In a wireless communication system, a wireless host periodically transmits a beacon frame over one or more radio frequency (RF) channels. Each beacon frame provides information about the host, including a service set identifier to identify a specific wireless network, a carrier frequency, and the beacon interval, which specifies the amount of time between beacon transmissions. A wireless device that receives a beacon frame can use the information in the beacon frame to determine whether to associate with the host.
Wireless devices typically operate in several different modes. One such mode is known as standby mode, where a wireless device does not transmit or receive any data frames. The wireless device does, however, receive beacon frames when in standby mode. To receive a beacon frame in standby mode, a wireless device may need to power up from a low power state, such as a sleep state, in order to receive the beacon frame.
A wireless device may power up prior to the host transmitting the beacon frame based on a predetermined maximum clock drift between the wireless host and device or on a predetermined number of clock cycles difference between the host and the device. This ensures the wireless device has sufficient time to reach the power level needed to receive the beacon frame. Unfortunately the wireless device may power up much earlier than necessary, causing the wireless device to needless consume power while waiting to receive the beacon frame.
In accordance with the invention, a method and system for synchronizing a local clock in a wireless device to a host clock in a wireless host are provided. A beacon frame is received by a wireless device. Using the carrier frequency information included in the beacon frame, a frequency offset value between the wireless device and the wireless host is determined. Based on the frequency offset value, a clock drift value between the host clock and the local clock in the wireless device is determined. The wireless device is then powered up in preparation for receiving a subsequent beacon frame based on the clock drift value between the host clock and the local clock in the wireless device.
The following description is presented to enable one skilled in the art to make and use embodiments in accordance with the invention, and is provided in the context of a patent application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the generic principles herein may be applied to other embodiments. Thus, the invention is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the appended claims and with the principles and features described herein.
With reference to the figures and in particular with reference to
Returning again to
A clock drift value for a beacon period is then determined, as shown in block 208. The clock drift value determines the drift or difference between the host clock in the host and the local clock in the device. The clock drift value is then stored at block 210.
Next, at block 212, a determination is made as to whether the process should repeat. If so, the method returns to block 202 and repeats. The process is repeated periodically in the embodiment of
When the wireless device is to be powered up to receive a beacon frame, the amount of time the device is powered up prior to receiving the beacon frame is based on the clock drift value. Other embodiments in accordance with the invention are not limited to the blocks shown in
RF section 408 and baseband section 410 include both a transmit path and a receive path to allow wireless device 400 to transmit and receive data using antenna 412. Although only one antenna is shown in
The receive path in RF section 408 and baseband section 410 may include filters, amplifiers, a down conversion stage, decoders, demodulators, analog-to-digital converters, and other suitable circuitry to translate the wireless signal into a baseband signal. Wireless device 400 transmits and receives data pursuant to one or more wireless standards. For example, wireless device 400 operates pursuant to a Wireless Local Area Network (WLAN) standard in an embodiment in accordance with the invention. In another embodiment in accordance with the invention, wireless device 400 operates pursuant to an Ultra-Wide Band (UWB) standard. And in other embodiments in accordance with the invention, wireless device 400 may operate with other types of wireless standards, including, but not limited to, a Wireless Personal Area Network (WPLAN) standard.
RF section 408 and baseband section 410 are implemented as integrated circuits with baseband section 410 including processing unit 414 in an embodiment in accordance with the invention. Processing unit 414 is implemented separately from baseband section 410 in another embodiment in accordance with the invention. And in yet another embodiment in accordance with the invention, processing unit 414 is implemented separately from transceiver section 402.
Processing unit 414 calibrates local clock 406 with master clock 404 in an embodiment in accordance with the invention. An exemplary calibration method is illustrated and described in conjunction with
Referring to
RF section 506 and baseband section 508 include a transmit path and a receive path to allow wireless host 500 to transmit and receive data using antenna 510. The transmit and receive paths include components similar to those described in conjunction with
Synchronization of a local clock in a wireless device to a host clock may be performed any time the wireless device is powered up or down in an embodiment in accordance with the invention. For example, the local clock is synchronized to the host clock when the device is powered up from a standby mode in an embodiment in accordance with the invention. In another embodiment in accordance with the invention, the local clock in the device is synchronized to the host clock when the device is first turned on and then when the device enters or exits a standby mode.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2006/053382 | 9/19/2006 | WO | 00 | 9/4/2009 |