 |
20140296804 | Hicks et al. | Oct 2014 | A1 |
20140308338 | Nierle et al. | Oct 2014 | A1 |
20140309574 | Cotton | Oct 2014 | A1 |
20150018433 | Leipzig et al. | Jan 2015 | A1 |
20150057624 | Simmons et al. | Feb 2015 | A1 |
20150071985 | Walker et al. | Mar 2015 | A1 |
20150079152 | Wuollett et al. | Mar 2015 | A1 |
20150094674 | Pratt et al. | Apr 2015 | A1 |
20150104486 | Bonnefin et al. | Apr 2015 | A1 |
20150112311 | Hammond et al. | Apr 2015 | A1 |
20150119831 | Robinson et al. | Apr 2015 | A1 |
20150119834 | Locke et al. | Apr 2015 | A1 |
20150141941 | Allen et al. | May 2015 | A1 |
20150148785 | Kleiner | May 2015 | A1 |
20150174304 | Askem et al. | Jun 2015 | A1 |
20150245949 | Locke et al. | Sep 2015 | A1 |
20150246164 | Heaton et al. | Sep 2015 | A1 |
20150250979 | Loske | Sep 2015 | A1 |
20150265741 | Duncan et al. | Sep 2015 | A1 |
20150265743 | Hanson et al. | Sep 2015 | A1 |
20150320901 | Chandrashekhar-Bhat et al. | Nov 2015 | A1 |
20160008293 | Shi et al. | Jan 2016 | A1 |
20160038626 | Locke et al. | Feb 2016 | A1 |
20160051724 | Sahin et al. | Feb 2016 | A1 |
20160067107 | Cotton | Mar 2016 | A1 |
20160100987 | Hartwell et al. | Apr 2016 | A1 |
20160106878 | Yang et al. | Apr 2016 | A1 |
20160106892 | Hartwell | Apr 2016 | A1 |
20160166422 | Karim et al. | Jun 2016 | A1 |
20160193244 | Ota et al. | Jul 2016 | A1 |
20160222548 | Agboh | Aug 2016 | A1 |
20160271178 | Hauser et al. | Sep 2016 | A1 |
20160287743 | Andrews | Oct 2016 | A1 |
20160339158 | Collinson et al. | Nov 2016 | A1 |
20160374847 | Lachenbruch et al. | Dec 2016 | A1 |
20170014275 | Schneider | Jan 2017 | A1 |
20170049111 | Patton et al. | Feb 2017 | A1 |
20170072669 | Sekido et al. | Mar 2017 | A1 |
20170128269 | Coulthard et al. | May 2017 | A1 |
20170189237 | Locke et al. | Jul 2017 | A1 |
20170189575 | Lee et al. | Jul 2017 | A1 |
20170209615 | Tornero Garcia et al. | Jul 2017 | A1 |
20170232161 | Fewkes et al. | Aug 2017 | A1 |
20170258956 | Flach et al. | Sep 2017 | A1 |
20170367895 | Holm et al. | Dec 2017 | A1 |
20170368239 | Askem et al. | Dec 2017 | A1 |
20180008742 | Hoggarth et al. | Jan 2018 | A1 |
20180014974 | Hoggarth et al. | Jan 2018 | A1 |
20180023217 | Patton et al. | Jan 2018 | A1 |
20180030321 | Tunius | Feb 2018 | A1 |
20180042789 | Bradford et al. | Feb 2018 | A1 |
20180078423 | Magin et al. | Mar 2018 | A1 |
20180086903 | Zhang et al. | Mar 2018 | A1 |
20180118809 | Mearns Spragg | May 2018 | A1 |
20180133066 | Ahsani et al. | May 2018 | A1 |
20180140467 | Hunt | May 2018 | A1 |
20180140822 | Robinson et al. | May 2018 | A1 |
20180200414 | Askem et al. | Jul 2018 | A1 |
20180221531 | Bender et al. | Aug 2018 | A1 |
20180236124 | Young et al. | Aug 2018 | A1 |
20180243463 | Chatterjee et al. | Aug 2018 | A1 |
20180243464 | Hwang et al. | Aug 2018 | A1 |
20180244857 | Lee et al. | Aug 2018 | A1 |
20180272052 | Locke et al. | Sep 2018 | A1 |
20180296397 | Askem et al. | Oct 2018 | A1 |
20180303873 | Been et al. | Oct 2018 | A1 |
20180311419 | Locke et al. | Nov 2018 | A1 |
20180333522 | Pratt et al. | Nov 2018 | A1 |
20180344533 | Rovaniemi | Dec 2018 | A1 |
20180353334 | Locke et al. | Dec 2018 | A1 |
20180353337 | Locke | Dec 2018 | A1 |
20180353339 | Locke et al. | Dec 2018 | A1 |
20180353340 | Robinson et al. | Dec 2018 | A1 |
20180353344 | Locke et al. | Dec 2018 | A1 |
20180353662 | Locke et al. | Dec 2018 | A1 |
20180353663 | Locke et al. | Dec 2018 | A1 |
20180360667 | Droche | Dec 2018 | A1 |
20190000677 | Munro | Jan 2019 | A1 |
20190015258 | Gowans et al. | Jan 2019 | A1 |
20190015468 | Yadav et al. | Jan 2019 | A1 |
20190030223 | Lin | Jan 2019 | A1 |
20190046682 | Choi et al. | Feb 2019 | A1 |
20190060127 | Locke et al. | Feb 2019 | A1 |
20190083752 | Howell et al. | Mar 2019 | A1 |
20190117465 | Osborne et al. | Apr 2019 | A1 |
20190117466 | Kazala, Jr. et al. | Apr 2019 | A1 |
20190117861 | Locke et al. | Apr 2019 | A1 |
20190125590 | Rehbein et al. | May 2019 | A1 |
20190133830 | Bishop et al. | May 2019 | A1 |
20190151155 | Bonn | May 2019 | A1 |
20190151159 | Gowans et al. | May 2019 | A1 |
20190151495 | Helary et al. | May 2019 | A1 |
20190184052 | Ilan et al. | Jun 2019 | A1 |
20190231600 | Locke et al. | Aug 2019 | A1 |
20190231602 | Locke et al. | Aug 2019 | A1 |
20190231943 | Robinson et al. | Aug 2019 | A1 |
20190274889 | Steward et al. | Sep 2019 | A1 |
20190282728 | Kellar et al. | Sep 2019 | A1 |
20190290799 | Arshi et al. | Sep 2019 | A1 |
20190298249 | Bates et al. | Oct 2019 | A1 |
20190298577 | Locke et al. | Oct 2019 | A1 |
20190298578 | Shulman et al. | Oct 2019 | A1 |
20190298579 | Moore et al. | Oct 2019 | A1 |
20190298580 | Hall et al. | Oct 2019 | A1 |
20190298582 | Addison et al. | Oct 2019 | A1 |
20190298881 | Ramjit et al. | Oct 2019 | A1 |
20190298882 | Nelson | Oct 2019 | A1 |
20190298895 | Selby et al. | Oct 2019 | A1 |
20190307611 | Askem et al. | Oct 2019 | A1 |
20190307612 | Hartwell et al. | Oct 2019 | A1 |
20190307934 | Allen et al. | Oct 2019 | A1 |
20190307935 | Simmons et al. | Oct 2019 | A1 |
20190314187 | Emslander et al. | Oct 2019 | A1 |
20190314209 | Ha et al. | Oct 2019 | A1 |
20190314544 | Filho et al. | Oct 2019 | A1 |
20190321232 | Jardret et al. | Oct 2019 | A1 |
20190321509 | Chakravarthy et al. | Oct 2019 | A1 |
20190321526 | Robinson et al. | Oct 2019 | A1 |
20190322795 | Kubo et al. | Oct 2019 | A1 |
20190328580 | Emslander et al. | Oct 2019 | A1 |
20190336343 | Etchells et al. | Nov 2019 | A1 |
20190336344 | Locke | Nov 2019 | A1 |
20190336345 | Bannwart | Nov 2019 | A1 |
20190336346 | Locke et al. | Nov 2019 | A1 |
20190336640 | Vismara et al. | Nov 2019 | A1 |
20190336641 | Nisbet | Nov 2019 | A1 |
20190336643 | Luukko et al. | Nov 2019 | A1 |
20190336658 | Heaton et al. | Nov 2019 | A1 |
20190336739 | Locke et al. | Nov 2019 | A1 |
20190343687 | Locke et al. | Nov 2019 | A1 |
20190343889 | Luukko et al. | Nov 2019 | A1 |
20190343979 | Kearney et al. | Nov 2019 | A1 |
20190343993 | Weston | Nov 2019 | A1 |
20190343994 | Greener | Nov 2019 | A1 |
20190344242 | Kim et al. | Nov 2019 | A1 |
20190350763 | Pratt et al. | Nov 2019 | A1 |
20190350764 | Zochowski et al. | Nov 2019 | A1 |
20190350765 | Heagle et al. | Nov 2019 | A1 |
20190350775 | Biasutti et al. | Nov 2019 | A1 |
20190350970 | Saphier et al. | Nov 2019 | A1 |
20190351092 | Silver et al. | Nov 2019 | A1 |
20190351093 | Stein et al. | Nov 2019 | A1 |
20190351094 | Maher et al. | Nov 2019 | A1 |
20190351095 | Maher et al. | Nov 2019 | A1 |
20190351111 | Locke et al. | Nov 2019 | A1 |
20190358088 | Lavocah et al. | Nov 2019 | A1 |
20190358361 | McInnes et al. | Nov 2019 | A1 |
20190358372 | Askem et al. | Nov 2019 | A1 |
20190365948 | Deegan et al. | Dec 2019 | A1 |
20190365962 | Lee et al. | Dec 2019 | A1 |
20190374408 | Robles et al. | Dec 2019 | A1 |
20190374673 | Hoefinghoff et al. | Dec 2019 | A1 |
20190380878 | Edwards et al. | Dec 2019 | A1 |
20190380881 | Albert et al. | Dec 2019 | A1 |
20190380882 | Taylor et al. | Dec 2019 | A1 |
20190380883 | MacPhee et al. | Dec 2019 | A1 |
20190381222 | Locke et al. | Dec 2019 | A9 |
20190388577 | Chandrashekhar-Bhat et al. | Dec 2019 | A1 |
20190388579 | MacPhee et al. | Dec 2019 | A1 |
20190388589 | MacPhee et al. | Dec 2019 | A1 |
20200000640 | Mondal et al. | Jan 2020 | A1 |
20200000642 | Waite | Jan 2020 | A1 |
20200000643 | Locke | Jan 2020 | A1 |
20200000955 | Andrews et al. | Jan 2020 | A1 |
20200000956 | Huang et al. | Jan 2020 | A1 |
20200000960 | Kellar et al. | Jan 2020 | A1 |
20200000985 | Seddon et al. | Jan 2020 | A1 |
20200008981 | Wheldrake | Jan 2020 | A1 |
20200009289 | Torabinejad et al. | Jan 2020 | A1 |
20200009400 | Ribeiro et al. | Jan 2020 | A1 |
20200017650 | Young et al. | Jan 2020 | A1 |
20200022844 | Blott et al. | Jan 2020 | A1 |
20200023102 | Powe | Jan 2020 | A1 |
20200023103 | Joshi et al. | Jan 2020 | A1 |
20200023104 | Eriksson et al. | Jan 2020 | A1 |
20200023105 | Long et al. | Jan 2020 | A1 |
20200023106 | Carroll et al. | Jan 2020 | A1 |
20200030153 | Johannison et al. | Jan 2020 | A1 |
20200030480 | Choi | Jan 2020 | A1 |
20200030499 | Menon et al. | Jan 2020 | A1 |
20200038023 | Dunn | Feb 2020 | A1 |
20200038249 | Pratt et al. | Feb 2020 | A1 |
20200038250 | Edwards et al. | Feb 2020 | A1 |
20200038251 | Locke et al. | Feb 2020 | A1 |
20200038252 | Spiro | Feb 2020 | A1 |
20200038283 | Hall et al. | Feb 2020 | A1 |
20200038470 | Datt et al. | Feb 2020 | A1 |
20200038544 | Grover et al. | Feb 2020 | A1 |
20200038546 | Dizio et al. | Feb 2020 | A1 |
20200038639 | Patel et al. | Feb 2020 | A1 |
20200046565 | Barta et al. | Feb 2020 | A1 |
20200046566 | Carey et al. | Feb 2020 | A1 |
20200046567 | Carroll et al. | Feb 2020 | A1 |
20200046568 | Sexton | Feb 2020 | A1 |
20200046663 | Murdock et al. | Feb 2020 | A1 |
20200046876 | Liu | Feb 2020 | A1 |
20200046887 | Runquist et al. | Feb 2020 | A1 |
20200054491 | Hentrich et al. | Feb 2020 | A1 |
20200054781 | Weiser et al. | Feb 2020 | A1 |
20200060879 | Edwards et al. | Feb 2020 | A1 |
20200061253 | Long et al. | Feb 2020 | A1 |
20200061254 | Joshi et al. | Feb 2020 | A1 |
20200061379 | Bogie et al. | Feb 2020 | A1 |
20200069183 | Rice et al. | Mar 2020 | A1 |
20200069476 | Randolph et al. | Mar 2020 | A1 |
20200069477 | Holm et al. | Mar 2020 | A1 |
20200069478 | Jabbarzadeh et al. | Mar 2020 | A1 |
20200069479 | Buan et al. | Mar 2020 | A1 |
20200069835 | Hissink et al. | Mar 2020 | A1 |
20200069850 | Beadle et al. | Mar 2020 | A1 |
20200069851 | Blott et al. | Mar 2020 | A1 |
20200069853 | Hall et al. | Mar 2020 | A1 |
20200078223 | Locke et al. | Mar 2020 | A1 |
20200078224 | Carroll et al. | Mar 2020 | A1 |
20200078225 | Grillitsch et al. | Mar 2020 | A1 |
20200078305 | Auvinen et al. | Mar 2020 | A1 |
20200078330 | Gay | Mar 2020 | A1 |
20200078482 | Yoon et al. | Mar 2020 | A1 |
20200078499 | Gadde et al. | Mar 2020 | A1 |
20200085625 | Bellini et al. | Mar 2020 | A1 |
20200085626 | Braga et al. | Mar 2020 | A1 |
20200085629 | Locke et al. | Mar 2020 | A1 |
20200085630 | Robinson et al. | Mar 2020 | A1 |
20200085632 | Locke et al. | Mar 2020 | A1 |
20200085991 | Coomber | Mar 2020 | A1 |
20200085992 | Locke et al. | Mar 2020 | A1 |
20200086014 | Locke et al. | Mar 2020 | A1 |
20200086017 | Jardret et al. | Mar 2020 | A1 |
20200086049 | Park et al. | Mar 2020 | A1 |
20200093646 | Locke et al. | Mar 2020 | A1 |
20200093756 | Sabacinski | Mar 2020 | A1 |
20200093953 | Kim et al. | Mar 2020 | A1 |
20200093954 | Leise, III | Mar 2020 | A1 |
20200093970 | Hunt et al. | Mar 2020 | A1 |
20200095421 | Kettel | Mar 2020 | A1 |
20200100945 | Albert et al. | Apr 2020 | A1 |
20200101192 | Folwarzny | Apr 2020 | A1 |
20200107964 | Locke et al. | Apr 2020 | A1 |
20200107965 | Greener | Apr 2020 | A1 |
20200107966 | Francis | Apr 2020 | A1 |
20200107967 | Holm et al. | Apr 2020 | A1 |
20200108169 | Hu et al. | Apr 2020 | A1 |
20200113741 | Rehbein et al. | Apr 2020 | A1 |
20200114039 | Wang et al. | Apr 2020 | A1 |
20200114040 | Waite et al. | Apr 2020 | A1 |
20200114049 | Wall | Apr 2020 | A1 |
20200121509 | Locke et al. | Apr 2020 | A1 |
20200121510 | Hartwell et al. | Apr 2020 | A1 |
20200121513 | Townsend et al. | Apr 2020 | A1 |
20200121521 | Daniel et al. | Apr 2020 | A1 |
20200121833 | Askem et al. | Apr 2020 | A9 |
20200129338 | Gardiner et al. | Apr 2020 | A1 |
20200129341 | Coulthard et al. | Apr 2020 | A1 |
20200129648 | Drury et al. | Apr 2020 | A1 |
20200129654 | Bouvier et al. | Apr 2020 | A1 |
20200129655 | Gardiner et al. | Apr 2020 | A1 |
20200129675 | Robinson et al. | Apr 2020 | A1 |
20200138754 | Johnson | May 2020 | A1 |
20200139002 | Dudnyk et al. | May 2020 | A1 |
20200139023 | Haggstrom et al. | May 2020 | A1 |
20200139025 | Robinson et al. | May 2020 | A1 |
20200141031 | Kosan et al. | May 2020 | A1 |
20200146894 | Long et al. | May 2020 | A1 |
20200146896 | Rice et al. | May 2020 | A1 |
20200146897 | Locke et al. | May 2020 | A1 |
20200146899 | Pratt et al. | May 2020 | A1 |
20200155355 | Hill et al. | May 2020 | A1 |
20200155358 | Wheldrake | May 2020 | A1 |
20200155359 | Carroll et al. | May 2020 | A1 |
20200155361 | Pigg et al. | May 2020 | A1 |
20200155379 | Shaw et al. | May 2020 | A1 |
20200163802 | Hunt et al. | May 2020 | A1 |
20200163803 | Pigg et al. | May 2020 | A1 |
20200164112 | Kato et al. | May 2020 | A1 |
20200164120 | Jaeckiein et al. | May 2020 | A1 |
20200170841 | Waite et al. | Jun 2020 | A1 |
20200170842 | Locke | Jun 2020 | A1 |
20200170843 | Collinson et al. | Jun 2020 | A1 |
20200171197 | Hubbell et al. | Jun 2020 | A1 |
20200179300 | Urban et al. | Jun 2020 | A1 |
20200179558 | Munro et al. | Jun 2020 | A1 |
20200179673 | Wan | Jun 2020 | A1 |
20200188179 | Bugedo-Albizuri et al. | Jun 2020 | A1 |
20200188180 | Akbari et al. | Jun 2020 | A1 |
20200188182 | Sanders et al. | Jun 2020 | A1 |
20200188183 | Hamerslagh et al. | Jun 2020 | A1 |
20200188550 | Dagger et al. | Jun 2020 | A1 |
20200188564 | Dunn | Jun 2020 | A1 |
20200190310 | Meyer | Jun 2020 | A1 |
20200197227 | Locke et al. | Jun 2020 | A1 |
20200197228 | Hartwell | Jun 2020 | A1 |
20200197559 | Bourdillon et al. | Jun 2020 | A1 |
20200197580 | Kilpadi et al. | Jun 2020 | A1 |
20200206035 | Kantor et al. | Jul 2020 | A1 |
20200206036 | Robinson et al. | Jul 2020 | A1 |
20200214637 | Brownhill et al. | Jul 2020 | A1 |
20200214897 | Long et al. | Jul 2020 | A1 |
20200214898 | Waite et al. | Jul 2020 | A1 |
20200214899 | Locke et al. | Jul 2020 | A1 |
20200215220 | Schomburg et al. | Jul 2020 | A1 |
20200215226 | Kitagawa et al. | Jul 2020 | A1 |
20200222469 | Cotton | Jul 2020 | A1 |
20200229983 | Robinson et al. | Jul 2020 | A1 |
20200230283 | Yang et al. | Jul 2020 | A1 |
20200237562 | Rice et al. | Jul 2020 | A1 |
20200237564 | Hammond et al. | Jul 2020 | A1 |
20200237816 | Lait | Jul 2020 | A1 |
20200246190 | Luckemeyer et al. | Aug 2020 | A1 |
20200246191 | Lu et al. | Aug 2020 | A1 |
20200246194 | Gonzalez et al. | Aug 2020 | A1 |
20200246195 | Robinson et al. | Aug 2020 | A1 |
20200253785 | Bernet et al. | Aug 2020 | A1 |
20200253786 | Harrison et al. | Aug 2020 | A1 |
20200253788 | Rehbein et al. | Aug 2020 | A1 |
20200254139 | Phillips et al. | Aug 2020 | A1 |
20200261275 | Manwaring et al. | Aug 2020 | A1 |
20200261276 | Lujan Hernandez et al. | Aug 2020 | A1 |
20200268560 | Harrison et al. | Aug 2020 | A1 |
20200268561 | Locke et al. | Aug 2020 | A1 |
20200269028 | Hegg | Aug 2020 | A1 |
20200270484 | Lipscomb et al. | Aug 2020 | A1 |
20200276055 | Randolph et al. | Sep 2020 | A1 |
20200276058 | Locke et al. | Sep 2020 | A1 |
20200277450 | Silverstein et al. | Sep 2020 | A1 |
20200281519 | Gowans et al. | Sep 2020 | A1 |
20200281529 | Grubb et al. | Sep 2020 | A1 |
20200281678 | Long et al. | Sep 2020 | A1 |
20200281775 | Kushnir et al. | Sep 2020 | A1 |
20200282100 | Gil et al. | Sep 2020 | A1 |
20200282114 | Long et al. | Sep 2020 | A1 |
20200282115 | Gardner et al. | Sep 2020 | A1 |
20200289326 | Nielsen et al. | Sep 2020 | A1 |
20200289327 | Hansen et al. | Sep 2020 | A1 |
20200289328 | Luckemeyer et al. | Sep 2020 | A1 |
20200289346 | Hansen et al. | Sep 2020 | A1 |
20200289347 | Gowans et al. | Sep 2020 | A1 |
20200289701 | Hall et al. | Sep 2020 | A1 |
20200289712 | Jiang et al. | Sep 2020 | A1 |
20200289723 | Gregory et al. | Sep 2020 | A1 |
20200289726 | Locke et al. | Sep 2020 | A1 |
20200289727 | Locke | Sep 2020 | A1 |
20200289806 | Locke et al. | Sep 2020 | A1 |
20200297541 | Hartwell et al. | Sep 2020 | A1 |
20200297543 | Rodzewicz et al. | Sep 2020 | A1 |
20200297544 | Moine et al. | Sep 2020 | A1 |
20200297892 | Silcock | Sep 2020 | A1 |
20200297893 | Ericson | Sep 2020 | A1 |
20200297894 | Koyama et al. | Sep 2020 | A1 |
20200299865 | Bonnefin et al. | Sep 2020 | A1 |
20200306089 | Delury et al. | Oct 2020 | A1 |
20200306091 | Lee et al. | Oct 2020 | A1 |
20200306092 | Rehbein et al. | Oct 2020 | A1 |
20200306094 | Kushnir et al. | Oct 2020 | A1 |
20200306426 | Rice et al. | Oct 2020 | A1 |
20200306428 | Ingram et al. | Oct 2020 | A1 |
20200306430 | Rehbein et al. | Oct 2020 | A1 |
20200315853 | Waite | Oct 2020 | A1 |
20200315854 | Simmons et al. | Oct 2020 | A1 |
20200315894 | Churilla et al. | Oct 2020 | A1 |
20200316271 | Lin | Oct 2020 | A1 |
20200316272 | Simpson | Oct 2020 | A1 |
20200316273 | Hegg | Oct 2020 | A1 |
20200323692 | Locke et al. | Oct 2020 | A1 |
20200324015 | Kettel et al. | Oct 2020 | A1 |
20200330283 | Locke et al. | Oct 2020 | A1 |
20200330284 | Locke et al. | Oct 2020 | A1 |
20200330285 | Rehbein et al. | Oct 2020 | A1 |
20200330658 | Fujisaki | Oct 2020 | A1 |
20200330660 | Patel et al. | Oct 2020 | A1 |
20200337719 | Ingram et al. | Oct 2020 | A1 |
20200337904 | Waite | Oct 2020 | A1 |
20200337905 | Earl et al. | Oct 2020 | A1 |
20200337906 | Long et al. | Oct 2020 | A1 |
20200337908 | Long et al. | Oct 2020 | A1 |
20200338228 | Kharkar et al. | Oct 2020 | A1 |
20200338243 | Harrison et al. | Oct 2020 | A1 |
Number | Date | Country |
---|---|---|
3187204 | Jul 2017 | EP |
3556407 | Oct 2019 | EP |
3569260 | Nov 2019 | EP |
3622975 | Mar 2020 | EP |
3643328 | Apr 2020 | EP |
3643330 | Apr 2020 | EP |
3643331 | Apr 2020 | EP |
3669838 | Jun 2020 | EP |
3669843 | Jun 2020 | EP |
3669844 | Jun 2020 | EP |
3669898 | Jun 2020 | EP |
3669899 | Jun 2020 | EP |
3409304 | Jul 2022 | EP |
2311509 | Aug 2022 | EP |
2902068 | Sep 2022 | EP |
3248623 | Aug 2023 | EP |
2579211 | Jun 2020 | GB |
2579368 | Jun 2020 | GB |
2005018543 | Mar 2005 | WO |
2011121394 | Oct 2011 | WO |
2011135284 | Nov 2011 | WO |
2011144888 | Nov 2011 | WO |
2013015827 | Jan 2013 | WO |
2013126049 | Aug 2013 | WO |
2014014842 | Jan 2014 | WO |
2015145117 | Oct 2015 | WO |
2015173546 | Nov 2015 | WO |
2016141450 | Sep 2016 | WO |
2017016974 | Feb 2017 | WO |
2017125250 | Jul 2017 | WO |
2018029231 | Feb 2018 | WO |
2018094061 | May 2018 | WO |
2018162613 | Sep 2018 | WO |
2018163093 | Sep 2018 | WO |
2018189265 | Oct 2018 | WO |
2018226667 | Dec 2018 | WO |
2018227144 | Dec 2018 | WO |
2018231825 | Dec 2018 | WO |
2018236648 | Dec 2018 | WO |
2019002085 | Jan 2019 | WO |
2019012068 | Jan 2019 | WO |
2019012069 | Jan 2019 | WO |
2019022493 | Jan 2019 | WO |
2019027933 | Feb 2019 | WO |
2019038548 | Feb 2019 | WO |
2019038549 | Feb 2019 | WO |
2019040656 | Feb 2019 | WO |
2019050855 | Mar 2019 | WO |
2019058373 | Mar 2019 | WO |
2019073326 | Apr 2019 | WO |
2019083563 | May 2019 | WO |
2019083868 | May 2019 | WO |
2019086911 | May 2019 | WO |
2019091150 | May 2019 | WO |
2019094147 | May 2019 | WO |
2019113275 | Jun 2019 | WO |
2019113623 | Jun 2019 | WO |
2019191590 | Oct 2019 | WO |
2019193141 | Oct 2019 | WO |
2019193333 | Oct 2019 | WO |
2019199389 | Oct 2019 | WO |
2019199596 | Oct 2019 | WO |
2019199687 | Oct 2019 | WO |
2019199798 | Oct 2019 | WO |
2019199849 | Oct 2019 | WO |
2019200035 | Oct 2019 | WO |
2019215572 | Nov 2019 | WO |
2019219613 | Nov 2019 | WO |
2019234365 | Dec 2019 | WO |
2020005062 | Jan 2020 | WO |
2020005344 | Jan 2020 | WO |
2020005536 | Jan 2020 | WO |
2020005546 | Jan 2020 | WO |
2020005577 | Jan 2020 | WO |
2020007429 | Jan 2020 | WO |
2020011691 | Jan 2020 | WO |
2020014178 | Jan 2020 | WO |
2020014310 | Jan 2020 | WO |
2020018300 | Jan 2020 | WO |
2020026061 | Feb 2020 | WO |
2020026144 | Feb 2020 | WO |
2020033351 | Feb 2020 | WO |
2020035811 | Feb 2020 | WO |
2020043665 | Mar 2020 | WO |
2020044237 | Mar 2020 | WO |
2020046443 | Mar 2020 | WO |
2020047255 | Mar 2020 | WO |
2020049038 | Mar 2020 | WO |
2020055945 | Mar 2020 | WO |
2020056014 | Mar 2020 | WO |
2020056182 | Mar 2020 | WO |
2020065531 | Apr 2020 | WO |
2020070231 | Apr 2020 | WO |
2020074512 | Apr 2020 | WO |
2020078993 | Apr 2020 | WO |
2020079009 | Apr 2020 | WO |
2020079330 | Apr 2020 | WO |
2020081259 | Apr 2020 | WO |
2020081391 | Apr 2020 | WO |
2020092598 | May 2020 | WO |
2020136555 | Jul 2020 | WO |
2020141059 | Jul 2020 | WO |
2020144347 | Jul 2020 | WO |
2020150548 | Jul 2020 | WO |
2020159675 | Aug 2020 | WO |
2020159677 | Aug 2020 | WO |
2020159678 | Aug 2020 | WO |
2020159823 | Aug 2020 | WO |
2020159859 | Aug 2020 | WO |
2020159892 | Aug 2020 | WO |
2020161086 | Aug 2020 | WO |
2020197759 | Oct 2020 | WO |
2020197760 | Oct 2020 | WO |
2020198484 | Oct 2020 | WO |
2020201879 | Oct 2020 | WO |
2020213998 | Oct 2020 | WO |
Number | Date | Country | |
---|---|---|---|
20200376177 A1 | Dec 2020 | US |
Number | Date | Country | |
---|---|---|---|
61421012 | Dec 2010 | US | |
61421006 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13992623 | US | |
Child | 16995001 | US |