Data protection systems contain large amounts of data. This data includes personal data, such as financial data, customer/client/patient contact data, audio/visual data, and much more. Corporate computer systems often contain word processing documents, engineering diagrams, spreadsheets, business strategy presentations, and so on. With the proliferation of computer systems and the ease of creating content, the amount of content in an organization has expanded rapidly. Even small offices often have more information stored than any single employee can know about or locate.
Some data protection applications provide functions for actively searching for files within the organization based on a previously created index of the information available in each file. A user can then search for and retrieve documents based on a topic. Typical search software operates on a single index of keywords derived from the data that has been copied for protection purposes. It is typical for an organization to maintain many secondary copies of its data and the various copies are typically stored in multiple formats in multiple devices. For example, when current copy of data is made, previous copies are often maintained so that an historical archive is created. Thus, if the most recent copy does not have the desired data for a restore operation, an older copy may be used. With the existence of multiple copies on multiple devices spanning weeks, months and even years, a search over this data can be complex and time consuming. A search over such a large amount of data can require separately searching content indices of all of the computer systems within an organization. This can put an unexpected load on already burdened systems and can require significant time on the part of a system operator.
Typical search systems also create problems when retrieval of the desired data is attempted. First, typical systems require that retrieval of the identified data be performed as a restore operation. The typical restore operation first identifies a secondary copy of the data in question on a secondary volume and copies the identified copy of the data back onto a production server (or other primary or working volume) and overwrites the existing data files. This can be inconvenient if it is desired to maintain the production copy or if it is merely desired to inspect the contents of a secondary data store. Second, typical systems are blind to the security rights of users and database operators. Typical systems do not have an integrated data rights security control that identifies the security privileges of the operator or user for whom the data is being restored and allows or denies the restore accordingly. Additionally, typical systems do not allow a user to promote and reapply search criteria throughout the data management system.
In the drawings, the same reference numbers and acronyms identify elements or acts with the same or similar functionality for ease of understanding and convenience.
The invention will now be described with respect to various examples. The following description provides specific details for a thorough understanding of, and enabling description for, these examples of the invention. However, one skilled in the art will understand that the invention may be practiced without these details. In other instances, well-known structures and functions have not been shown or described in detail to avoid unnecessarily obscuring the description of the examples of the invention.
The terminology used in the description presented below is intended to be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of certain specific examples of the invention. Certain terms may even be emphasized below; however, any terminology intended to be interpreted in any restricted manner will be overtly and specifically defined as such in this Detailed Description section.
Suitable System
Referring to
Cell 220 contains components used in data storage operations, such as a storage manager 221, a database 222, a client 223, and a primary storage database 224. Cell 230 may contain similar components, such as storage manager 231, a database 232, a client 233, and a primary storage database 234. In this example, cell 230 also contains media agent 235 and secondary database 236. Both cells 220 and 230 communicate with global manager 260, providing information related to the data storage operations of their respective cells.
Referring to
Cells 300 may include software and/or hardware components and modules used in data storage operations. The cells 300 may be transfer cells that function to transfer data during data store operations. The cells 300 may perform other storage operations in addition to operations used in data transfers. For example, cells 300 may perform creating, storing, retrieving, and/or migrating primary and secondary data copies. The data copies may include snapshot copies, secondary copies, hierarchical storage manager copies, archive copies, and so on. The cells 300 may also perform storage management functions that may push information to higher level cells, including global manager cells.
In some embodiments, the system can be configured to perform a storage operation based on one or more storage policies. A storage policy may be, for example, a data structure that includes a set of preferences or other criteria considered during storage operations. The storage policy may determine or define a storage location, a relationship between components, network pathways, accessible datapipes, retention schemes, compression or encryption requirements, preferred components, preferred storage devices or media, and so on. Storage policies may be stored in storage manager 310, 221, 231, or may be stored in global manager 261, as discussed above.
Additionally or alternatively, the system may implement or utilize schedule policies. A schedule policy may specify when to perform storage operations, how often to perform storage operations, and so on. The schedule policy may also define the use of sub-clients, where one type of data (such as email data) is stored using one sub-client, and another type of data (such as database data) is stored using another sub-client. In these cases, storage operations related to specific data types (email, database, and so on) may be distributed between cells.
Referring to
Global server 100 may push data to a management server 442. Server 442 communicates with a database 445 and clients 451, 452 and/or 453. Data storage servers 430 push data to the global server 100, and contain data agents 432 and can communicate with databases 435. These servers may communicate with clients 454, 455, and/or 456.
Global server 100 can be configured to perform actions (such as redistributing storage operations), and apply these actions to the data storage system via a management server. Global server 100 receives information used to determine the actions from the storage servers 430. In this example, the global server acts as a hub in the data storage system by sending information to modify data storage operations and monitoring the data storage operations to determine how to improve the operations.
Index Searching
The hierarchical storage system described herein can be used for searching multiple indices of content, retrieving the identified data in accordance with integrated data security policies, and applying the search criteria as a data management policy. Some or all of these functions can be performed via a simple interface accessed, e.g., from a web browser.
The content indices searched can be created by a content indexing system. Indices of this data can be created using any known technique including those described in the assignee's co-pending application Ser. No. 11/694,869 filed Mar. 30, 2007, entitled “Method and System for Offline Indexing of Content and Classifying Stored Data”, the contents of which are herein incorporated by reference.
The content indexing system can create an index of an organization's content by examining files generated from routine secondary copy operations performed by the organization. The content indexing system can index content from current secondary copies of the system as well as older copies that contain data that may no longer be available on the organization's network. For example, the organization may have secondary copies dating back several years that contain older data that is no longer available, but may still be relevant to the organization. The content indexing system may associate additional properties with data that are not part of traditional indexing of content, such as the time the content was last available or user attributes associated with the content. For example, user attributes such as a project name with which a data file is associated may be stored.
Members of the organization can search the created index to locate content on a secondary storage device that is no longer online. For example, a user can search for content related to a project that was cancelled a year ago. In this way, content indexing is not affected by the availability of the system that is the original source of the content and users can find additional organization data that is not available in traditional content indexing systems.
In some embodiments, members of the organization can search for content within the organization independent of the content's source through a single, unified user interface, which may be available thorough a web browser. For example, members may search for content that originated on a variety of computer systems within the organization. Members may also search through any copy of the content including any primary, secondary, and/or tertiary or auxiliary copies of the content.
In some embodiments, the content indexing system searches for content based on availability information related to the content. For example, a user may search for content available during a specified time period, such as email received during a particular month. A user may also search specifically for content that is no longer available, such as searching for files deleted from the user's primary computer system. The user may perform a search based on the attributes described above, such as a search based on the time an item was deleted or based on a project with which the item was associated. A user may also search based on keywords associated with user attributes, such as searching for files that only an executive of the organization would have access to, or searching for files tagged as confidential.
In step 720, the component searches the content index to identify matching content items that are added to a set of search results. For example, the component may identify documents containing specified keywords or other criteria and add these to a list of search results. In step 730, the component selects a first or next search result. In decision step 740, if the search results indicate that the identified content is offline, then the component continues at step 750, else the component continues at step 760. For example, the content may be offline because it is on a tape that has been sent to an offsite storage location. In step 470, the component retrieves the archived content. Additionally or alternatively, the component may provide an estimate of the time required to retrieve the archived content and add this information to the selected search result. In step 760 the component provides the search results in response to the search query. For example, the user may receive the search results through a web browser interface that lists the search results or the search results may be provided to another component for additional processing through an application programming interface (API). After step 760, these steps conclude.
Federated Search
The search described herein can include indices of data, where the data is a snapshot, primary copy, secondary copy, auxiliary copy, and so on. An organization may have several copies of data available on different types of media. Data may be available on, for example, a tape, on a secondary copy server, or through network attached storage.
The search capability can be extended to handle an end-user based search via a web interface, a user-based search (e.g., all files that can belong to “Bob” or that can be viewed by “Bob”), search results across several application types (e.g., file copies, Microsoft Exchange mailbox copies, Microsoft Exchange data agents, Microsoft Exchange public folders, etc.) and search results across multiple computers.
Using a graphical user interface, search criteria can be provided to specify data that is stored on any number and type of volumes and any type of data. An interface such as the interface 800 illustrated in
The search criteria can also specify that the data be from any of multiple applications or of any type. An example of an interface for receiving additional search parameters is shown in
Through the same interface or a separate interface, the user can also select the various types of application data to be searched. The graphical interface for performing the search can provide an efficient means for a user to enter search terms and perform that search over multiple volumes and data types. For example, the interface can provide check boxes or other population routines for identifying hardware or resources and display the list whereby a user can select specific volumes by name or address or whereby a user can select volumes by type or classification. Similarly, a user may be prompted to specify data types or classes.
In some embodiments, the search performed over multiple secondary copies and physical devices will be made with reference to metadata stored in one or more metabases or other forms of databases. A data collection agent may traverse a network file system and obtain certain characteristics and other attributes of data in the system. In some embodiments, such a database may be a collection of metadata and/or other information regarding the network data and may be referred to herein as a metabase. Generally, metadata refers to data or information about data, and may include, for example, data relating to storage operations or storage management, such as data locations, storage management components associated with data, storage devices used in performing storage operations, index data, data application type, or other data. Operations can be performed on this data using any known technique including those described in the assignee's co-pending application Ser. No. 11/564,119 filed Nov. 28, 2006, now U.S. Pat. No. 7,668,884, entitled “Systems and Methods for Classifying and Transferring Information in a Storage Network” the contents of which are herein incorporated by reference.
With this arrangement, when a search over multiple secondary copies is to be performed, a system administrator or system process may simply consult the metabase for such information rather than iteratively access and analyze each data item in the network. This approach significantly reduces the amount of time required to obtain data object information by substantially reducing or eliminating the need to obtain information from the source data, and furthermore reduces or minimizes the involvement of network resources in this process, thereby reducing the processing burden on the host system.
In some embodiments, a query may be received by the system for certain information. This request may be processed and analyzed by a manager module or other system process that determines or otherwise identifies which metabase or metabases within the system likely include at least some of the requested information. For example, the query itself may suggest which metabases to search and/or the management module may consult an index that contains information regarding metabase content within the system. The identification process may include searching and identifying multiple computing devices within an enterprise or network that may contain information satisfying search criteria.
A processor can be configured to search metabases or other indices corresponding to multiple volumes and data stores to identify an appropriate data set that may potentially have information related to the query. This may involve performing iterative searches that examine results generated by previous searches and subsequently searching additional, previously unidentified metabases to find responsive information that may not have been found during the initial search. Thus, the initial metabase search may serve as a starting point for searching tasks that may be expanded based on returned or collected results. The returned results may be optionally analyzed for relevance, arranged, and placed in a format suitable for subsequent use (e.g., with another application), or suitable for viewing by a user and reported.
Once a search has been performed and at least one document or other discrete data item identified, a list of the identified documents or data items can be provided. An example interface 1000 for displaying the results of an email search is illustrated in
In some further embodiments, the one or more identified documents can be retrieved without performing a restore of the data back to the production volume. Such a transfer may involve copying data objects and metadata from one data store and metabase to another, or in some embodiments, may involve migrating the data from its original location to a second location and leaving a pointer or other reference to the second location so the moved information may be quickly located from information present at the original location.
In some embodiments, a preview pane can be provided so that a user can view at least a portion of the contents of the identified file. One such preview pane 1100 is illustrated in
Data Management Policy Integration
In some embodiments, the search criteria provided by a user as part of a search can later be applied as a data management policy. For example, a user could develop search terms that identify a certain set of data files. These search terms can then be stored as a data management policy which can then be applied at any other point in the data storage system. A data management policy created in this manner can be a data structure or other information source that includes a set of preferences and other storage criteria associated with performing a storage operation. The data management policy created based on a user-supplied search criteria can also be used as part of a schedule policy.
A schedule policy may specify when to perform storage operations and how often, and may also specify performing certain storage operations on sub-clients of data and how to treat those sub-clients. A sub-client may represent static or dynamic associations of portions of data of a volume and are typically mutually exclusive. Thus, a portion of data may be given a label and the association is stored as a static entity in an index, database or other storage location used by the system. Sub-clients may also be used as an effective administrative scheme of organizing data according to data type, department within the enterprise, storage preferences, etc. The search criteria provided by a user can be used as a file selector in connection with any schedule policy.
In some embodiments, the data management policy can include various storage preferences, for example, those expressed by a user preference or storage policy. As non-limiting examples, the data management policy can specify a storage location, relationships between system components, network pathway to utilize, retention policies, data characteristics, compression or encryption requirements, preferred system components to utilize in a storage operation, and other criteria relating to a storage operation. Thus, a storage policy may indicate that certain data is to be stored in a specific storage device, retained for a specified period of time before being aged to another tier of secondary storage, copied to secondary storage using a specified number of streams, etc. A storage policy and/or a schedule policy may be stored in a storage manager database or in other locations or components of the system.
Integrated Data Rights Security Control
Some organizations may have multiple levels of security according to which some users can access certain files while others cannot. For example, a high security user group can be defined and this group can be granted access to all documents created by the organization; a medium security group can be granted access to only certain classes of documents; a low security group can be granted access only to certain predefined documents.
The search interface described herein can be configured to be accessible by any type of user including a secondary copy administrator, an end user who does not have any administrative privileges, or a user of any security clearance. Additionally, the data files stored in the data management system can tagged with security information. This information tag can be stored in a metabase or any other form of content index and can be used to leverage existing security schema. In embodiments in which a search is performed on one or more context indices, corresponding security tag information can be stored therein. Security information can include identification of various classes of users who are granted rights to access the document as well as identification of classes of users who are denied access rights.
In some embodiments, security information can be stored in the form of user tags. User tags are further described in the assignee's co-pending application Ser. No. 11/694,784 filed Mar. 30, 2007, entitled “System and Method Regarding Security And Permissions”, the contents of which are herein incorporated by reference.
In some further embodiments, the search results can be filtered based on the user's security clearance or access privileges. After a user enters search parameters, data files matching those parameters may be identified, and a list of the identified files displayed to the user. If the user does not have the required security clearance or access privileges, the interface can be configured not to display the file.
It is possible that a secondary copy administrator may not have sufficient security clearance to inspect a file that is being restored or retrieved. In such a circumstance, the administrator will not be allowed to preview the file or otherwise inspect the contents of it during the search process. The interface providing results may be configured to not display a preview of such a file. If a secondary copy administrator had sufficient security clearance, then a preview may be provided or the administrator may be allowed to make a local copy of the file.
If the secondary copy administrator does not have sufficient security clearance for a specific file or group or class of files, an interface may be provided through which the administrator may initiate a copy of that file directly from the secondary copy device to a directory or disk associated with a user who has sufficient security clearance. In some instances, the user associated with the file may be the owner of the file. If the secondary copy administrator or other user executing a search query has sufficient security clearance to inspect the contents of the one or more files identified in the search, a preview of the data file may be displayed.
The following discussion provides a brief, general description of a suitable computing environment in which the invention can be implemented. Although not required, aspects of the invention are described in the general context of computer-executable instructions, such as routines executed by a general-purpose computer, e.g., a server computer, wireless device or personal computer. Those skilled in the relevant art will appreciate that the invention can be practiced with other communications, data processing, or computer system configurations, including: Internet appliances, hand-held devices (including personal digital assistants (PDAs)), wearable computers, all manner of cellular or mobile phones, multi-processor systems, microprocessor-based or programmable consumer electronics, set-top boxes, network PCs, mini-computers, mainframe computers, and the like. Indeed, the terms “computer,” “host,” and “host computer” are generally used interchangeably herein, and refer to any of the above devices and systems, as well as any data processor.
Aspects of the invention can be embodied in a special purpose computer or data processor that is specifically programmed, configured, or constructed to perform one or more of the computer-executable instructions explained in detail herein. Aspects of the invention can also be practiced in distributed computing environments where tasks or modules are performed by remote processing devices, which are linked through a communications network, such as a Local Area Network (LAN), Wide Area Network (WAN), or the Internet. In a distributed computing environment, program modules may be located in both local and remote memory storage devices.
Aspects of the invention may be stored or distributed on computer-readable media, including magnetically or optically readable computer discs, hard-wired or preprogrammed chips (e.g., EEPROM semiconductor chips), nanotechnology memory, biological memory, or other data storage media. Indeed, computer implemented instructions, data structures, screen displays, and other data under aspects of the invention may be distributed over the Internet or over other networks (including wireless networks), on a propagated signal on a propagation medium (e.g., an electromagnetic wave(s), a sound wave, etc.) over a period of time, or they may be provided on any analog or digital network (packet switched, circuit switched, or other scheme). Those skilled in the relevant art will recognize that portions of the invention reside on a server computer, while corresponding portions reside on a client computer such as a mobile or portable device, and thus, while certain hardware platforms are described herein, aspects of the invention are equally applicable to nodes on a network.
From the foregoing, it will be appreciated that specific embodiments of the system have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. For example, although files have been described, other types of content such as user settings, application data, emails, and other data objects can all be indexed by the system. Accordingly, the invention is not limited except as by the appended claims.
Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” The word “coupled”, as generally used herein, refers to two or more elements that may be either directly connected, or connected by way of one or more intermediate elements. Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application. Where the context permits, words in the above Detailed Description using the singular or plural number may also include the plural or singular number respectively. The word “or” in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.
The above detailed description of embodiments of the invention is not intended to be exhaustive or to limit the invention to the precise form disclosed above. While specific embodiments of, and examples for, the invention are described above for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize. For example, while processes or blocks are presented in a given order, alternative embodiments may perform routines having steps, or employ systems having blocks, in a different order, and some processes or blocks may be deleted, moved, added, subdivided, combined, and/or modified. Each of these processes or blocks may be implemented in a variety of different ways. Also, while processes or blocks are at times shown as being performed in series, these processes or blocks may instead be performed in parallel, or may be performed at different times.
The teachings of the invention provided herein can be applied to other systems, not necessarily the system described above. The elements and acts of the various embodiments described above can be combined to provide further embodiments.
These and other changes can be made to the invention in light of the above Detailed Description. While the above description details certain embodiments of the invention and describes the best mode contemplated, no matter how detailed the above appears in text, the invention can be practiced in many ways. Details of the system may vary considerably in implementation details, while still being encompassed by the invention disclosed herein. As noted above, particular terminology used when describing certain features or aspects of the invention should not be taken to imply that the terminology is being redefined herein to be restricted to any specific characteristics, features, or aspects of the invention with which that terminology is associated. In general, the terms used in the following claims should not be construed to limit the invention to the specific embodiments disclosed in the specification, unless the above Detailed Description section explicitly defines such terms. Accordingly, the actual scope of the invention encompasses not only the disclosed embodiments, but also all equivalent ways of practicing or implementing the invention under the claims.
While certain aspects of the invention are presented below in certain claim forms, the inventors contemplate the various aspects of the invention in any number of claim forms. For example, while only one aspect of the invention is recited as embodied in a computer-readable medium, other aspects may likewise be embodied in a computer-readable medium. Accordingly, the inventors reserve the right to add additional claims after filing the application to pursue such additional claim forms for other aspects of the invention.
This application is a continuation application of U.S. application Ser. No. 11/931,034, filed Oct. 31, 2007 now abandoned, which claims priority to U.S. Provisional Application No. 60/871,735, filed Dec. 22, 2006, each of which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4686620 | Ng | Aug 1987 | A |
4995035 | Cole et al. | Feb 1991 | A |
5005122 | Griffin et al. | Apr 1991 | A |
5093912 | Dong et al. | Mar 1992 | A |
5133065 | Cheffetz et al. | Jul 1992 | A |
5193154 | Kitajima et al. | Mar 1993 | A |
5212772 | Masters | May 1993 | A |
5226157 | Nakano et al. | Jul 1993 | A |
5239647 | Anglin et al. | Aug 1993 | A |
5241668 | Eastridge et al. | Aug 1993 | A |
5241670 | Eastridge et al. | Aug 1993 | A |
5276860 | Fortier et al. | Jan 1994 | A |
5276867 | Kenley et al. | Jan 1994 | A |
5287500 | Stoppani, Jr. | Feb 1994 | A |
5321816 | Rogan et al. | Jun 1994 | A |
5333315 | Saether et al. | Jul 1994 | A |
5347653 | Flynn et al. | Sep 1994 | A |
5410700 | Fecteau et al. | Apr 1995 | A |
5448724 | Hayashi | Sep 1995 | A |
5491810 | Allen | Feb 1996 | A |
5495607 | Pisello et al. | Feb 1996 | A |
5504873 | Martin et al. | Apr 1996 | A |
5519865 | Kondo et al. | May 1996 | A |
5544345 | Carpenter et al. | Aug 1996 | A |
5544347 | Yanai et al. | Aug 1996 | A |
5559957 | Balk | Sep 1996 | A |
5619644 | Crockett et al. | Apr 1997 | A |
5638509 | Dunphy et al. | Jun 1997 | A |
5673381 | Huai et al. | Sep 1997 | A |
5699361 | Ding et al. | Dec 1997 | A |
5729743 | Squibb | Mar 1998 | A |
5737747 | Vishlitzky et al. | Apr 1998 | A |
5751997 | Kullick et al. | May 1998 | A |
5758359 | Saxon | May 1998 | A |
5761677 | Senator et al. | Jun 1998 | A |
5764972 | Crouse et al. | Jun 1998 | A |
5778395 | Whiting et al. | Jul 1998 | A |
5812398 | Nielsen | Sep 1998 | A |
5813009 | Johnson et al. | Sep 1998 | A |
5813017 | Morris | Sep 1998 | A |
5829046 | Tzelnic et al. | Oct 1998 | A |
5832510 | Ito et al. | Nov 1998 | A |
5875478 | Blumenau | Feb 1999 | A |
5887134 | Ebrahim | Mar 1999 | A |
5892917 | Myerson | Apr 1999 | A |
5901327 | Ofek | May 1999 | A |
5907621 | Bachman et al. | May 1999 | A |
5924102 | Perks | Jul 1999 | A |
5950205 | Aviani, Jr. | Sep 1999 | A |
5953721 | Doi et al. | Sep 1999 | A |
5974563 | Beeler, Jr. | Oct 1999 | A |
6021415 | Cannon et al. | Feb 2000 | A |
6023710 | Steiner et al. | Feb 2000 | A |
6026414 | Anglin | Feb 2000 | A |
6052735 | Ulrich et al. | Apr 2000 | A |
6061692 | Thomas et al. | May 2000 | A |
6076148 | Kedem | Jun 2000 | A |
6094416 | Ying | Jul 2000 | A |
6131095 | Low et al. | Oct 2000 | A |
6131190 | Sidwell | Oct 2000 | A |
6148412 | Cannon et al. | Nov 2000 | A |
6154787 | Urevig et al. | Nov 2000 | A |
6154852 | Amundson et al. | Nov 2000 | A |
6161111 | Mutalik et al. | Dec 2000 | A |
6167402 | Yeager | Dec 2000 | A |
6175829 | Li et al. | Jan 2001 | B1 |
6212512 | Barney et al. | Apr 2001 | B1 |
6260069 | Anglin | Jul 2001 | B1 |
6269431 | Dunham | Jul 2001 | B1 |
6275953 | Vahalia et al. | Aug 2001 | B1 |
6301592 | Aoyama et al. | Oct 2001 | B1 |
6324581 | Xu et al. | Nov 2001 | B1 |
6328766 | Long | Dec 2001 | B1 |
6330570 | Crighton et al. | Dec 2001 | B1 |
6330642 | Carteau | Dec 2001 | B1 |
6343324 | Hubis et al. | Jan 2002 | B1 |
RE37601 | Eastridge et al. | Mar 2002 | E |
6356801 | Goodman et al. | Mar 2002 | B1 |
6374336 | Peters et al. | Apr 2002 | B1 |
6389432 | Pothapragada et al. | May 2002 | B1 |
6418478 | Ignatius et al. | Jul 2002 | B1 |
6421683 | Lamburt | Jul 2002 | B1 |
6421711 | Blumenau et al. | Jul 2002 | B1 |
6421779 | Kuroda et al. | Jul 2002 | B1 |
6430575 | Dourish et al. | Aug 2002 | B1 |
6438586 | Hass et al. | Aug 2002 | B1 |
6487561 | Ofek et al. | Nov 2002 | B1 |
6487644 | Huebsch et al. | Nov 2002 | B1 |
6519679 | Devireddy et al. | Feb 2003 | B2 |
6538669 | Lagueux, Jr. et al. | Mar 2003 | B1 |
6542909 | Tamer et al. | Apr 2003 | B1 |
6542972 | Ignatius et al. | Apr 2003 | B2 |
6564228 | O'Connor | May 2003 | B1 |
6581143 | Gagne et al. | Jun 2003 | B2 |
6625623 | Midgley et al. | Sep 2003 | B1 |
6647396 | Parnell et al. | Nov 2003 | B2 |
6658436 | Oshinsky et al. | Dec 2003 | B2 |
6658526 | Nguyen et al. | Dec 2003 | B2 |
6732124 | Koseki et al. | May 2004 | B1 |
6763351 | Subramaniam et al. | Jul 2004 | B1 |
6772164 | Reinhardt | Aug 2004 | B2 |
6775790 | Reuter et al. | Aug 2004 | B2 |
6836779 | Poulin | Dec 2004 | B2 |
6847984 | Midgley et al. | Jan 2005 | B1 |
6857053 | Smith et al. | Feb 2005 | B2 |
6871163 | Hiller et al. | Mar 2005 | B2 |
6886020 | Zahavi et al. | Apr 2005 | B1 |
6947935 | Horvitz et al. | Sep 2005 | B1 |
6983322 | Tripp et al. | Jan 2006 | B1 |
6996616 | Leighton et al. | Feb 2006 | B1 |
7003519 | Biettron et al. | Feb 2006 | B1 |
7035880 | Crescenti et al. | Apr 2006 | B1 |
7047236 | Conroy et al. | May 2006 | B2 |
7085787 | Beier et al. | Aug 2006 | B2 |
7103740 | Colgrove et al. | Sep 2006 | B1 |
7130860 | Pachet et al. | Oct 2006 | B2 |
7130970 | Devassy et al. | Oct 2006 | B2 |
7167895 | Connelly | Jan 2007 | B1 |
7181444 | Porter et al. | Feb 2007 | B2 |
7194454 | Hansen et al. | Mar 2007 | B2 |
7197502 | Feinsmith | Mar 2007 | B2 |
7240100 | Wein et al. | Jul 2007 | B1 |
7246207 | Kottomtharayil et al. | Jul 2007 | B2 |
7246211 | Beloussov et al. | Jul 2007 | B1 |
7269612 | Devarakonda et al. | Sep 2007 | B2 |
7330997 | Odom | Feb 2008 | B1 |
7343365 | Farnham et al. | Mar 2008 | B2 |
7346623 | Prahlad et al. | Mar 2008 | B2 |
7346676 | Swildens et al. | Mar 2008 | B1 |
7356660 | Matsunami et al. | Apr 2008 | B2 |
7359917 | Winter et al. | Apr 2008 | B2 |
7386663 | Cousins | Jun 2008 | B2 |
7440966 | Adkins et al. | Oct 2008 | B2 |
7454569 | Kavuri et al. | Nov 2008 | B2 |
7496589 | Jain et al. | Feb 2009 | B1 |
7500150 | Sharma et al. | Mar 2009 | B2 |
7509316 | Greenblatt et al. | Mar 2009 | B2 |
7529748 | Wen et al. | May 2009 | B2 |
7532340 | Koppich et al. | May 2009 | B2 |
7533103 | Brendle et al. | May 2009 | B2 |
7583861 | Hanna et al. | Sep 2009 | B2 |
7590997 | Diaz Perez | Sep 2009 | B2 |
7617541 | Plotkin et al. | Nov 2009 | B2 |
7627598 | Burke | Dec 2009 | B1 |
7627617 | Kavuri et al. | Dec 2009 | B2 |
7668798 | Scanlon et al. | Feb 2010 | B2 |
7716171 | Kryger | May 2010 | B2 |
7756837 | Williams et al. | Jul 2010 | B2 |
20020049626 | Mathias et al. | Apr 2002 | A1 |
20020069324 | Gerasimov et al. | Jun 2002 | A1 |
20020087550 | Carlyle et al. | Jul 2002 | A1 |
20020161753 | Inaba et al. | Oct 2002 | A1 |
20030018607 | Lennon et al. | Jan 2003 | A1 |
20030046313 | Leung et al. | Mar 2003 | A1 |
20030053414 | Akahane et al. | Mar 2003 | A1 |
20030115219 | Chadwick | Jun 2003 | A1 |
20030130993 | Mendelevitch et al. | Jul 2003 | A1 |
20030182583 | Turco | Sep 2003 | A1 |
20040010493 | Kojima et al. | Jan 2004 | A1 |
20040015514 | Melton et al. | Jan 2004 | A1 |
20040215671 | Hyakutake et al. | Oct 2004 | A1 |
20040254919 | Giuseppini | Dec 2004 | A1 |
20040260678 | Verbowski et al. | Dec 2004 | A1 |
20050050075 | Okamoto et al. | Mar 2005 | A1 |
20050114406 | Borthakur et al. | May 2005 | A1 |
20050154695 | Gonzalez et al. | Jul 2005 | A1 |
20050172010 | Malone et al. | Aug 2005 | A1 |
20050188248 | O'Brien et al. | Aug 2005 | A1 |
20050193128 | Dawson et al. | Sep 2005 | A1 |
20050216453 | Sasaki et al. | Sep 2005 | A1 |
20050228794 | Navas et al. | Oct 2005 | A1 |
20050262097 | Sim-Tang et al. | Nov 2005 | A1 |
20060004820 | Claudatos et al. | Jan 2006 | A1 |
20060010227 | Atluri | Jan 2006 | A1 |
20060031225 | Palmeri et al. | Feb 2006 | A1 |
20060031263 | Arrouye et al. | Feb 2006 | A1 |
20060101285 | Chen et al. | May 2006 | A1 |
20060106814 | Blumenau et al. | May 2006 | A1 |
20060161542 | Cucerzan et al. | Jul 2006 | A1 |
20060253495 | Png | Nov 2006 | A1 |
20060259468 | Brooks et al. | Nov 2006 | A1 |
20060294094 | King et al. | Dec 2006 | A1 |
20070033191 | Hornkvist et al. | Feb 2007 | A1 |
20070043956 | El Far et al. | Feb 2007 | A1 |
20070067586 | Mikami | Mar 2007 | A1 |
20070100867 | Celik et al. | May 2007 | A1 |
20070112809 | Arrouye et al. | May 2007 | A1 |
20070179995 | Prahlad et al. | Aug 2007 | A1 |
20070185914 | Prahlad et al. | Aug 2007 | A1 |
20070185915 | Prahlad et al. | Aug 2007 | A1 |
20070185916 | Prahlad et al. | Aug 2007 | A1 |
20070185917 | Prahlad et al. | Aug 2007 | A1 |
20070185921 | Prahlad et al. | Aug 2007 | A1 |
20070185925 | Prahlad et al. | Aug 2007 | A1 |
20070185926 | Prahlad et al. | Aug 2007 | A1 |
20070192360 | Prahlad et al. | Aug 2007 | A1 |
20070192385 | Prahlad et al. | Aug 2007 | A1 |
20070198570 | Prahlad et al. | Aug 2007 | A1 |
20070198593 | Prahlad et al. | Aug 2007 | A1 |
20070198601 | Prahlad et al. | Aug 2007 | A1 |
20070198608 | Prahlad et al. | Aug 2007 | A1 |
20070198611 | Prahlad et al. | Aug 2007 | A1 |
20070198612 | Prahlad et al. | Aug 2007 | A1 |
20070198613 | Prahlad et al. | Aug 2007 | A1 |
20070203937 | Prahlad et al. | Aug 2007 | A1 |
20070203938 | Prahlad et al. | Aug 2007 | A1 |
20070288536 | Sen et al. | Dec 2007 | A1 |
20080021921 | Horn | Jan 2008 | A1 |
20080059515 | Fulton | Mar 2008 | A1 |
20080091655 | Gokhale et al. | Apr 2008 | A1 |
Number | Date | Country |
---|---|---|
0259912 | Mar 1988 | EP |
0405926 | Jan 1991 | EP |
0467546 | Jan 1992 | EP |
0774715 | May 1997 | EP |
0809184 | Nov 1997 | EP |
0899662 | Mar 1999 | EP |
0981090 | Feb 2000 | EP |
1174795 | Jan 2002 | EP |
WO 9513580 | May 1995 | WO |
WO 9912098 | Mar 1999 | WO |
WO-9914692 | Mar 1999 | WO |
WO-0106368 | Jan 2001 | WO |
WO 03060774 | Jul 2003 | WO |
WO-2005055093 | Jun 2005 | WO |
WO-2007062254 | May 2007 | WO |
WO-2007062429 | May 2007 | WO |
WO-2008049023 | Apr 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20080249996 A1 | Oct 2008 | US |
Number | Date | Country | |
---|---|---|---|
60871735 | Dec 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11931034 | Oct 2007 | US |
Child | 12058589 | US |