The field of the invention relates generally to any type of turbine, and more specifically, to a method and a system for sealing a gap between a turbine bucket dovetail and a turbine rotor using a deformable locking seal.
Gas turbines generally include a turbine rotor (wheel) with a number of circumferentially spaced buckets (blades). The buckets generally may include an airfoil, a platform, a shank, a dovetail, and other elements. The dovetail of each bucket is positioned within the turbine rotor and secured therein. The airfoils project into the hot gas path so as to convert the kinetic energy of the gas into rotational mechanical energy. A number of cooling medium passages may extend radially through the bucket to direct an inward and/or an outward flow of the cooling medium therethrough.
Leaks may develop in the coolant supply circuit based upon a gap between the tabs of the dovetails and the surface of the rotor due to increases in thermal and/or centrifugal loads. Air losses from the bucket supply circuit into the wheel space may be significant with respect to blade cooling medium flow requirements. Moreover, the air may be extracted from later compressor stages such that the penalty on energy output and overall efficiency may be significant during engine operation.
Efforts have been made to limit this leak. However, though the known seals may seal the gap well and may be durable, the known seals cannot be easily disassembled and replaced in the field.
In one embodiment, a dovetail seal includes a first end portion extending from a first extent of the first end portion a predetermined distance along a length of the dovetail seal, a second end portion extending from a first extent of the second end portion a predetermined distance along a length of the dovetail seal towards the first end portion, and a body having a length extending between the first and second end portions. The body includes a U-shaped bend complementary to a sealing groove in a dovetail of a turbine blade. The first end portion includes a converging flared cross-section from the first extent of the first end portion toward the second end portion and the second end portion includes a converging flared cross-section from the first extent of the second end portion toward the first end portion.
In another embodiment, a method of sealing a gap between a bucket dovetail and a rotor includes aligning a U-shaped seal with a sealing groove of the dovetail, translating the seal along the sealing groove in an outwardly radial direction with respect to the dovetail, spreading the legs of the U-shaped seal by the translation such that the legs of the seal are resiliently biased in the unspread direction, engaging an inclined surface of the sealing groove with a portion of a surface of the seal, and relaxing the bias on the legs by the engaging.
In yet another embodiment, a dovetail seal assembly for sealing a gap between a bucket dovetail and a rotor includes a rotor including a plurality of circumferentially spaced slots, each slot configured to matingly engage a respective dovetail of a turbine bucket, a turbine bucket including a sealing groove formed in the dovetail, and a sealing member including a U-shaped hollow body having a longitudinal cut therein extending a length of the sealing member, where the cut is oriented away from an opening of the sealing groove.
The following detailed description illustrates embodiments of the invention by way of example and not by way of limitation. It is contemplated that the invention has general application to analytical and methodical embodiments of sealing fluid leakage paths in industrial, commercial, and residential applications.
As used herein, an element or step recited in the singular and preceded with the word “a” or “an” should be understood as not excluding plural elements or steps, unless such exclusion is explicitly recited. Furthermore, references to “one embodiment” of the present invention are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features.
In the exemplary embodiment, bucket 10 includes an airfoil 30, a platform 40, a shank 50, a dovetail 60, and other elements. It will be appreciated that the bucket 10 is one of a number of circumferentially spaced buckets 10 secured to and about rotor 20 of the turbine. In one embodiment, bucket 10 includes a shroud 65 on one end of airfoil 30. In various other embodiments, bucket 10 lacks shroud 65. Any other type of bucket design may be used herein. Airfoils 30 of buckets 10 project into the hot gas stream so as to enable the kinetic energy of the stream to be converted into mechanical energy through the rotation of rotor 20. Dovetail 60 may include a first tang or tab 70 and a second tab 80 extending therefrom. Similar designs may be used herein. A gap may be formed between the ends of tabs 70, 80 of dovetail 60 and rotor 20. Flow from the hot gas stream or high pressure cooling flow may escape via the gap. Tab 70 includes a sealing groove 72 and tab 80 may also include a sealing groove 82.
In the exemplary embodiment, dovetail seal 100 includes a first end portion 102 extending from a first extent 104 of first end portion 102 a predetermined distance 106 along a length 108 of dovetail seal 100. Dovetail seal 100 also includes a second end portion 110 extending from a first extent 112 of second end portion 110 a predetermined distance 114 along length 108 of dovetail seal 100 towards first end portion 102. Dovetail seal 100 further includes a body 116 having a length 118 extending between first end portion 102 and second end portion 110. First end portion 102 includes a converging flared cross-section from first extent 104 of first end portion 102 toward second end portion 110 and second end portion 110 includes a converging flared cross-section from first extent 112 of second end portion 110 toward first end portion 102. Body 116 includes an elongate cylindrical shape, a U-shaped bend complementary to sealing groove 72, and a hollow interior 122 extending along a centerline 120 of body 116. A cut 124 extends along length 108 from a radially outer surface 126 of body 116 to hollow interior 122. In one embodiment, cut 124 extends along surface 126 parallel to centerline 120 from extent 104 to extent 112. In various embodiments, cut 124 extends only a portion of length 108 parallel to centerline 120. In still other embodiments, cut 124 extends arcuately along at least a portion of surface 126, for example, but not limited to, within end portions 102 and/or 110. A width 128 of cut 124 may be variable along length 108. In the exemplary embodiment, width 128 is substantially constant along length 118 and variable within end portions 102 and/or 110. In various embodiments, the converging flared cross-section extends only partially around a circumference of first end portion 102 and/or second end portion 110. The converging flared cross-section is complementary to an inclined surface (not shown in
During installation in sealing groove 72, dovetail seal 100 is slid onto tab 70 in sealing groove 72 in a radially outward direction 404 with respect to dovetail 60 and rotor 20. The converging flared cross-section of first end portion 102 and/or second end portion 110 sliding along the surface of sealing groove 72 force first end portion 102 and second end portion 110 outwardly in the plane of centerline 120. The converging flared cross-sections spread away from each other until the converging flared cross-sections engage inclined surface 402 when the resilient forces overcome the friction of the surface of sealing groove 72 and dovetail seal 100 snaps into a fully engaged position (shown in
The above-described embodiments of a method and system of forming a resilient seal that locks onto a bucket dovetail using a groove having an inclined surface configured to engage a complementary feature on the dovetail seal that provides a cost-effective and reliable means for sealing a gap between a bucket dovetail and a rotor. As a result, the method and system described herein facilitate reducing leakage in a gas turbine engine in a cost-effective and reliable manner.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Number | Name | Date | Kind |
---|---|---|---|
3588131 | Nicholson | Jun 1971 | A |
3674279 | McMurray et al. | Jul 1972 | A |
5257909 | Glynn et al. | Nov 1993 | A |
6296172 | Miller | Oct 2001 | B1 |
6315298 | Kildea et al. | Nov 2001 | B1 |
6398499 | Simonetti et al. | Jun 2002 | B1 |
8011894 | Arness et al. | Sep 2011 | B2 |
8210821 | Arness et al. | Jul 2012 | B2 |
8215914 | Danescu et al. | Jul 2012 | B2 |
20060219608 | Scott et al. | Oct 2006 | A1 |
20100007096 | Ward et al. | Jan 2010 | A1 |
20100008769 | Arness et al. | Jan 2010 | A1 |
20100008781 | Ward et al. | Jan 2010 | A1 |
20100008782 | Danescu et al. | Jan 2010 | A1 |
20100008783 | Arness et al. | Jan 2010 | A1 |
20100068062 | DiMascio et al. | Mar 2010 | A1 |
20100068063 | Berg et al. | Mar 2010 | A1 |
20110305576 | Ward et al. | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
101624920 | Jan 2010 | CN |
102009026050 | Jan 2010 | DE |
102009026057 | Jan 2010 | DE |
2143885 | Jan 2010 | EP |
2143887 | Jan 2010 | EP |
2000045705 | Feb 2000 | JP |
Entry |
---|
Search Report and Written Opinion from corresponding EP Application No. 12161012.5-1610 dated Apr. 2, 2013. |
Unofficial English translation of Office Action issued in connection with corresponding CN Application No. 201210103770.X on Nov. 4, 2014. |
Number | Date | Country | |
---|---|---|---|
20120251328 A1 | Oct 2012 | US |