The application generally relates to a system and method of cooling compressor motors in vapor compression systems.
Hermetic motors may experience windage losses because of friction caused during rotation. Windage losses adversely impact motor performance and efficiency. To reduce windage losses in the motor, factors directly related to the motor, for example, the peripheral speed of the rotor, the flow and thermodynamic state conditions of motor cooling gas circulated around the motor, the rotor surface area and the roughness of the rotor surface may be controlled to reduce friction in the motor.
One method for reducing energy losses in motors while cooling the motor is by suctioning refrigerant toward the motor windings. The reduction in temperature caused by suctioning refrigerant across the motor windings prevents the motor components from overheating and increases motor operating efficiency. Another method for reducing energy losses in motors is to maintain a constant pressure throughout the motor cavity. A pressure valve can be placed within the motor cavity to release higher-pressure gas build up that occurs in the motor cavity during operation. As the pressure in the cavity increases, the valve opens, thereby releasing high-pressure gases. The maintenance of constant pressure in the cavity increases motor efficiency. However, this method uses mechanical equipment and is not optimal for maintaining a true constant pressure in the motor cavity. Additionally, this method does not address the issue of the motor cavity temperature.
An additional method controls energy losses in motors by maintaining a constant pressure in the motor cavity, while also preventing the oil losses between motor components. The preservation of oil in the motor bearing components allows for greater lubrication for the movement of parts thereby reducing friction while not allowing oil to escape into the motor cooling cavity, preventing excessive oil churning and reducing energy losses. A hermetically sealed housing containing the refrigeration compressor transmission and oil supply reservoir is connected to the suction side of the compressor to equalize the pressure in the housing. The focus of the method is to prevent the boiling of refrigerant from the oil reserve. However, this system only holds the pressure in the motor cavity at a constant level, and only assists in reducing energy losses, rather than optimizing the motor efficiency.
For very high speed motors however, windage losses can still be substantial even after factors such as the peripheral speed of the rotor, the density and flow of motor cooling gas around the motor, the rotor surface area and/or the roughness of the rotor surface are optimized. The only remaining factor that can be manipulated to reduce windage losses is the density of the gas in the motor cavity. Windage losses decrease as the density of the gas in the motor cavity decreases resulting in better motor efficiency.
To reduce the gas density in these higher-speed motor cavities, vacuum pumps are used to lower the pressure surrounding the motors to reduce windage losses as much as possible. However, the use of a vacuum pump does not provide the ability to both adequately cool the motor and provide a vacuum surrounding the motor cavity. One attempt to lower the gas density in the motor cavity while simultaneously cooling the motor involves the use of auxiliary positive displacement gas compressors powered by an independent power source to “pump down” the motor cavity while a complete vapor compression system is in operation. However the auxiliary compressors can consume more energy than is saved in motor windage losses.
Other conventional rotor cooling systems for hermetic/semi-hermetic motors in vapor compression systems rely on evaporator gas directed through the rotor and vented into the lowest pressure location at the impeller suction inlet to the compressor. The system is used to minimize the windage, or friction, loss of the rotor by maintaining the refrigerant density within the system near evaporator conditions. The windage loss in the motor is nearly directly proportional to the gas density in the motor cavity for a constant speed of the rotor.
A potentially undesirable result of using the lowest pressure gas for motor cooling to minimize motor losses is that the seal leakage in the compressor is actually maximized because the largest differential pressure across the seals are experienced. This argument applies to any seal vented through the motor cavity to first stage suction. The pressure upstream of the seal is at each respective impeller discharge static condition, and the downstream pressure is at motor cavity pressure—that is, near evaporator pressure—when utilizing evaporator vapor to cool the rotor. The system minimizes losses if the motor windage losses are the only consideration. However, by utilizing evaporator conditions for motor cooling, seal leakage in the compressor may increase, particularly within a two-stage compressor.
The present invention relates to a vapor compression system. The vapor compression system includes a compressor, an evaporator and a condenser connected in a closed loop. A motor is connected to the compressor to power the compressor. A motor coolant system is configured to cool the compressor motor. The compressor includes a first compressor stage and a second compressor stage. The first compressor stage provides compressed vapor to an input of the second compressor stage. The motor coolant system includes a first connection in fluid communication with the closed loop to deliver refrigerant into a motor cavity, and a second connection with the refrigerant loop to return refrigerant to an interstage connection having an intermediate pressure. The intermediate pressure is greater than an evaporator operating pressure and less than a condenser operating pressure. A first seal is located between the motor cavity and the first compressor stage, and a second seal is located between the motor cavity and the second compressor stage. The first and second seal maintain the refrigerant at an intermediate pressure inside the motor cavity.
The present invention further relates to a motor coolant system for a motor powering a compressor in a chiller system. The chiller system includes a compressor, an evaporator and a condenser connected in a closed loop. The motor coolant system includes a motor housing enclosing the motor, and a motor cavity within the motor housing. The coolant system includes a first connection from the motor cavity in fluid communication with the condenser to deliver a refrigerant into the cavity, and a second connection from the motor cavity in fluid communication with the loop to return refrigerant to an interstage connection having an intermediate pressure. The intermediate pressure is greater than an evaporator operating pressure and less than a condenser operating pressure. The motor cavity is configured to maintain the refrigerant at the intermediate pressure inside the motor cavity.
The present invention also relates to a motor coolant system for a motor powering a compressor in a chiller system, the chiller system comprising a compressor, an evaporator and a condenser connected in a closed loop. The motor coolant system includes a motor housing enclosing the motor, and a motor cavity within the motor housing. The coolant system includes a first connection from the motor cavity in fluid communication with the condenser to deliver a refrigerant into the cavity, and a second connection from the motor cavity in fluid communication with the loop to return refrigerant to the evaporator having a predetermined operating pressure. The motor cavity is configured to maintain the refrigerant at the evaporator operating pressure inside the motor cavity.
Compressor 28 compresses a refrigerant vapor and delivers the vapor to condenser 30 through a discharge line. Compressor 28 can be any suitable type of compressor, for example, a screw compressor, a centrifugal compressor, a reciprocating compressor, or a scroll compressor. The refrigerant vapor delivered by compressor 28 to condenser 30 enters into a heat exchange relationship with a fluid, for example, air or water, and undergoes a phase change to a refrigerant liquid as a result of the heat exchange relationship with the fluid. The condensed liquid refrigerant from condenser 30 flows through an expansion device 66 to evaporator 32.
In another exemplary embodiment evaporator 32 may include connections for a supply line and a return line of a cooling load. A secondary liquid, for example, water, ethylene, calcium chloride brine or sodium chloride brine, travels into evaporator 32 via return line and exits evaporator 32 via supply line. The liquid refrigerant in evaporator 32 enters into a heat exchange relationship with the secondary liquid to lower the temperature of the secondary liquid. The refrigerant liquid in evaporator 32 undergoes a phase change to a refrigerant vapor as a result of the heat exchange relationship with the secondary liquid. The vapor refrigerant in evaporator 32 exits evaporator 32 and returns to compressor 28 by a suction line to complete the cycle.
Referring to
The high pressure liquid refrigerant from condenser 30 flows through an expander 66 to enter evaporator 32 at a lower pressure. The liquid refrigerant delivered to evaporator 32 enters into a heat exchange relationship with a fluid, for example, air or water, and undergoes a phase change to a refrigerant vapor as a result of the heat exchange relationship with the fluid. The vapor refrigerant in evaporator 32 exits evaporator 32 and returns to compressor 28 by a suction line to complete the cycle. It is to be understood that any suitable configuration of condenser 30 and evaporator 32 can be used in the system, provided that the appropriate phase change of the refrigerant in condenser 30 and evaporator 32 is obtained. A motor cooling loop is connected to the refrigerant loop to provide cooling to motor 36.
In
In an alternate embodiment, motor 36 may be vented to evaporator 32 through alternate vent line 47, and vent line 49 removed from
Referring next to
A point 92 at which minimum compressor system power loss, or combined power loss, occurs is the point at which the resultant sum of the seal leakage loss and the rotor windage loss is minimized, as shown by line 86. This combined power loss minimum point 92 occurs at high motor cavity pressure. This result is contrary to the result that is yielded when considering rotor windage loss only, that is, considering rotor windage loss without regard to seal leakage, the rotor windage loss is minimized at the lowest motor cavity pressure.
Graph 80 illustrates that to minimize combined compressor system losses 86, seal leakage losses 82 must be minimized or reduced. This can be achieved by, for example, improved seals that reduce leakage, and by minimizing the differential pressure across the seal. In one exemplary embodiment, differential pressure across the seal may be minimized by using sources of motor cooling flow and venting that are as nearly equal in pressure as possible.
One method of minimizing the differential pressure across seal 70 is to use high pressure vapor, which exceeds evaporator 32 vapor pressure, to cool motor cavity 78 to achieve minimum system losses. In one exemplary embodiment, the method employs liquid refrigerant from condenser 30 expanded to pure vapor to provide rotor gap cooling, as indicated by coolant supply line 37 (
In another exemplary embodiment, instead of implementing dedicated cooling lines with minimized pressure differential across the barrier seal, the system may utilize seal leakage flow only from stage two, through the motor cavity and into stage one, without separate cooling sources from another part of the system. This method reduces system complexity and costs. In either case, maintenance of motor and bearing operating temperature within required limits is ensured.
The disclosed cooling methods may be applied to various types of motors, for example, induction, permanent magnet, hybrid permanent magnet, solid rotor motors, implemented in a hermetic/semi-hermetic environment, within the respective motor operating limits. In addition, this applies to various bearing types, for example, oil film, gas or foil, rolling element, magnetic, and other suitable bearings, within the respective bearing operating limits.
The optimum operating pressure for motor cavity 78 may vary between types of seals having different characteristics, and the resultant seal leakage may differ accordingly.
It is important to note that the construction and arrangement of the method and system for rotor cooling as shown in the various exemplary embodiments is illustrative only. Although only a few exemplary embodiments have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (for example, variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited in the claims. For example, elements shown as integrally formed may be constructed of multiple parts or elements, the position of elements may be reversed or otherwise varied, and the nature or number of discrete elements or positions may be altered or varied. Accordingly, all such modifications are intended to be included within the scope of the present application. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. In the claims, any means-plus-function clause is intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Other substitutions, modifications, changes and omissions may be made in the design, operating conditions and arrangement of the exemplary embodiments without departing from the scope of the present application.
This application claims the benefit of U.S. Provisional Application No. 61/017,966 entitled METHOD AND SYSTEM FOR ROTOR COOLING, filed Dec. 31, 2007, which is hereby incorporated by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US08/88520 | 12/30/2008 | WO | 00 | 6/1/2010 |
Number | Date | Country | |
---|---|---|---|
61017966 | Dec 2007 | US |