The present invention relates generally to data networking and, more specifically, to Y-cable protection enhancement in supporting Fibre Channel distance extension.
SONET/SDH and optical fiber have emerged as significant technologies for building large scale, high speed, Internet Protocol (IP) based networks. SONET, an acronym for Synchronous Optical Network, and SDH, an acronym for Synchronous Digital Hierarchy, are a set of related standards for synchronous data transmission over fiber optic networks. SONET/SDH is currently used in wide area networks (WAN) and metropolitan area networks (MAN). A SONET system consists of switches, multiplexers, and repeaters, all connected by fiber. The connection between a source and destination is called a path.
One network architecture for the network interconnection of computer devices is Fibre Channel, the core standard of which is described in ANSI (American National Standards Institute) X3.230-1994. The Fibre-Channel standard defines a bi-directional link protocol, used to connect computers to disk drives and other peripherals. Arising out of data storage requirements, Fibre Channel currently provides for bi-directional gigabit-per-second transport over communication networks in Fibre Channel frames that consist of standardized sets of bits used to carry data over the network system. Fibre Channel links are limited to no more than 10 kilometers.
New standards and protocols have emerged to combine the advantages of the SONET/SDH and Fibre Channel technologies. For example, it is sometimes desirable to link two SANs (Storage Area Networks), which operate with Fibre Channel protocol, over a MAN (Metropolitan Area Network), or even a WAN (Wide Area Network), which typically operates under SONET or SDH standards. The advent of high data rate metropolitan optical networks including such networks based on the use of dense wave division multiplexing (DWDM) and/or SONET/SDH transport systems makes it possible to extend so-called storage area networks (SANs) that carry multiple Fibre-Channel links over distances much longer than 10 kilometers. This extension of Fibre Channel from 100 kilometers to over several hundred, or even thousand, kilometers, is made by mapping Fibre Channel ports to a SONET/SDH path for transport across a SONET/SDH network.
Y-cable protection scheme in Fibre Channel is designed as one way traffic protection. Near End (NE) equipment and Far End (FE) equipment within a network can provision Y-cable differently and can act independently. This means that NE and FE equipment may be in different configurations and in different states (e.g., Manual Switch/Forced Switch/Reverse Request, Active/Standby State, Working/Protect, etc.). Due to the nature of Fibre Channel, when Fibre Channel Distance Extension (DE) is enabled, DE control state machine has to be working only with bi-directional traffic. This requires the NE trunk to communicate with the FE trunk over a SONET path and both receive and transmit Fibre Channel traffic have to go through the same path (trunk).
There is, therefore, a need for a method and system that allows Distance Extension, or other features requiring bi-directional traffic, to function properly in networks configured for one-way traffic protection such as Y-cable protection.
A method and system for communicating state information between a local device and a remote device across a transport network are disclosed. Each of the devices operate independently from one another and at least one of the devices is configured for one-way traffic protection. The method includes receiving a protection message comprising K-bytes from one of the local and remote devices at the other of the local and remote devices and determining, based on the received K-bytes, if there is a change in state at one of the devices. If a change in state is detected, a message is sent indicating the change in state from one of the local and remote devices to the other of the local and remote devices.
In another aspect of the invention, a computer program product for communicating between a local device and a remote device across a transport network generally comprises: code that receives a protection message comprising K-bytes from one of the local and remote devices at the other of the local and remote devices; code that determines if there is a change in state at one of the devices; if a change in state is detected, code that sends a message indicating the change in state from one of local and remote devices to the other of local and remote devices; and a computer-readable storage medium that stores the codes.
Further understanding of the nature and advantages of the inventions herein may be realized by reference to the remaining portions of the specification and the attached drawings.
Corresponding reference characters indicate corresponding parts throughout the several views of the drawings.
The following description is presented to enable one of ordinary skill in the art to make and use the invention. Descriptions of specific embodiments and applications are provided only as examples and various modifications will be readily apparent to those skilled in the art. The general principles described herein may be applied to other embodiments and applications without departing from the scope of the invention. Thus, the present invention is not to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features described herein. For purpose of clarity, details relating to technical material that is known in the technical fields related to the invention have not been described in detail.
A method and system of the present invention allow Distance Extension to function properly in networks configured for Y-cable protection. As previously discussed, NE (Near End) and FE (Far End) equipment can provision Y-cable protection differently and act independent from one another, resulting in the equipment having different configurations or protection states. This may cause problems when Fibre Channel Distance Extension (DE) is enabled since a DE control state machine works only with bi-directional traffic. It is to be understood that Fibre Channel Distance Extension is only one example and that the invention may be used with other features that require NE and FE equipment, which may be operating in different configurations or states (due to Y-cable protection or other one-way traffic protection schemes), to communicate with bi-directional traffic going through the same path.
As described in detail below, the present invention passes information between the NE and FE equipment so that they can communicate with each other and determine whether they need to change protection states or take other action, such as initiate an alarm. In one embodiment, a SONET protection K-byte scheme, as described in GR-253 “Generic Requirements for Synchronous Optical Network (SONET) Transport Systems”, is used to allow NE and FE equipment to communicate with each other and make state change decisions accordingly or raise alarms in DE enabled mode. The invention may be implemented, for example, in a Muxponder 2.5 G card over a SONET/SDH network.
Referring now to the drawings, and first to
A bi-directional link 10 interconnects Fibre-Channel ports coupled to Near End equipment (local device) 16 and Far End equipment (remote device) 18, carrying Fibre-Channel frames encapsulated within packets. It is to be understood that either device may be referred to as a local device with the other device referred to as a remote device. The link 10 can be either an actual physical link or a tunnel through a network cloud (e.g., SONET/SDH network 14). The SONET/SDH network 14 provides a transport path to connect the NE equipment 16 to the FE equipment 18. Optical transport platforms such as ONS 15454 (available from Cisco Systems, Inc. of San Jose, Calif.), may be used to provide the interface between the Fibre Channel and SONET/SDH networks.
Transport network interfaces interface Fibre-Channel ports at equipment 16, 18 to bi-directional link 10. The Fibre Channel ports are associated with elements which are interconnected by Fibre Channel. These elements include data storage elements, including disk drive arrays, RAIDs, disk farms, or possibly Fibre Channel network elements, such as routers, switches, or other Fibre Channel network elements.
GFP (Generic Framing Protocol) may be used as the framing protocol for such a network for encapsulating the Fibre Channel payloads at one end of the SONET/SDH network 14 to be transmitted across the SONET/SDH network and for decapsulating the Fibre Channel data at the other end. In one embodiment, data is transferred through GFP messages, as described in U.S. Patent Application Publication No. 20050002338 (Devdas et al., filed Jan. 6, 2005), which is incorporated herein by reference in its entirety. It is to be understood that GFP is only one example of a protocol that may be used to transfer the K-bytes and that other protocols may be used without departing from the scope of the invention.
Examples of an internal User Defect Alarm that may be used to inform the switch agent of K-byte changes are as follows:
USER_K1_BYTE_CHANGE
USER_K2_BYTE_CHANGE
In one embodiment, a 16 bit message is used to pass information between the FE and NE equipment card. In one example, 4 bits are reserved for future state machine use and 12 bits are used for K-byte handling.
K-byte compression is preferably implemented as shown in
The system bus architecture of computer system 60 is represented by arrows 68 in
It is understood that the examples and embodiments that are described herein are for illustrative purposes only and that various modifications and changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims and their full scope of equivalents.
Number | Name | Date | Kind |
---|---|---|---|
5610745 | Bennett | Mar 1997 | A |
5638518 | Malladi | Jun 1997 | A |
5941972 | Hoese et al. | Aug 1999 | A |
5959994 | Boggs et al. | Sep 1999 | A |
6393489 | Sambamurthy et al. | May 2002 | B1 |
6400730 | Latif et al. | Jun 2002 | B1 |
6636529 | Goodman et al. | Oct 2003 | B1 |
6735215 | Cao | May 2004 | B1 |
6748502 | Watanabe et al. | Jun 2004 | B2 |
6970451 | Greenberg et al. | Nov 2005 | B1 |
20020176450 | Kong et al. | Nov 2002 | A1 |
20030074449 | Smith et al. | Apr 2003 | A1 |
20030091037 | Latif et al. | May 2003 | A1 |
20030172319 | Ryhorchuk et al. | Sep 2003 | A1 |
20030218981 | Scholten | Nov 2003 | A1 |
20040008719 | Ying | Jan 2004 | A1 |
20040030766 | Witkowski | Feb 2004 | A1 |
20040076175 | Patenaude | Apr 2004 | A1 |
20040085902 | Miller et al. | May 2004 | A1 |
20040085904 | Bordogna et al. | May 2004 | A1 |
20050002338 | Devdas et al. | Jan 2005 | A1 |
20050163168 | Sheth et al. | Jul 2005 | A1 |
20060087975 | Zheng et al. | Apr 2006 | A1 |