The present invention relates to energy use reporting, and more particularly to building energy use reporting.
It is known in the prior art to report a consumer's resource usage as compared to the resource usage of his neighbors. In some cases, the consumer is compared to the average resource usage in his particular geographic area. The problem with such a comparison, however, is that numerous factors affect energy use and the consumer's home energy use is probably very different than most of the other homes within his geographic area. Thus, the consumer might view the comparison as unfair. If the consumer does not believe the comparison is legitimate, then he is unlikely to change his resource conservation practices based on the comparison. To address this problem, prior art methods select neighbors that have similar characteristics to the consumer. This methodology works adequately for areas where homes share many common characteristics. Such a methodology, however, does not work as well for areas where factors other than geography should be considered to accurately determine similar consumers.
Illustrative embodiments of the present invention are directed to a computerized-method for reporting a first consumer's usage of a resource. A computer system retrieves consumer characteristic data and resource usage data for the first consumer and a set of second consumers. The consumer characteristic data including a plurality of characteristics related to each consumer. The computer system selects at least one consumer that is similar to the first consumer from the set of second consumers based upon a plurality of common criteria between the first consumer's characteristic data and a second consumer's characteristic data. The common criterion is one of:
If a total number of similar consumers selected is less than a predetermined number of consumers, the computer system performs at least one action from a set of potential actions to abate the common criteria. The set of potential actions includes:
The computer processes may be performing iteratively until the total number of similar consumers is equal to or greater than the predetermined number of consumers. Once a desired number of similar consumers is found, the computer system generates an electronic report that displays the first consumer's resource usage data and the at least one similar consumers' resource usage data. Embodiments of the invention may require the number of common criteria to be a predefined number of selected characteristics. For example, the number of common criteria may be set to four at the beginning of the process.
In certain embodiments of the invention, the common criteria are abated to a degree and the degree to which they are abated depends on at least one of:
In other embodiments, the degree of abatement depends on a function. The function operates such that as the number of similar consumers selected in a latest iteration decreases, the range for at least one common criterion increases. The function may also operate such that as the number of similar consumers selected in a latest iteration decreases, the number of removed common criterion decreases. In other embodiments, the degree of abatement depends on a function wherein, as the total number of similar consumers selected in all of the iterations decreases, the number of removed common criterion decreases.
The method may be applied to a set of consumers, such as home occupants.
The method may be applied to a set of non-resident resource consumers, such as a factory, a retail store, and/or an office building. Non-resident resource consumers may include private and government facilities.
The common criteria may be selected from a group including:
For non-resident resource consumers, the common criteria may be selected from a group including:
As previously stated, the number of common criteria may vary in different embodiments, for example in one embodiment the number may be equal to 3. In other embodiments the number of common criteria may be equal to 4, 5, or 6 or more.
A match between a characteristic of the first consumer's characteristic data and a characteristic of a second consumer's characteristic data may include determining a match between types of heating fuel used, the number of household occupants, the presence of a photovoltaic system, and the geographical location of the consumers.
A match between a second consumer's building data and a range comprises may include at least one of:
As used in this specification the term resource usage data includes at least one of the following: electrical usage data, gas usage data, waste usage data, water usage data, sewer usage data, garbage usage data, recycling usage data, phone usage data, and broadband access usage data. Resource may also include non-tangible commodities including carbon credits. Resource may further include data of energy resource generated on-site, including, for example, data from a photovoltaic system, a wind system, and/or a solar-heating system. The resource usage data may be retrieved from resource usage meters, wherein the resource usage meters are part of an advanced metering infrastructure. The resource usage data may be retrieved from a secondary meter that interfaces to the resource usage meter.
The report may be further communicated to the first consumer as part of a resource usage bill. The report may be generated as a physical bill. In addition, the described methodology can be employed in a computer system wherein the computer system may include one or more processors that enable aspects of the invention. Additionally, the methodology can be implemented in computer code and stored on a non-transitory computer readable medium for operation on a computer or computer system where the computer readable medium contains computer code thereon.
The foregoing features of the invention will be more readily understood by reference to the following detailed description, taken with reference to the accompanying drawings, in which:
Illustrative embodiments of the present invention are directed to methods and systems for reporting a consumer's usage of a resource. In various illustrative embodiments of the present invention, a report is generated that allows a consumer to compare his resource usage against the resource usage of similar consumers. The report may be electronic or may be generated as a physical hard copy that is mailed to the consumers. Illustrative embodiments of the present invention advantageously provide for selection of the most similar consumers.
In one illustrative embodiment of the present invention, the consumers are any party associated with a building (e.g., tenant, landlord, owner, or manager). In various illustrative embodiments, the consumers are home occupants, such as renters or home owners, and the characteristic data includes characteristic data related to the physical characteristics of the occupants' homes. The homes might be houses, townhouses, condos, single-family houses, multi-family houses, or apartments. In such an embodiment, the characteristic data may include characteristic data related to the physical properties of each home, as selected from the following non-limiting list of examples:
The characteristic data may also include characteristic data related to the home occupants themselves, as selected from the following non-limiting list of examples:
The retrieved characteristic data also includes resource usage for the consumers. For example, in one embodiment, the resource data may include electrical usage data reported in kilowatt-hours. In additional or alternative embodiments, the resource usage data may include natural gas reported in British Thermal Units (BTU), oil using gallons, and/or wood pellets using pounds. Furthermore, in illustrative embodiments, the resource usage data may include data related to any one or more of electrical usage data, gas usage data, waste usage data, water usage data, sewer usage data, garbage usage data, recycling usage data, phone usage data, and broadband access usage data.
In exemplary embodiments of the present invention, at least one consumer that is similar to the first consumer is selected from the set of second consumers based upon at least four common criteria between the first consumer's characteristic data and a second consumer's characteristic data 104. In one embodiment, a common criterion is a match between a characteristic of the first consumer's characteristic data and a characteristic of a second consumer's characteristic data. For example, a common criterion exists when a first consumer and a second consumer both occupy the same dwelling type (e.g., they both occupy an apartment). Another example of a common criterion is when the first consumer and the second consumer both use the same heating fuel (e.g., they both use electricity to heat their homes). If a second consumer uses gas to heat his home, then that second consumer is not selected as a similar consumer to the first consumer. In yet another example, a common criterion exists when a first consumer and a second consumer both have the same location (e.g., they both occupy homes in the same building, zip code, city, or state).
In an alternative or an additional embodiment of the present invention, the common criterion is a match between a range and a second consumer's characteristic data. For example, in one embodiment, the common criterion is a match between a size of a second consumer's home and a range that is determined based upon a size for the first consumer's home. In one illustrative embodiment, the range is plus/minus 8% of the size (in square feet) of the first consumer's home. If the size of the second consumer's home (in square feet) falls within that range, then the size of the home is a common criterion between the first consumer and the second consumer. In another example, a common criterion is a match between a distance between a second consumer's home and the first consumer's home and a distance range. For example, the distance rage might be all homes within a 1 mile radius of the first consumer's home. If the second consumer's home falls within the 1 mile radius, then it matches the first consumer for the home location criterion. Homes that fall outside the 1 mile radius are not selected as similar consumers. In another example, a consumer within a residence with 3 occupants might be matched if the second consumer's residence has a range of occupants, such as 2, 3, or 4 occupants.
In the embodiment shown in
If the number of similar consumers selected is less than a predetermined number of consumers 106, then actions are taken to abate, or relax, the common criteria 110. In one illustrative embodiment, the predetermined number is 100 and thus the goal is to select 100 second consumers that are most similar to the first consumer. If the number of selected consumers is less than 100, then the criteria are abated by removing at least one common criterion from the selection process. For example, to abate four common criteria, one of the common criteria is removed so that there are only three common criteria for selecting similar consumers. In this way, a greater number of second consumers will meet the common criteria.
In additional or alternative embodiments, the criteria are abated by increasing at least one range for at least one of the common criteria. For example, in one illustrative embodiment, the range of plus/minus 8% of the size of the first consumer's home is increased to plus/minus 16% of the size of the first consumer's home so that a greater number of second consumer's fall into the range. Once the criteria are abated, the selection process is run again. The selection and abating process is performed iteratively until the number of similar consumers is equal to or greater than the predetermined number of consumers (e.g., 100 similar consumers). For example, if three common criteria still do not generate 100 similar consumers, then the common criteria are further abated by, for example, removing another common criterion and/or by increasing a range for a least one of the common criteria. Once the selection process selects a number of similar consumers that is equal to or greater than the predetermined number of similar consumers, then an electronic report is generated that displays the first consumer's resource usage data and the similar consumers' resource usage data 108. This report can then be communicated to the first consumer so that he can compare his resource usage to that of similar consumers.
The selection process 104 can be implemented in various ways. For example, in one embodiment, when the distance range is increased from a from 1 mile to 5 miles, the selection process 104 looks for similar consumers within a radius of 5 miles from the first consumer's home. In another embodiment, the selection process 104 avoids re-analyzing the geographic area within 1 mile of the first consumer's home and instead looks for similar consumers within the geographic area between 1 mile and 5 miles from the first consumer's home. In this manner, the selection process 104 saves computing time and effort because the geographic area within 1 mile of the first consumer's home had already been analyzed in the previous iteration.
In one illustrative embodiment of the invention, if there were 30 more consumers found in the third iteration, then 110 similar consumers would be used in the report. In another embodiment, however, the 30 consumers could be ranked according to, for example, distance or square footage, and the best 20 consumers would be selected as similar consumers for a total of 100 similar consumers.
The 100 similar consumers are then used to generate an electronic report that displays the first consumer's resource usage data and the similar consumers' resource usage data.
In some cases, the first consumer might question whether the comparison between him and his neighbors is fair. For example, the first consumer might question whether the similar consumers in the report live in close geographical proximity, or whether they live in a warmer geographic climate and therefore do not need to spend as much energy heating their homes. The report 300 alleviates this concern by explaining the basis of the comparison. In the report 300 shown in
In illustrative embodiments of the present invention, the reports 300 and 400 are communicated to the first consumer in various ways. In one example, the reports 300, 400 are sent to the first consumer via e-mail to the first consumer's e-mail account. In another example, the first consumer receives the reports 300,400 in hard copy form via regular mail. In yet another illustrative embodiment, the first consumer can log into his profile on a website and view the reports 300,400 in a web page. In some embodiments, the reports 300,400 are part of a resource usage bill, in other embodiments, the reports are provided to the consumer separately from the bill.
In illustrative embodiments of the present invention, the degree to which the common criteria are abated depends on the number of similar consumers selected in the last iteration. Table 1 below shows how, in one exemplary embodiment of the present invention, a distance range is increased based upon the number of similar consumers selected in the last iteration:
In Table 1 above, if there are no similar consumers found in the last iteration, then the previous distance range is doubled (e.g., 2 miles to 4 miles). If, on the other hand, 6 similar consumers are selected in the last iteration, then 1 mile is added to the distance range (e.g., 2 miles to 3 miles). In an additional or alternative embodiment, the degree to which the common criteria are abated depends on the total number of similar consumers selected in all of the iterations. Table 2 below shows how, in another exemplary embodiment of the present invention, a distance range is increased based upon the total number of similar consumers selected in all of the iterations:
In further various illustrative embodiments, the distance range is increased based upon both the number of similar consumers selected in the last iteration and also the number of similar consumers selected in all of the iterations. Tables 1 and 2 above show a function wherein, as the number of similar consumers selected decreases, the range for at least one common criterion increases. And vice versa, as the number of similar consumers selected increases, the range for at least one common criterion decreases. In this manner, the iterative process does not overshoot the 100 most similar consumers, while the process saves computing time and effort by more efficiently closing in on the most similar consumers because there is no need to run many iterations using small increments. In additional embodiments, a desired and minimum number of similar neighbors may be defined. In such an embodiment, if the minimum number is reached the process will stop and if the desired number of neighbors is exceeded, the system will select the best neighbors that are equal to the desired number.
Although the “adaptive” process is explained above in terms of the distance criterion, this adaptive process can also be applied equally to other common criteria. For example, ranges associated with the size of the home, the meter read cycle, and number of home occupants can also be increased based upon both the number of similar consumers selected in the last iteration and/or the number of similar consumers selected in all of the iterations. In further illustrative embodiments, the “adaptive” process is applied so that the number of common criterion removed from the iterative process depends on the number of similar consumers selected.
The inventors of the present invention have discovered that certain common criteria are more meaningful to resource usage than other common criteria. The inventors discovered that geographic location is a very meaningful criterion. Consumers in different geographic locations will use different amount of energy because of climate differences. The size of the home is also a very important criterion. Large homes typically use more resources. Also, the present inventors surprisingly discovered that the meter read cycle is an important criterion for two reasons: first, customers with meter reads that occur at different times will be subject to different weather patterns (May 1-June 1 is probably cooler than May 20-June 20); second, the comparison reports require current data for both the consumer and their neighbors (it's impossible to generate comparisons if there is no resource usage data for the time period). Other less important criteria include the dwelling type, the fuel used for heating the home, the number of home occupants, the presence of a photovoltaic system, the presence of a pool, and whether or not the consumers are seasonal residents. Although many of these less important criteria are meaningful in terms of resource usage, in illustrative embodiments of the present invention, they are excluded before the most important criteria because they might rely on unreliable third party source data. For example, occupancy data might not be available for each home in the first consumer's geographic area. By removing the occupancy criterion, those homes now become available as similar consumers. The inventors also discovered that certain common criteria, such as the age of the home and the presence of retirees, are even less meaningful in relation to resource usage. Such criteria may be included nonetheless so that the selection process 104 appears more robust.
The inventors of the present invention discovered that using the 100 most similar consumers for the report is advantageous because there are likely at least 100 reasonably similar consumers within a utility company's pool of customers. Also, 100 is a large enough number so that statistical anomalies and outliers within the group are mitigated. Furthermore, privacy is no longer a concern because a consumer will likely not be able to make out his neighbors within a group of 100 similar consumers. Yet, illustrative embodiments of the present invention are not restricted to using 100 similar consumers as the “predetermined” number. In some illustrative embodiments, the predetermined number is a range of numbers between for example 95 to 105 or 80 to 120. In various illustrative embodiments, the electronic report is generated using only one similar consumer, while in other illustrative embodiments the report is generated using as many as 5000 similar consumers.
In illustrative embodiments, the building resource usage data is received by the server 1002 from the utility company 1006. The building resource usage data can be received by the server 1002 via a communications network 1014 (e.g., internet) through, for example, e-mails, downloaded FTP files, XML feeds, or metering feeds. However, in other embodiments, the global communications network is not used. Instead, the resource usage data is sent by, for example, regular mail.
The server 1002 also receives consumer characteristic data. This data can come from the consumer himself or from third party sources. In one embodiment, the consumer can use the website 1004 to log into his profile and add characteristic data. For example, if the consumer built a new addition to his home, he can log into his profile and modify the square footage of his home based upon the new addition. In another example, if the consumer's children move outside the home, the consumer can also update the occupancy information in his profile. In this manner, illustrative embodiments of the present invention help ensure that the selection of similar consumers is based on accurate data. In another embodiment of the present invention, the consumer characteristic data is received from third party sources, such as property tax assessment records, property sale records, aggregators of consumer data collected through surveys, warranty cards, customer loyalty programs, etc. In some embodiments, the consumer characteristic data can be received from the third party sources via the communications network 714 (e.g., e-mails, downloaded FTP files, and XML feeds). However, in other embodiments, the consumer characteristic data may be received by regular mail.
Using the resource usage data and the consumer characteristic data, the server 702 generates an electronic report that displays the resource usage data for each consumer and the resource usage data for each of their respective similar consumers and then communicates the report to the consumers. In various embodiments of the present invention, the server 702 communicates the report via the communications network 714. For example, the server 702 may send the report in an e-mail or, in another embodiment; the consumer may log into the server supported website 704 and view his report. In additional or alternative embodiments, the server 702 itself prints the report or provides the information to a printing system so that the data can be provided to the consumer via regular mail (e.g., as part of a utility bill). In other embodiments, the report is communicated back to the utility company 706 so that the utility company can provide the data to the consumer.
In exemplary embodiments of the invention, the server 1002 includes a processor that is programmed with any one or more of the following software modules:
It should be apparent to those skilled in the art that the described system and method may be applied to non-resident resource consumers, such as a factory, a retail store, and/or an office building. In such an embodiment, the characteristic data may include characteristic data related to the physical properties of each home, as selected from the following non-limiting list of examples:
It should be noted that terms such as “processor” and “server” may be used herein to describe devices that may be used in certain embodiments of the present invention and should not be construed to limit the present invention to any particular device type or system unless the context otherwise requires. Thus, a system may include, without limitation, a client, server, computer, appliance, or other type of device. Such devices typically include one or more network interfaces for communicating over a communication network and a processor (e.g., a microprocessor with memory and other peripherals and/or application-specific hardware) configured accordingly to perform device and/or system functions. Communication networks generally may include public and/or private networks; may include local-area, wide-area, metropolitan-area, storage, and/or other types of networks; and may employ communication technologies including, but in no way limited to, analog technologies, digital technologies, optical technologies, wireless technologies, networking technologies, and internetworking technologies.
It should also be noted that devices may use communication protocols and messages (e.g., messages created, transmitted, received, stored, and/or processed by the system), and such messages may be conveyed by a communication network or medium. Unless the context otherwise requires, the present invention should not be construed as being limited to any particular communication message type, communication message format, or communication protocol. Thus, a communication message generally may include, without limitation, a frame, packet, datagram, user datagram, cell, or other type of communication message. Unless the context requires otherwise, references to specific communication protocols are exemplary, and it should be understood that alternative embodiments may, as appropriate, employ variations of such communication protocols (e.g., modifications or extensions of the protocol that may be made from time-to-time) or other protocols either known or developed in the future.
It should also be noted that logic flows may be described herein to demonstrate various aspects of the invention, and should not be construed to limit the present invention to any particular logic flow or logic implementation. The described logic may be partitioned into different logic blocks (e.g., programs, modules, interfaces, functions, or subroutines) without changing the overall results or otherwise departing from the true scope of the invention. Often times, logic elements may be added, modified, omitted, performed in a different order, or implemented using different logic constructs (e.g., logic gates, looping primitives, conditional logic, and other logic constructs) without changing the overall results or otherwise departing from the true scope of the invention.
The present invention may be embodied in many different forms, including, but in no way limited to, computer program logic for use with a processor (e.g., a microprocessor, microcontroller, digital signal processor, or general purpose computer), programmable logic for use with a programmable logic device (e.g., a Field Programmable Gate Array (FPGA) or other PLD), discrete components, integrated circuitry (e.g., an Application Specific Integrated Circuit (ASIC)), or any other means including any combination thereof. In a typical embodiment of the present invention, predominantly all of the described logic is implemented as a set of computer program instructions that is converted into a computer executable form, stored as such in a computer readable medium, and executed by a microprocessor under the control of an operating system.
Computer program logic implementing all or part of the functionality previously described herein may be embodied in various forms, including, but in no way limited to, a source code form, a computer executable form, and various intermediate forms (e.g., forms generated by an assembler, compiler, linker, or locator). Source code may include a series of computer program instructions implemented in any of various programming languages (e.g., an object code, an assembly language, or a high-level language such as FORTRAN, C, C++, JAVA, or HTML) for use with various operating systems or operating environments. The source code may define and use various data structures and communication messages. The source code may be in a computer executable form (e.g., via an interpreter), or the source code may be converted (e.g., via a translator, assembler, or compiler) into a computer executable form.
The computer program may be fixed in any form (e.g., source code form, computer executable form, or an intermediate form) either permanently or transitorily in a tangible storage medium, such as a semiconductor memory device (e.g., a RAM, ROM, PROM, EEPROM, or Flash-Programmable RAM), a magnetic memory device (e.g., a diskette or fixed disk), an optical memory device (e.g., a CD-ROM), a PC card (e.g., PCMCIA card), or other memory device. The computer program may be fixed in any form in a signal that is transmittable to a computer using any of various communication technologies, including, but in no way limited to, analog technologies, digital technologies, optical technologies, wireless technologies, networking technologies, and internetworking technologies. The computer program may be distributed in any form as a removable storage medium with accompanying printed or electronic documentation (e.g., shrink wrapped software), preloaded with a computer system (e.g., on system ROM or fixed disk), or distributed from a server or electronic bulletin board over the communication system (e.g., the Internet or World Wide Web).
Hardware logic (including programmable logic for use with a programmable logic device) implementing all or part of the functionality previously described herein may be designed using traditional manual methods, or may be designed, captured, simulated, or documented electronically using various tools, such as Computer Aided Design (CAD), a hardware description language (e.g., VHDL or AHDL), or a PLD programming language (e.g., PALASM, ABEL, or CUPL).
Programmable logic may be fixed either permanently or transitorily in a tangible storage medium, such as a semiconductor memory device (e.g., a RAM, ROM, PROM, EEPROM, or Flash-Programmable RAM), a magnetic memory device (e.g., a diskette or fixed disk), an optical memory device (e.g., a CD-ROM), or other memory device. The programmable logic may be fixed in a signal that is transmittable to a computer using any of various communication technologies, including, but in no way limited to, analog technologies, digital technologies, optical technologies, wireless technologies (e.g., Bluetooth), networking technologies, and internetworking technologies. The programmable logic may be distributed as a removable storage medium with accompanying printed or electronic documentation (e.g., shrink wrapped software), preloaded with a computer system (e.g., on system ROM or fixed disk), or distributed from a server or electronic bulletin board over the communication system (e.g., the Internet or World Wide Web). Of course, some embodiments of the invention may be implemented as a combination of both software (e.g., a computer program product) and hardware. Still other embodiments of the invention are implemented as entirely hardware, or entirely software.
The embodiments of the invention described above are intended to be merely exemplary; numerous variations and modifications will be apparent to those skilled in the art. All such variations and modifications are intended to be within the scope of the present invention.
The present application claims priority from provisional application No. 61/483,219, filed May 6, 2011. This application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4334275 | Levine | Jun 1982 | A |
4843575 | Crane | Jun 1989 | A |
5513519 | Cauger et al. | May 1996 | A |
5566084 | Cmar | Oct 1996 | A |
5717609 | Packa et al. | Feb 1998 | A |
5855011 | Tatsuoka | Dec 1998 | A |
5873251 | Iino | Feb 1999 | A |
5930773 | Crooks et al. | Jul 1999 | A |
5948303 | Larson | Sep 1999 | A |
6035285 | Schlect et al. | Mar 2000 | A |
6088688 | Crooks et al. | Jul 2000 | A |
6295504 | Ye et al. | Sep 2001 | B1 |
6327605 | Arakawa et al. | Dec 2001 | B2 |
6701298 | Jutsen | Mar 2004 | B1 |
6732055 | Bagepalli et al. | May 2004 | B2 |
6778945 | Chassin et al. | Aug 2004 | B2 |
6785620 | Kishlock et al. | Aug 2004 | B2 |
6972660 | Montgomery, Jr. et al. | Dec 2005 | B1 |
7020508 | Stivoric et al. | Mar 2006 | B2 |
7073073 | Nonaka et al. | Jul 2006 | B1 |
7073075 | Freyman et al. | Jul 2006 | B2 |
7136710 | Hoffberg et al. | Nov 2006 | B1 |
7142949 | Brewster et al. | Nov 2006 | B2 |
7149727 | Nicholls et al. | Dec 2006 | B1 |
7200468 | Ruhnke et al. | Apr 2007 | B2 |
7243044 | McCalla | Jul 2007 | B2 |
7333880 | Brewster et al. | Feb 2008 | B2 |
7356548 | Culp et al. | Apr 2008 | B1 |
7444251 | Nikovski et al. | Oct 2008 | B2 |
7460502 | Arima et al. | Dec 2008 | B2 |
7460899 | Almen | Dec 2008 | B2 |
7552030 | Guralnik et al. | Jun 2009 | B2 |
7561977 | Horst et al. | Jul 2009 | B2 |
7991513 | Pitt | Aug 2011 | B2 |
8065098 | Gautam | Nov 2011 | B2 |
8166047 | Cohen et al. | Apr 2012 | B1 |
8180591 | Yuen et al. | May 2012 | B2 |
8239178 | Gray et al. | Aug 2012 | B2 |
8260468 | Ippolito et al. | Sep 2012 | B2 |
8275635 | Stivoric et al. | Sep 2012 | B2 |
8280536 | Fadell et al. | Oct 2012 | B1 |
8348840 | Heit et al. | Jan 2013 | B2 |
8375118 | Hao et al. | Feb 2013 | B2 |
8417061 | Kennedy et al. | Apr 2013 | B2 |
8478447 | Fadell et al. | Jul 2013 | B2 |
8489245 | Carrel et al. | Jul 2013 | B2 |
8583288 | Rossi et al. | Nov 2013 | B1 |
8630741 | Matsuoka et al. | Jan 2014 | B1 |
8660813 | Curtis et al. | Feb 2014 | B2 |
8690751 | Auphan | Apr 2014 | B2 |
8751432 | Berg-Sonne et al. | Jun 2014 | B2 |
8805000 | Derby et al. | Aug 2014 | B2 |
8812344 | Saurabh | Aug 2014 | B1 |
9031703 | Nakamura et al. | May 2015 | B2 |
9317813 | McGavran | Apr 2016 | B2 |
20020065581 | Fasca | May 2002 | A1 |
20020178047 | Or et al. | Nov 2002 | A1 |
20020198629 | Ellis | Dec 2002 | A1 |
20030011486 | Ying | Jan 2003 | A1 |
20030018517 | Dull et al. | Jan 2003 | A1 |
20030023467 | Moldovan | Jan 2003 | A1 |
20030216971 | Sick et al. | Nov 2003 | A1 |
20040024717 | Sneeringer | Feb 2004 | A1 |
20040111410 | Burgoon et al. | Jun 2004 | A1 |
20040140908 | Gladwin et al. | Jul 2004 | A1 |
20050257540 | Choi et al. | Nov 2005 | A1 |
20060089851 | Silby et al. | Apr 2006 | A1 |
20060103549 | Hunt et al. | May 2006 | A1 |
20070061735 | Hoffberg et al. | Mar 2007 | A1 |
20070203860 | Golden et al. | Aug 2007 | A1 |
20070213992 | Anderson et al. | Sep 2007 | A1 |
20070255457 | Whitcomb et al. | Nov 2007 | A1 |
20070260405 | McConnell et al. | Nov 2007 | A1 |
20080027885 | van Putten et al. | Jan 2008 | A1 |
20080167535 | Stivoric et al. | Jul 2008 | A1 |
20080195561 | Herzig | Aug 2008 | A1 |
20080281473 | Pitt | Nov 2008 | A1 |
20080281763 | Yliniemi | Nov 2008 | A1 |
20080306985 | Murray et al. | Dec 2008 | A1 |
20090106202 | Mizrahi | Apr 2009 | A1 |
20090204267 | Sustaeta et al. | Aug 2009 | A1 |
20090326726 | Ippolito et al. | Dec 2009 | A1 |
20100025483 | Hoeynck et al. | Feb 2010 | A1 |
20100076835 | Silverman | Mar 2010 | A1 |
20100082174 | Weaver | Apr 2010 | A1 |
20100099954 | Dickinson et al. | Apr 2010 | A1 |
20100138363 | Batterberry et al. | Jun 2010 | A1 |
20100156665 | Krzyzanowski et al. | Jun 2010 | A1 |
20100179704 | Ozog | Jul 2010 | A1 |
20100198713 | Forbes, Jr. et al. | Aug 2010 | A1 |
20100217452 | McCord et al. | Aug 2010 | A1 |
20100217549 | Galvin et al. | Aug 2010 | A1 |
20100217550 | Crabtree et al. | Aug 2010 | A1 |
20100217642 | Crubtree et al. | Aug 2010 | A1 |
20100217651 | Crabtree | Aug 2010 | A1 |
20100232671 | Dam et al. | Sep 2010 | A1 |
20100286937 | Hedley et al. | Nov 2010 | A1 |
20100289643 | Trundle et al. | Nov 2010 | A1 |
20100324962 | Nesler et al. | Dec 2010 | A1 |
20100332373 | Crabtree et al. | Dec 2010 | A1 |
20110022429 | Yates | Jan 2011 | A1 |
20110023045 | Yates et al. | Jan 2011 | A1 |
20110040666 | Crabtree et al. | Feb 2011 | A1 |
20110061014 | Frader-Thompson et al. | Mar 2011 | A1 |
20110063126 | Kennedy et al. | Mar 2011 | A1 |
20110106316 | Drew et al. | May 2011 | A1 |
20110106328 | Zhou et al. | May 2011 | A1 |
20110106471 | Curtis et al. | May 2011 | A1 |
20110153102 | Tyagi et al. | Jun 2011 | A1 |
20110178842 | Rane | Jul 2011 | A1 |
20110178937 | Bowman | Jul 2011 | A1 |
20110205245 | Kennedy et al. | Aug 2011 | A1 |
20110231320 | Irving | Sep 2011 | A1 |
20110251730 | Pitt | Oct 2011 | A1 |
20110251807 | Rada et al. | Oct 2011 | A1 |
20110282505 | Tomita et al. | Nov 2011 | A1 |
20120036250 | Vaswani et al. | Feb 2012 | A1 |
20120053740 | Venkatakrishnan | Mar 2012 | A1 |
20120066168 | Fadell et al. | Mar 2012 | A1 |
20120078417 | Connell, II et al. | Mar 2012 | A1 |
20120084063 | Drees et al. | Apr 2012 | A1 |
20120095794 | Guthridge | Apr 2012 | A1 |
20120215369 | Desai et al. | Aug 2012 | A1 |
20120216123 | Shklovskii et al. | Aug 2012 | A1 |
20120259678 | Overturf et al. | Oct 2012 | A1 |
20120290230 | Berges Gonzalez et al. | Nov 2012 | A1 |
20130060531 | Burke et al. | Mar 2013 | A1 |
20130060720 | Burke | Mar 2013 | A1 |
20130173064 | Fadell et al. | Jul 2013 | A1 |
20130253709 | Renggli et al. | Sep 2013 | A1 |
20130261799 | Kuhlmann et al. | Oct 2013 | A1 |
20130262040 | Buckley | Oct 2013 | A1 |
20140006314 | Yu et al. | Jan 2014 | A1 |
20140019319 | Derby et al. | Jan 2014 | A1 |
20140074300 | Shilts et al. | Mar 2014 | A1 |
20140107850 | Curtis | Apr 2014 | A1 |
20140148706 | Van Treeck et al. | May 2014 | A1 |
20140163746 | Drew et al. | Jun 2014 | A1 |
20140207292 | Ramagem et al. | Jul 2014 | A1 |
20140337107 | Foster | Nov 2014 | A1 |
20150227846 | Mercer et al. | Aug 2015 | A1 |
20150267935 | Devenish et al. | Sep 2015 | A1 |
20150269664 | Davidson | Sep 2015 | A1 |
20150310019 | Royer et al. | Oct 2015 | A1 |
20150310463 | Turfboer et al. | Oct 2015 | A1 |
20150310465 | Chan et al. | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
2010315015 | Jul 2014 | AU |
2779754 | May 2011 | CA |
2832211 | Nov 2012 | CA |
101996215 | Mar 2011 | CN |
3703387 | Aug 1987 | DE |
102011077522 | Dec 2012 | DE |
0003010 | Jul 1979 | EP |
2705440 | Mar 2014 | EP |
2496991 | Sep 2014 | EP |
1525656 | Sep 1978 | GB |
2238405 | May 1991 | GB |
2000-270379 | Sep 2000 | JP |
2004-233118 | Aug 2004 | JP |
2006-119931 | May 2006 | JP |
2007-133468 | May 2007 | JP |
2011-027305 | Feb 2011 | JP |
2012-080679 | Apr 2012 | JP |
2012-080681 | Apr 2012 | JP |
2013-020307 | Jan 2013 | JP |
WO 03102865 | Dec 2003 | WO |
WO 03104941 | Dec 2003 | WO |
WO 2008101248 | Aug 2008 | WO |
WO 2009085610 | Jul 2009 | WO |
WO 2011057072 | May 2011 | WO |
WO 2012112358 | Aug 2012 | WO |
WO 2012154566 | Nov 2012 | WO |
WO 2014004148 | Jan 2014 | WO |
WO 2014182656 | Nov 2014 | WO |
Entry |
---|
Rosenfeld et al., Patterns of Energy Use in Buildings, Jan. 1, 1996, MIT press, pp. 40-105 (Year: 1996). |
International Searching Authority, International Search Report—International Application No. PCT/US2012/036539, dated Jul. 6, 2012, together With the Written Opinion of the International Searching Authority, 17 pages. |
International Search Report and Written Opinion for PCT Application No. PCT/US2015/038692, dated Sep. 24, 2015, 13 pages. |
International Preliminary Report on Patentability for PCT Application No. PCT/US2010/055621, dated May 15, 2012, 8 pages. |
International Search Report and Written Opinion for PCT Application No. PCT/US2010/055621, dated Dec. 23, 2010, 9 pages. |
International Preliminary Report on Patentability for PCT Application No. PCT/US2012/036539, dated Nov. 21, 2013, 7 pages. |
International Search Report and Written Opinion for PCT Application No. PCT/US2013/046126, dated Aug. 22, 2013, 9 pages. |
International Preliminary Report on Patentability for PCT Application No. PCT/US2013/046126, dated Jan. 8, 2015, 8 pages. |
International Search Report for PCT Application No. PCT/US2014/036901, dated Aug. 28, 2014, 3 pages. |
Patent Examination Report No. 1 for Australian Patent Application No. 2010315015, dated Dec. 17, 2013, 3 pages. |
Extended European Search Report for European Patent Application No. 12782569.3, dated Nov. 27, 2014, 7 pages. |
Author Unknown, “An Inconvenient Truth,” Jan. 9, 2008, 2 pages, available at https://web.archive.org/web/2008019006609/http://www.climatecrisis.net/takeaction/carbonca/. |
Author Unknown, “Calculate Your Impact,” Jul. 28, 2008, 4 pages, available at http://web.archive.org/web/20080728161614/http://green.yahoo.com/calculator/. |
Author Unknown, “Carbon Footprint Calculator: What's My Carbon Footprint?” The Nature Conservancy, Jul. 8, 2008, 8 pages, available at http://web.archive.org/web/20080708193253/http://www.nature.org/initiatives/climatechange/calculator/2008. |
Author Unknown, “CoolClimate Calculator,” May 19, 2008, 15 pages, available at http://web.archive.orgi/web/20080519220643/bie.berkeley.edu/coolcale/calculations.html. |
Author Unknown, “Lifecycle Climate Footprint Calculator,” Berkeley Institute of the Environment, Nov. 23, 2007, 6 pages, available at http://web.archive.org/web/20071123115832/http://bie.berkeley.edu/calculator. |
Author Unknown, “More than just a thermostat.,” http://www.ecobee.com/, 4 pages, Jul. 16, 2013. |
Author Unknown, “Popups Climate Change: Carbon Calculator—Greenhouse Gas and Carbon Dioxide Calculator Wed Pages,” The Nature Conservancy, 5 pages, Feb. 29, 2008, available at http://web.archive.org/web/20080229072420/www.nature.org/popups/misc/art20625.html. |
Bailey, Timothy, et al., “Fitting a Mixture Model by Expectation Maximization to Discover Motifs in Biopolymers,” UCSD Technical Report CS94-351, Proceedings of the Second International Conf. on Intelligent Systems for Molecular Biology, 1994, 33 pages. |
Chen, Hanfeng, et al., “Testing for a Finite Mixture Model With Two Components,” Journal of the Royal Statistical Society, Series B, vol. 66, No. 1, 26 pages, 2004. |
De Prensa, Boletine, “TXU Energy Budget Alerts Give Consumers Control of Electricity Costs,” TXU Energy, http://www.txu.com/es/about/press, 2 pages, May 23, 2012. |
Deb, Partha, “Finite Mixture Models,” Hunter College and the Graduate Center, CUNY NBER, FMM Slides, 42 pages, Jul. 2008. |
D'Urso, M., et al., “A Simple Strategy for Life Signs Detection via an X-Band Experimental Set-Up,” Progress In Electromagnectics Research C, vol. 9, pp. 119-129 (2009). |
Eckmann, J.P., et al., “Ergodic theory of chaos and strange attractors,” Reviews of Modern Physics, vol. 57, No. 3, Part I, pp. 617-656, Jul. 1985. |
Espinoza, Marcelo, et al., “Short-Term Load Forecasting, Profile Identification, and Customer Segmentation: A Methodology Based on Periodic Time Series,” IEEE Transactions on Power Systems, vol. 20, No. 3, pp. 1622-1630, Aug. 2005. |
Fels, Margaret F., “PRISM: An Introduction,” Elsevier Sequoia, Energy and Buildings, vol. 9, pp. 5-18, 1986. |
Fels, Margaret F., et al., Seasonality of Non-heating Consumption and Its effect on PRISM Results, Elsevier Sequoia, Energy and Buildings, vol. 9, pp. 139-148, 1986. |
Figueiredo, Vera, et al., “An Electric Energy Consumer Characterization Framework Based on Data Mining Techniques,” IEEE Transactions on Power Systems, vol. 20, No. 2, pp. 596-602, May 2005. |
Fitbit® Official Site, “Flex, One & Zip Wireless Activity & Sleep Trackers,” http://www.fitbit.com/, 4 pages, Jul. 15, 2013. |
Friedman, Jerome, et al., “Regularization Paths for Generalized Linear Models via Coordinate Descent,” Journal of Statistical Software, vol. 33, Iss. 1, pp. 1-22, Jan. 2010. |
Goldberg, Miriam L., et al., “Refraction of PRISM Results into Components of Saved Energy,” Elsevier Sequoia, Energy and Buildings, vol. 9, pp. 169-180, 1986. |
Jansen, R.C., “Maximum Likelihood in a Generalized Linear Finite Mixture Model by Using the EM Algorithm,” Biometrics, vol. 49, pp. 227-231, Mar. 1993. |
Jawbone, “Know yourself. Live better.” https://jawbone.com/up/, 7 pages, Jul. 15, 2013. |
Leisch, Friedrich, “FlexMix: A General Framework for Finite Mixture Models and Latent Class Regression in R,” Journal of Statistical Software, http://www.jstatsoft.org/, vol. 11 (8), pp. 1-18, Oct. 2004. |
Liang, Jian, et al. “Load Signature Study—Part II: Disaggregation Framework, Simulation, and Applications,” IEEE Transactions On Power Delivery, vol. 25, No. 2, pp. 561-569, Apr. 2010. |
Liang, Jian, et al., “Load Signature Study—Part I: Basic Concept, Structure, and Methodology,” IEEE Transactions On Power Delivery, vol. 25, No. 2, pp. 551-560, Apr. 2010. |
Mint.com, “Budgets you'll actually stick to,” Budgeting—Calculate and Categorize your spending, https://www.mint.com/how-it-works/budgeting/, 2 pages, Jul. 12, 2013. |
Mint.com, “We're always on alert.” Alerts for bills, fees & going over budget, https://www.mint.com/how-it-works/alerts/, 2 pages, Jul. 12, 2013. |
Mori, Hiroyuki, “State-of-the-Art Overview on Data Mining in Power Systems,” IEEE, pp. 33-37, 2006. |
Muthen, Bengt, et al., Finite Mixture Modeling with Mixture Outcomes Using the EM Algorithm, Biometrics, vol. 55, pp. 463-469, Jun. 1999. |
Nest, “The Learning Thermostat,” http://www.nest.com/, 2 pages, Jul. 15, 2013. |
Nike.com, “Nike + FuelBand. Tracks your all-day activity and helps you do more . . . ,” http://www.nike.com/us/en_us/c/nikeplus-f..uelband, 7 pages, Jul. 15, 2013. |
Rose, O. “Estimation of the Hurst Parameter of Long-Range Dependent Time Series,” University of Wuirzburg, Institute of Computer Science, Research Report Series, Report No. 137, 15 pages, Feb. 1996. |
Sawka, Michael N., et al., “Human Adaptations to Heat and Cold Stress,” RTOMP-076, 16 pages, Oct. 2001. |
Stephen, Bruce, et al. “Domestic Load Characterization Through Smart Meter Advance Stratification,” IEEE Transactions On Smart Grid, Power Engineering Letter, vol. 3, No. 3, pp. 1571-1572, Sep. 2012. |
Stoop, R., et al., “Calculation of Lyapunov exponents avoiding spurious elements,” Physica D 50, pp. 89-94, May 1991. |
Wang, Xiaozhe, et al. “Rule induction for forecasting method selection: meta-learning the characteristics of univariate time series,” Faculty of information Technology, Department of Econometrics and Business Statistics, Monash University, pp. 1-34. |
Wang, Xiaozhe, et al., “Characteristic-Based Clustering for Time Series Data,” Data Mining and Knowledge Discovery, Springer Science & Business Media, LLC, vol. 13, pp. 335-364 (2006). |
Wehrens, Ron, et al. “Self- and Super-organizing Maps in R: The kohonen Package,” Journal of Statistical Software, vol. 21, Iss. 5, pp. 1-19, Oct. 2007. |
Wikipedia, “Akaike information criterion,” 6 pages, Aug. 17, 2012. |
Wikipedia, “Mixture model,” 10 pages, Oct. 7, 2012. |
The State Intellectual Property Office of the People's Republic of China, Second Office Action and Search Report (partial translation), dated Aug. 8, 2016 (9 pgs). |
Wang, Lei, et al., “Improved Adaptive Affinity Propagation Clustering Based On Semi-Supervised Learning,” Application Research of Computers, vol. 27, No. 12, Dec. 31, 2010. |
Canadian Office Action in co-pending CA Application No. 2832211, filing date May 4, 2012, notification date Feb. 20, 2018. |
Number | Date | Country | |
---|---|---|---|
20120310708 A1 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
61483219 | May 2011 | US |