The disclosed invention relates generally to vehicle steering columns. More particularly, the disclosed invention relates to a steering column for a vehicle that can be axially translated to a given forward distance so that a driver might perceive an increase in vehicle roominess upon first entering the vehicle.
Movable steering wheels and steering columns have been features of the automobile industry almost since its very beginning. For example, because of limited space between the steering wheel of the Model T and the seat back and base accessory steering wheels were made available by after-market manufacturers that could be release and swung out of the driver's way upon entering and exiting the driver's seat. Later vehicles included steering columns that could be pivotably adjusted by a small amount to allow greater clearance for the driver between the steering wheel and the driver's seat.
Frequently, as in the case of the movable steering wheel accessory mentioned above, movement of the steering wheel is thought desirable, perhaps necessary, to allow some people to position themselves between the driver's seat and the steering wheel. In such instances movement of the steering wheel is done for practical reasons.
However, in other cases, it is desirable to move the steering wheel forward to the instrument panel to give the appearance of a larger vehicle interior as is often the case with today's increasingly popular smaller vehicle. This impression is particularly important in the vehicle showroom where the potential purchaser may be viewing the vehicle for the first time. In such circumstances the roomier appearance of the vehicle may be more favorably viewed by the driver and potential purchaser.
A number of constraints exist on movement of the steering wheel given passenger safety standards and packaging. With respect to occupant safety, considerations include crash loads (overturning moment) and load vs. displacement selections and the size and configuration of the internal steering components of the steering column. Particularly challenging in the design of an axially movable steering column is the need to separate the stowing or functional travel mechanism from the crash stroking plane.
Known systems for applying axial movement to the steering column fail to overcome the challenges faced both in terms of safety and of packaging. Such systems are limited to a typical axial travel of only about +25 mm to either side of mid-line at a rate of about between about 10 and 20 mm/sec, making such systems impractical for use in stowing the steering column while the driver is out of the seat then extending the column quickly after the driver is seated.
As in so many areas of vehicle technology there is always room for improvement related to stowable steering columns.
The disclosed invention overcomes several of the problems of the prior art by providing a stowing steering column that is capable of a high range of travel at a high rate of speed. The stowing steering column of the disclosed invention includes a roof bracket for attachment to the instrument panel, a sleeve attached to the bracket, and a steering column shaft movably attached to the sleeve. A steering wheel is fitted to an end of the steering column shaft.
The steering column shaft has a stowing travel range of between about +90 mm and +110 mm and a travel speed of between about 20 mm/sec and 40 mm/sec, or roughly double known rates. The stowing range of travel between about +90 mm and +110 mm is in addition to the functional vehicle-inward movement of +25 mm from mid-line.
The stowing steering column further includes a motor for axially adjusting the steering column shaft relative to the steering column sleeve.
The sleeve is pivotably attached to the roof bracket. The column further includes a steering column bracket extending from the roof bracket to which the steering column shaft is attached whereby the steering column bracket is adjustably movable with respect to the roof bracket. Optionally a motor may be provided for adjustably moving the steering column bracket with respect to the roof bracket.
The instrument panel is formed to define a steering-wheel receiving pocket into which the steering wheel will nest when in its retracted position. One or more sensors are provided for determining the position of the steering wheel relative to the instrument panel. The sensor may be selected from the group consisting of a hall current sensor, a potentiometer sensor, and a feedback sensor.
The above advantages and other advantages and features will be readily apparent from the following detailed description of the preferred embodiments when taken in connection with the accompanying drawings.
For a more complete understanding of this invention, reference should now be made to the embodiments illustrated in greater detail in the accompanying drawings and described below by way of examples of the invention wherein:
In the following figures, the same reference numerals will be used to refer to the same components. In the following description, various operating parameters and components are described for different constructed embodiments. These specific parameters and components are included as examples and are not meant to be limiting.
In general, the disclosed invention provides a stowing steering column that is movable between a extended position for driver use and a retracted or stowed position when the driver is not present. With reference to
A powered steering shaft 24 is axially and movably provided within the shaft sleeve or shaft bracket 20. A drive motor support bracket 26 is provided in association with the shaft sleeve or shaft bracket 20. A drive motor 28 is operatively associated with the steering shaft sleeve 26.
The powered steering shaft 24 preferably has a stowing travel range of between about +90 mm and +110 mm and a travel speed of between about 20 mm/sec and 40 mm/sec. As noted above, the stowing range of travel between about +90 and +110 mm is in addition to the functional vehicle-inward movement of +25 mm from the mid-line. This wide range of travel and high speed movement allows for quick positioning and re-positioning of the steering wheel 12 as required for a given situation. Both degree of travel and speed of travel may be driver-adjusted according to personal preferences.
The powered steering shaft 24 may be splined or otherwise configured so as to allow operative engagement of the drive motor 28. Operation of the drive motor 28 allows the axial movement of the powered steering shaft 24 with respect to the shaft sleeve or shaft bracket 20.
The height of the steering wheel 12 (shown in
The steering wheel 12 of the disclosed invention is selectively movable between an extended or in-use position when the driver is present and a stowed position when the driver is not present. A sensor provided in the driver's seat may be used to detect presence or absence of the driver from the driver's seat as is known in the art.
As illustrated in
As illustrated in
A steering shaft position sensor 40 is provided in relation to the stowing steering column 10. The steering shaft position sensor 40 is used to determine the position of the powered steering shaft 24. The steering shaft position sensor 40 is operatively associated with the seat/column sensor provided in association with the driver's seat and, operating in conjunction with the drive motor 28, functions to assure that the powered steering shaft 24 is in the correct position for a given operating situation. The steering shaft position sensor 40 may be of any suitable type of sensor but may be selected from the group consisting of a hall current sensor, a potentiometer sensor, and a feedback sensor.
As noted above, optionally the steering wheel 12 may substantially nest within the optional recessed, steering wheel-receiving area 38 of the instrument panel 36. The recessed, steering wheel-receiving area 38 is illustrated particularly in
Other features of the disclosed invention may be incorporated such as providing instrumentation either in relation to a multi-function switch stalk 42 (shown in
In operation, the steering wheel 12 would normally be in its stowed position as illustrated in
The position of the powered steering shaft 24 is determined by the steering shaft position sensor 40. When the powered steering shaft 24 has been extended to its in-use position the axial movement of the powered steering shaft 24 caused by the drive motor 28 is stopped.
When the vehicle ignition is turned off (ignition key removed) the drive motor 28 is again engaged and the powered steering shaft 24 is moved away from the driver toward its stowed position. When the steering shaft position sensor 40 determines that the powered steering shaft 24 is in its proper position the axial movement of the powered steering shaft 24 caused by the drive motor 28 is stopped
As an alternative to the arrangement described above, the driver may manipulate an ignition switch or button (such as an ignition button) to thereby engage the drive motor 28 to thereby move the steering wheel 12 vehicle forward into its stowed position. The steering wheel 12 would remain in its stowed position until the driver again manipulates the ignition switch or button to its off position.
The foregoing discussion discloses and describes exemplary embodiments of the present invention. One skilled in the art will readily recognize from such discussion, and from the accompanying drawings and claims that various changes, modifications and variations can be made therein without departing from the true spirit and fair scope of the invention as defined by the following claims.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/791,929 filed Mar. 15, 2013, incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61791929 | Mar 2013 | US |