1. Field
Implementations of the present invention relate to search technology. In particular, implementations of the present invention relate to searching of electronic content available, for example, on the Internet and in other electronic resources, such as text corpora, dictionaries, glossaries, encyclopedias, etc.
2. Related Art
The inventors are aware of search technology that generates search results based on keywords entered by a user as part of a search query.
However, due to homonymy and homography in natural languages, a search result based on a keyword search may include a substantial amount of non-relevant or marginally relevant information. For example, if the user searches for texts with the word “page” in the sense of “a man or boy employed as the personal attendant to a queen,” the user may receive a large number of non-relevant information where “page” refers to an Internet page, a page of a newspaper or magazine, a section of stored data, etc. This is likely to happen because those other senses of the word “page” are substantially more frequent than the one referring to a man or boy.
Existing search systems make it possible to use simple query languages to find documents that either contain or do not contain the words or word combinations specified by the user. However, the user cannot specify whether the search words should occur within one sentence or not. Also, the user cannot formulate a query for a set of words that belong to a certain class. And finally, existing search systems do not allow users to find sentences based on their syntactic or semantic properties, e.g., examples illustrating a certain syntactic relationship, examples illustrating a semantic relationship, they do not allow to make queries based on grammatical meanings, deep or surface slots, syntactic models, style and/or semantic features, etc. These types of searches may be of use to lexicographers, philologists, linguists, and students and teachers of native or foreign languages, and many other users.
According to a first aspect of the invention, there is provided a computer-implemented method, comprising:
preliminarily automatic analyzing at least one corpus of natural language texts comprising for each sentence of each natural language text of each corpus, the preliminarily analyzing including:
performing a syntactic analysis using linguistic descriptions to generate at least one syntactic structure for the sentence;
building a semantic structure for the sentence;
associating each generated syntactic and semantic structure with the sentence; and
saving each generated syntactic and semantic structure;
for each corpus of natural language text that was preliminarily analyzed, performing an indexing operation to index lexical meanings and values of linguistic parameters of each syntactic structure and each semantic structure associated with sentences in the respective corpus; and
searching in at least one preliminarily analyzed corpus for sentences comprising a searched value for at least one linguistic parameter or at least one lexical meaning.
According to a second aspect of the invention, there is provided a system for implementing the aforesaid method.
Other aspects of the invention will be apparent from the detailed description below. Generally, the present invention employs a full-fledged automatic syntactic and semantic analysis when indexing texts making it possible to index and store all syntactic and semantic information about each sentence, as well as all interim parsing and results and lexical choices, including results obtained when resolving ambiguities.
An analyzer uses various linguistic descriptions of a given natural language to reflect all the real complexities of the natural language, rather than simplified or artificial descriptions, without the danger of a combinatorial explosion. A principle of integral and purpose-driven recognition, (i.e. hypotheses about the structure of the part of a sentence are verified within the hypotheses about the structure of the whole sentence), is implemented as during the analysis stage. It allows to avoid analyzing numerous parsing of anomalous variants.
The use of the technology described herein allows one to search and find relevant information using a semantic query that can be expressed in specific semantic query language, or in a natural language. The same analyzer is able to analyze a question to recognize its syntactical structure, to build its semantic structure, and in such a way “to understand” the meaning of a query. Searching is implemented in accordance with syntax and semantic information included in or derived from searchable resources. A user receives only relevant search results.
Additionally, since the search query may be expressed or translated into semantic language-independent terms, the search may be executed in and derived from various languages, in resources of various languages, in text corpora of various languages. So, a user can get information that is presented in all resources regardless of the language of the query. The result of searching may be presented to users in a resource language (as it is presented in the resource), and also the result of searching may be translated into the language of the query by means of a machine translation system.
In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the invention. It will be apparent, however, to one skilled in the art that the invention can be practiced without these specific details.
Reference in this specification to “one embodiment” or “an implementation” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one implementation of the invention. The appearances of the phrase “in one embodiment” or “in one implementation” in various places in the specification are not necessarily all referring to the same embodiment or implementation, nor are separate or alternative embodiments mutually exclusive of other embodiments. Moreover, various features are described which may be exhibited by some embodiments and not by others. Similarly, various requirements are described which may be requirements for some embodiments but not other embodiments.
Implementations of the present invention disclose indexing techniques and systems for indexing natural language texts. Sematic search techniques and systems are also disclosed.
Broadly, one indexing technique disclosed herein comprises performing a comprehensive or exhaustive syntactic and semantic analysis of natural language texts to build an index for each natural language text. Advantageously, all syntactic and semantic information about each sentence in the natural language texts generated pursuant to the syntactic and semantic analysis is saved. The saved information may include interim parsing results and lexical choices, including the results obtained when resolving ambiguities.
The index so produced may be used to allow semantic searching of the natural language texts, as will be described later.
The existing search systems make it possible to use simple query languages to find documents that either contain or do not contain the words or word combinations specified by the user. However, the user cannot specify whether the search words should occur within one sentence or not. Also, the user cannot formulate a query for a set of words that belong to a certain class. And finally, the existing search systems do not allow users to find sentences based on their syntactic or semantic properties, e.g. examples illustrating a certain syntactic relationship, examples illustrating a semantic relationship, or searches based on grammatical meanings, deep or surface slots, syntactic models, style and/or semantic features, etc. These types of searches may be of use to lexicographers, philologists, linguists, and students and teachers of native or foreign languages, and many other users.
Advantageously, the problems associated with existing search systems are overcome or at least reduced by the techniques and systems disclosed herein.
Further, implementations of the invention allows a user to search and to find relevant information using a semantic query that can be expressed in specific semantic query language, and also in a natural language. The same analyzer analyzes the question to recognize its syntactical structure, to build its semantic structure, and in such a way “understands” the meaning of the query. Searching is implemented in accordance with syntax and semantic of information which is included in searchable resources. So, a user can get only relevant output.
Additionally, since the search query may be expressed or translated into semantic language-independent terms, the search may be executed in various languages, in resources of various languages, in text corpora of various languages. Thus, a user can get information that is presented in all resources regardless of the language of the query. The result of searching may be presented to users in a resource language (as it is presented in the resource), and also the result of searching may be translated into the language of the query by means of a machine translation system.
Co-pending application U.S. Ser. No. 11/548,214 discloses syntactic and semantic analysis methods (hereinafter “the analysis methods”). The analysis methods may be used to perform the analysis step of the disclosed indexing techniques. The analysis methods use a large number of exhaustive linguistic descriptions of a given natural language to reflect all the real complexities of the natural language, rather than simplified or artificial descriptions, without the danger of a combinatorial explosion, an unmanageable exponential complexity. Moreover, the analysis methods are based on a principle of integral and purpose-driven recognition, i.e. hypotheses about the structure of a part of a sentence are verified based on hypotheses about the structure of the whole sentence. This obviates the need to analyze numerous parsing anomalies or variants.
The analysis methods are now described, in accordance with one exemplary implementation. Referring to
When analyzing the meaning of the source sentence, a two-step analysis algorithm (e.g., rough syntactic analysis and precise syntactic analysis) may be implemented to make use of linguistic models and knowledge at various levels, to calculate probability ratings and to generate the most probable syntactic structure, e.g., a best syntactic structure.
Accordingly, a rough syntactic analysis is performed on the source sentence to generate a graph of generalized constituents for further syntactic analysis. All the possible surface syntactic models for each element of lexical-morphological structure are applied, and all the possible constituents are built and generalized to represent all the possible variants of parsing the sentence syntactically.
Following the rough syntactic analysis, a precise syntactic analysis is performed on the graph of generalized constituents to generate one or more syntactic trees to represent the source sentence. In one implementation, generating the syntactic tree comprises choosing between lexical options and choosing between relations from the graphs. Many prior and statistical ratings may be used during the process of choosing between lexical options, and in choosing between relations from the graph. The prior and statistical ratings may also be used for assessment of parts of the generated tree and for the whole tree. In one implementation, the one or more syntactic trees may be generated in order of decreasing assessment. Thus, the best syntactic tree may be generated first. Non-tree links are also checked and generated for each syntactic tree at this time. If the first generated syntactic tree fails, for example, because of impossibility to establish non-tree links, the second syntactic tree is taken as the best, etc.
This novel two-step syntactic analysis approach ensures that the meaning of the source sentence is accurately represented by the best syntactic structure chosen from the one or more syntactic trees. Advantageously, the two-step analysis approach follows a principle of integral and purpose-driven recognition, i.e., hypotheses about the structure of a part of a sentence are verified using all available linguistic descriptions within the hypotheses about the structure of the whole sentence. This approach avoids a need to analyze numerous parsing anomalies or variants known to be invalid.
With reference to
The disclosed analysis methods ensure that the maximum accuracy in conveying or understanding the meanings of the source sentence is achieved.
Semantic hierarchy may include semantic notions or semantic entities referred to herein as “semantic classes”. The semantic classes may be arranged into a sematic hierarchy comprising hierarchical parent-child relationships. In general, a child semantic class inherits most properties of its direct parent and all ancestral semantic classes. For example, semantic class SUBSTANCE is a child of semantic class ENTITY and at the same time it is a parent of semantic classes GAS, LIQUID, METAL, WOOD MATERIAL, etc.
Each semantic class in the semantic hierarchy is supplied with a deep model. The deep model of the semantic class is a set of the deep slots. Deep slots reflect the semantic roles of child constituents in various sentences with objects of the semantic class as the core of a parent constituent and the possible semantic classes as fillers of deep slots. The deep slots express semantic relationships between constituents, including, for example, “agent”, “addressee”, “instrument”, “quantity”, etc. A child semantic class inherits and adjusts the deep model of its direct parent semantic class.
Semantic descriptions 504 are language-independent. Semantic descriptions 504 may provide descriptions of deep constituents, and may comprise a semantic hierarchy, deep slots descriptions, a system of semantemes, and pragmatic descriptions.
A system of semantemes represents a set of semantic categories. As an example, a semantic category “DegreeOfComparison” can be used to describe the degrees of comparison expressed by various forms of adjectives, for example, “easy”, “easier” and “easiest”. So, the semantic category “DegreeOfComparison” may include such semantemes as, for example, “Positive”, “ComparativeHigherDegree”, “SuperlativeHighestDegree”, among others. As another example, a semantic category “RelationToReferencePoint” can be used to describe an order as before or after a reference point relative to some event or object, etc., and its semantemes may include, “Previous”, “Subsequent”, and the order may be spatial or temporal in a broad sense. As yet another example, “EvaluationObjective”, as a semantic category, may describe an objective assessment, such as “Bad”, “Good”, etc.
The systems of semantemes include language-independent semantic attributes that express semantic characteristics as well as stylistic, pragmatic and communicative characteristics. Semantemes can also be used to express an atomic meaning that finds a regular grammatical and/or lexical expression in a language. By purpose and usage, semantemes may be divided into various kinds, including, but not limited to, grammatical semantemes, lexical semantemes, and classifying grammatical (differentiating) semantemes.
Grammatical semantemes 932 are used to describe grammatical properties of constituents when transforming a syntactic tree (a language dependent object) into a semantic structure. Lexical semantemes 934 describe specific properties of objects (for example, “being flat” or “being liquid”) and are used in the deep slot descriptions 920 as restriction for deep slot fillers (for example, for the verbs “face (with)” and “flood”, respectively). Classifying grammatical (differentiating) semantemes 936 express differentiating properties of objects within a single semantic class. For example, in the semantic class “HAIRDRESSER” the semanteme <<RelatedToMen>> is assigned to the lexical meaning “barber”, unlike other lexical meanings which also belong to this class, such as “hairdresser”, “hairstylist”, etc.
Pragmatic descriptions 940 are used to assign a corresponding theme, style or genre to texts and objects of the semantic hierarchy. For example, “Economic Policy”, “Foreign Policy”, “Justice”, “Legislation”, “Trade”, “Finance”, etc.
With reference to
Word-inflexion description 710 describes how the main form of a word form may change according to its case, gender, number, tense, etc. and broadly includes all possible forms for a given word. Word-formation 730 describes which new words may be generated involving a given word. The grammemes are units of the grammatical systems 720 and, as shown by a link 722 and a link 724, the grammemes can be used to build the word-inflexion description 710 and the word-formation description 730.
Returning to
Combinations of two, three, or, generally, combinations of n numbers can be used to index various syntactic, semantic or other parameters. For example, to index surface or deep slots, for each slot, combinations of two numbers of words that are linked by the relationship corresponding to these slots can be used. For example, referring to the example of
Since not only words are indexed, but semantic classes, syntactic and semantic relations, any other elements of syntactic and semantic structures too, it becomes possible to search contexts including not only words, but also contexts including lexical meanings, semantic classes, contexts including words having the same syntactic features or/and semantic features or/and morphological features or a sets of such features. Additionally, sentences with non-tree syntax phenomena, for example, ellipsis, coordination etc. may be found. Since it possible to search semantic classes, sets of semantically associated words and notions may be found.
It is also possible to find fragments of syntactic and/or semantic structures. The results of searching may be sentences or paragraphs, or any other fragments as a user wants and selects the corresponding option. Since all sentences in corpora are analyzed and saved with all results of their syntactic and semantic analyses, the syntactic and/or semantic structures of the found sentences may be graphically shown to a user.
Another example of a query is shown in
Yet another example of a query to the semantic search system is shown in
In one implementation of the invention, all morphological forms of words involved in queries are taken into account, and all morphological forms of words may be found. The restrictions on morphological forms of words involved in queries and searched morphological forms may be specified as a restriction on grammatical values and is shown in, for example, brackets < >.
The index produced in accordance with the techniques may be provisioned as part of a semantic search system, in accordance with one implementation of the invention.
Implementations of the present invention also disclose a semantic search technique wherein a user can formulate a question in a natural language. The same analysis techniques are then used to analyze the question, recognize its syntactical structure, and build its semantic structure, thereby “understanding” the meaning of the sentence. The constructed semantic structure is then translated into a query language for the semantic search system.
Additionally, since the search query may be expressed or translated into semantic language-independent terms, the search may be executed in various languages, in resources of various languages, in text corpora of various languages. So, a user can get information that is presented in all resources regardless of the language of the query. The result of searching may be presented to users in a resource language (as it is presented in the resource), and also the result of searching may be translated into the language of the query by means of a machine translation system.
The hardware 1400 also typically receives a number of inputs and outputs for communicating information externally. For interface with a user or operator, the hardware 1400 may include one or more user input devices 1406 (e.g., a keyboard, a mouse, imaging device, scanner, microphone) and a one or more output devices 1408 (e.g., a Liquid Crystal Display (LCD) panel, a sound playback device (speaker)). To embody the present invention, the hardware 1400 typically includes at least one screen device.
For additional storage, the hardware 1400 may also include one or more mass storage devices 1410, e.g., a floppy or other removable disk drive, a hard disk drive, a Direct Access Storage Device (DASD), an optical drive (e.g. a Compact Disk (CD) drive, a Digital Versatile Disk (DVD) drive) and/or a tape drive, among others. Furthermore, the hardware 1400 may include an interface with one or more networks 1412 (e.g., a local area network (LAN), a wide area network (WAN), a wireless network, and/or the Internet among others) to permit the communication of information with other computers coupled to the networks. It should be appreciated that the hardware 1400 typically includes suitable analog and/or digital interfaces between the processor 1402 and each of the components 1404, 1406, 1408, and 1412 as is well known in the art.
The hardware 1400 operates under the control of an operating system 1414, and executes various computer software applications, components, programs, objects, modules, etc. to implement the techniques described above. Moreover, various applications, components, programs, objects, etc., collectively indicated by application software 1416 in
In general, the routines executed to implement the embodiments of the invention may be implemented as part of an operating system or a specific application, component, program, object, module or sequence of instructions referred to as a “computer program.” A computer program typically comprises one or more instruction sets at various times in various memory and storage devices in a computer, and that, when read and executed by one or more processors in a computer, cause the computer to perform operations necessary to execute elements involving the various aspects of the invention. Moreover, while the invention has been described in the context of fully functioning computers and computer systems, those skilled in the art will appreciate that the various embodiments of the invention are capable of being distributed as a program product in a variety of forms, and that the invention applies equally to actually effect the distribution regardless of the particular type of computer-readable media used. Examples of computer-readable media include but are not limited to recordable type media such as volatile and non-volatile memory devices, floppy and other removable disks, hard disk drives, optical disks (e.g., Compact Disk Read-Only Memory (CD-ROMs), Digital Versatile Disks (DVDs), flash memory, etc.), among others. Another type of distribution may be implemented as Internet downloads.
While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative and not restrictive of the broad invention and that this invention is not limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art upon studying this disclosure. In an area of technology such as this, where growth is fast and further advancements are not easily foreseen, the disclosed embodiments may be readily modified or re-arranged in one or more of its details as facilitated by enabling technological advancements without departing from the principals of the present disclosure.
For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 12/983,220, filed on 31 Dec. 2010, which is a continuation-in-part of U.S. Ser. No. 11/548,214, filed on 10 Oct. 2006 now U.S. Pat. No. 8,078,450. The United States Patent Office (USPTO) has published a notice effectively stating that the USPTO's computer programs require that patent applicants reference both a serial number and indicate whether an application is a continuation or continuation-in-part. Stephen G. Kunin, Benefit of Prior-Filed Application, USPTO Official Gazette 18 Mar. 2003. The present Applicant Entity (hereinafter “Applicant”) has provided above a specific reference to the application(s) from which priority is being claimed as recited by statute. Applicant understands that the statute is unambiguous in its specific reference language and does not require either a serial number or any characterization, such as “continuation” or “continuation-in-part,” for claiming priority to U.S. patent applications. Notwithstanding the foregoing, Applicant understands that the USPTO's computer programs have certain data entry requirements, and hence Applicant is designating the present application as a continuation-in-part of its parent applications as set forth above, but expressly points out that such designations are not to be construed in any way as any type of commentary and/or admission as to whether or not the present application contains any new matter in addition to the matter of its parent application(s). All subject matter of the Related Applications and of any and all parent, grandparent, great-grandparent, etc. applications of the Related Applications is incorporated herein by reference to the extent such subject matter is not inconsistent herewith.
Number | Name | Date | Kind |
---|---|---|---|
5268839 | Kaji | Dec 1993 | A |
5301109 | Landauer et al. | Apr 1994 | A |
5386556 | Hedin et al. | Jan 1995 | A |
5418717 | Su et al. | May 1995 | A |
5687383 | Nakayama et al. | Nov 1997 | A |
5715468 | Budzinski | Feb 1998 | A |
5752051 | Cohen | May 1998 | A |
5787410 | McMahon | Jul 1998 | A |
5895464 | Bhandari et al. | Apr 1999 | A |
5963940 | Liddy et al. | Oct 1999 | A |
6006221 | Liddy et al. | Dec 1999 | A |
6055528 | Evans | Apr 2000 | A |
6076051 | Messerly et al. | Jun 2000 | A |
6081774 | de Hita et al. | Jun 2000 | A |
6182028 | Karaali et al. | Jan 2001 | B1 |
6243670 | Bessho et al. | Jun 2001 | B1 |
6246977 | Messerly et al. | Jun 2001 | B1 |
6381598 | Williamowski et al. | Apr 2002 | B1 |
6442524 | Ecker et al. | Aug 2002 | B1 |
6601026 | Appelt et al. | Jul 2003 | B2 |
6604101 | Chan et al. | Aug 2003 | B1 |
7146358 | Gravano et al. | Dec 2006 | B1 |
7200550 | Menezes et al. | Apr 2007 | B2 |
7231393 | Harik et al. | Jun 2007 | B1 |
7249121 | Bharat et al. | Jul 2007 | B1 |
7263488 | Chu et al. | Aug 2007 | B2 |
7272595 | Tsuchitani et al. | Sep 2007 | B2 |
7383258 | Harik et al. | Jun 2008 | B2 |
7406542 | Erlingsson | Jul 2008 | B2 |
7426507 | Patterson | Sep 2008 | B1 |
7490099 | Myers et al. | Feb 2009 | B2 |
7536408 | Patterson | May 2009 | B2 |
7555428 | Franz et al. | Jun 2009 | B1 |
7580827 | Brants et al. | Aug 2009 | B1 |
7580921 | Patterson | Aug 2009 | B2 |
7580929 | Patterson | Aug 2009 | B2 |
7584175 | Patterson | Sep 2009 | B2 |
7599914 | Patterson | Oct 2009 | B2 |
7672831 | Todhunter et al. | Mar 2010 | B2 |
7689536 | Weissman et al. | Mar 2010 | B1 |
7693813 | Cao et al. | Apr 2010 | B1 |
7698259 | Xue | Apr 2010 | B2 |
7698266 | Weissman et al. | Apr 2010 | B1 |
7711679 | Patterson | May 2010 | B2 |
7716216 | Harik et al. | May 2010 | B1 |
7792783 | Friedlander et al. | Sep 2010 | B2 |
7792836 | Taswell | Sep 2010 | B2 |
7831531 | Baluja et al. | Nov 2010 | B1 |
7840589 | Holt et al. | Nov 2010 | B1 |
7877371 | Lerner et al. | Jan 2011 | B1 |
7895221 | Colledge et al. | Feb 2011 | B2 |
7912705 | Wasson et al. | Mar 2011 | B2 |
7913163 | Zunger | Mar 2011 | B1 |
7925610 | Elbaz et al. | Apr 2011 | B2 |
7925655 | Power et al. | Apr 2011 | B1 |
7937265 | Pasca et al. | May 2011 | B1 |
7937396 | Pasca et al. | May 2011 | B1 |
7987176 | Latzina et al. | Jul 2011 | B2 |
8010539 | Blair-Goldensohn et al. | Aug 2011 | B2 |
8019748 | Wu et al. | Sep 2011 | B1 |
8024372 | Harik et al. | Sep 2011 | B2 |
8051104 | Weissman et al. | Nov 2011 | B2 |
8055669 | Singhal et al. | Nov 2011 | B1 |
8065248 | Baluja et al. | Nov 2011 | B1 |
8065316 | Baker et al. | Nov 2011 | B1 |
8078450 | Anisimovich et al. | Dec 2011 | B2 |
8086594 | Cao et al. | Dec 2011 | B1 |
8086619 | Haahr et al. | Dec 2011 | B2 |
8086624 | Hubinette | Dec 2011 | B1 |
8090723 | Cao et al. | Jan 2012 | B2 |
8108412 | Patterson | Jan 2012 | B2 |
8112437 | Katragadda et al. | Feb 2012 | B1 |
8117223 | Patterson | Feb 2012 | B2 |
8122026 | Laroco, Jr. et al. | Feb 2012 | B1 |
8145473 | Anisimovich et al. | Mar 2012 | B2 |
8166021 | Cao et al. | Apr 2012 | B1 |
8214199 | Anismovich et al. | Jul 2012 | B2 |
8229730 | Van Den Berg et al. | Jul 2012 | B2 |
8229944 | Latzina et al. | Jul 2012 | B2 |
8271453 | Pasca et al. | Sep 2012 | B1 |
8285728 | Rubin | Oct 2012 | B1 |
8301633 | Cheslow | Oct 2012 | B2 |
8402036 | Blair-Goldensohn et al. | Mar 2013 | B2 |
8533188 | Yan et al. | Sep 2013 | B2 |
8548951 | Solmer et al. | Oct 2013 | B2 |
8577907 | Singhal et al. | Nov 2013 | B1 |
20040098250 | Kimchi et al. | May 2004 | A1 |
20050065916 | Ge et al. | Mar 2005 | A1 |
20050240392 | Munro et al. | Oct 2005 | A1 |
20050267871 | Marchisio et al. | Dec 2005 | A1 |
20060106767 | Adcock et al. | May 2006 | A1 |
20060106793 | Liang | May 2006 | A1 |
20060149739 | Myers | Jul 2006 | A1 |
20060184516 | Ellis | Aug 2006 | A1 |
20070083505 | Ferrari et al. | Apr 2007 | A1 |
20070130112 | Lin | Jun 2007 | A1 |
20070156669 | Marchisio et al. | Jul 2007 | A1 |
20070185860 | Lissack | Aug 2007 | A1 |
20080133483 | Bayley et al. | Jun 2008 | A1 |
20080133505 | Bayley et al. | Jun 2008 | A1 |
20080243777 | Stewart et al. | Oct 2008 | A1 |
20080294622 | Kanigsberg et al. | Nov 2008 | A1 |
20080319947 | Latzina et al. | Dec 2008 | A1 |
20090049040 | Fay et al. | Feb 2009 | A1 |
20090063472 | Pell et al. | Mar 2009 | A1 |
20090076839 | Abraham-Fuchs et al. | Mar 2009 | A1 |
20090089047 | Pell et al. | Apr 2009 | A1 |
20090089277 | Cheslow | Apr 2009 | A1 |
20090112841 | Devarakonda et al. | Apr 2009 | A1 |
20090182738 | Marchisio et al. | Jul 2009 | A1 |
20090222441 | Broder et al. | Sep 2009 | A1 |
20090271179 | Marchisio et al. | Oct 2009 | A1 |
20100095196 | Grabarnik et al. | Apr 2010 | A1 |
20100169314 | Green et al. | Jul 2010 | A1 |
20100169337 | Green et al. | Jul 2010 | A1 |
20100318423 | Kanigsberg et al. | Dec 2010 | A1 |
20100332493 | Haas et al. | Dec 2010 | A1 |
20110040772 | Sheu | Feb 2011 | A1 |
20110055188 | Gras | Mar 2011 | A1 |
20110072021 | Lu et al. | Mar 2011 | A1 |
20110119254 | Brown et al. | May 2011 | A1 |
20110153539 | Rojahn | Jun 2011 | A1 |
20110202526 | Lee et al. | Aug 2011 | A1 |
20110202563 | Colledge et al. | Aug 2011 | A1 |
20110301941 | De Vocht | Dec 2011 | A1 |
20110314032 | Bennett et al. | Dec 2011 | A1 |
20120023104 | Johnson et al. | Jan 2012 | A1 |
20120030226 | Holt et al. | Feb 2012 | A1 |
20120047145 | Heidasch | Feb 2012 | A1 |
20120131060 | Heidasch et al. | May 2012 | A1 |
20120197885 | Patterson | Aug 2012 | A1 |
20120203777 | Laroco, Jr. et al. | Aug 2012 | A1 |
20120221553 | Wittmer et al. | Aug 2012 | A1 |
20120246153 | Pehle | Sep 2012 | A1 |
20120296897 | Xin-Jing et al. | Nov 2012 | A1 |
20130013291 | Bullock et al. | Jan 2013 | A1 |
20130054589 | Cheslow | Feb 2013 | A1 |
20130091113 | Gras | Apr 2013 | A1 |
20130138696 | Turdakov et al. | May 2013 | A1 |
20130185307 | El-Yaniv et al. | Jul 2013 | A1 |
20130254209 | Kang et al. | Sep 2013 | A1 |
20130282703 | Puterman-Sobe et al. | Oct 2013 | A1 |
20130311487 | Moore et al. | Nov 2013 | A1 |
20130318095 | Harold | Nov 2013 | A1 |
20140012842 | Yan et al. | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
2400400 | Dec 2001 | EP |
2011160204 | Dec 2011 | WO |
Entry |
---|
Bolshakov,I.A. “Co-Ordinative Ellipsis in Russian Texts: Problems of Description and Restoration”, Proceedings of the 12th conference on Computational linguistics, vol. 1, pp. 65-67, Association of Computational Linguistics, Moscow, USSR, 1988. |
Hutchins, Mashine Translation: Past, Present, Future, Ellis Horwood, Ltd., Chichester, UK, 1986. |
Mitamura, “An Efficient Interlingua Translation System for Multi-Lingual Document Production”, Proceedings of Machine Translation Summit III, Washington DC, Jul. 2-4, 1991. |
Number | Date | Country | |
---|---|---|---|
20110257963 A1 | Oct 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12983220 | Dec 2010 | US |
Child | 13173369 | US | |
Parent | 11548214 | Oct 2006 | US |
Child | 12983220 | US |