One or more embodiments of the present invention relate to a method of temporarily supporting a soil mass susceptible to slide, in particular, susceptible to slide at a scarp slope bounding the soil mass.
More specifically, the one or more embodiments of the present invention relate to a method comprising the step of advancing a supporting wall in an advancing direction along a scarp slope of the soil mass.
The method according to one or more embodiments of the present invention applies in particular to the laying of continuous elongated members, such as underwater pipelines, cables, umbilicals, pipe and/or cable bundles, in the bed of a body of water.
In-bed laying underwater pipelines is commonly known as “underground laying”, and comprises laying the pipeline along a given path on the bed of the body of water; fragmenting a soil mass along the path to a given depth; digging a trench or generally removing the fragmented soil mass; and possibly burying the pipeline.
More specifically, currently used known techniques comprise removing the fragmented soil mass to form a trench in the bed of the body of water; and lowering the pipeline into the trench. The pipeline may later be covered over with the removed soil mass to fill in the trench and bury the pipeline.
Underwater pipelines carrying hydrocarbons are normally laid completely or partly underground for various reasons, some of which are discussed below. Underwater pipelines are normally laid underground close to shore approaches and in relatively shallow water, to protect them from damage by blunt objects, such as anchors or nets, and are sometimes laid underground to protect them from natural agents, such as wave motion and currents, which may result in severe stress. That is, when a pipeline is laid on the bed of a body of water, it may span two supporting areas of the bed, i.e. a portion of the pipeline may be raised off the bed; in which case, the pipeline is dangerously exposed to, and offers little resistance to the movements induced by, wave motion and currents. Underground laying may also be required for reasons of thermal instability, which result in deformation (upheaval/lateral buckling) of the pipeline, or to protect the pipeline from the mechanical action of ice, which, in particularly shallow water, may result in scouring of the bed.
To avoid damage, the pipeline often need simply be laid at the bottom of a suitably deep trench dug before laying (pre-trenching) or more often after laying the pipeline (post-trenching). At times, the protection afforded by the trench and eventual natural backfilling of the trench is not enough, and the pipeline must be buried using the fragmented soil mass removed from the trench, or any available soil mass alongside the trench.
The depth of the trench is normally such that the top line of the pipeline is roughly a meter below the surface of the bed, though severe environmental conditions may sometimes call for deeper trenches (of several metres). Trenching and backfilling are performed using digging equipment, and post-trenching (with the pipeline already laid on the bed) is the normal practice, to dig and backfill the trench in one go.
One method of in-bed laying underwater pipelines is described in Patent Application WO 2005/005736. This is a post-trenching method comprising the steps of fragmenting a soil mass in the bed to open the way; and drawing along the opening a huge plough, to form a trench, and vertical supporting walls connected to the plough and which respectively support two opposite soil masses bounded by two substantially vertical scarp slopes.
The above method has the drawback of being highly energy-intensive, due partly to the plough, and partly to friction between the supporting walls and the two soil masses. Energy consumption also increases exponentially alongside an increase in trench depth.
One or more embodiments of the present invention provide a method of temporarily supporting a soil mass susceptible to slide, designed to eliminate the drawbacks of the known art.
According to an embodiment of the present invention, there is provided a method of temporarily supporting a soil mass susceptible to slide; the method including the steps of advancing a supporting wall in an advancing direction along a scarp slope bounding said soil mass; and additionally moving at least a surface portion, in direct contact with the soil mass, of the supporting wall, so as to minimize friction between the soil mass and the supporting wall in the advancing direction.
One or more embodiments of the present invention provide for greatly reducing friction, and so reducing the energy required to advance the supporting wall with respect to the soil mass.
One or more embodiments of the present invention also relate to a system for temporarily supporting a soil mass susceptible to slide.
According to an embodiment of the present invention, there is provided a system for temporarily supporting a soil mass susceptible to slide; the soil mass being bounded by a scarp slope; and the system comprising means for advancing a supporting wall in an advancing direction along the scarp slope; and means for additionally moving at least a surface portion, in direct contact with the soil mass, of the supporting wall, so as to minimize friction between the soil mass and the supporting wall in the advancing direction.
A number of non-limiting embodiments of the present invention will be described by way of example with reference to the accompanying drawings, in which:
Number 1 in
In the following description, the term “body of water” is intended to mean any stretch of water, such as sea, ocean, lake, etc., and the term “bed” is intended to mean the concave layer of the earth's crust containing the mass of water in the body at a level SL.
Laying system 1 comprises a known laying vessel (not shown) for laying an underwater pipeline 4, of axis A1, along a given path P on bed 2; a support vessel 5; and a convoy 6 comprising a number of vehicles 7, 8, 9, 10 advanced in a direction D1 along path P.
Vehicles 7, 8, 9, 10 are underwater vehicles guidable along path P. More specifically, support vessel 5 serves to guide vehicles 7, 8, 9, 10 along path P, and to supply vehicles 7, 8, 9, 10 with electric power, control signals, compressed air, hydraulic power, etc., so each vehicle 7, 8, 9, 10 is connected to support vessel 5 by a cable bundle 11.
Each vehicle 7, 8, 9, 10 serves to fragment a respective soil layer of bed 2 to form two soil masses 12, bounded by respective opposite, substantially vertical scarp slopes 13, as shown clearly in
With reference to
With reference to
With reference to
For example, a soil mass of granular material, such as sand or gravel, tends to settle into a surface (natural slope) at a given angle, known as natural slope angle, to the horizontal. Assuming the material of bed 2 has a natural slope angle B defining surfaces C in soil masses 12, it is fairly accurate to assume the parts of soil masses 12 that would slide when unconfined would be those between surfaces C and scarp slopes 13.
If bed 2 is made solely of cohesive rock, on the other hand, the
If left in place, the fragmented soil mass 14 acts as a support for adjacent soil masses 12.
Soil masses 12, however, are still capable of yielding to a certain extent along respective scarp slopes 13, which would still impair the sinking of pipeline 4.
In an alternative embodiment, the fragmented soil mass is removed by dredge pumps (not shown), in which case, soil masses 12 are most likely to slide at the respective scarp slopes, especially in the case of cohesionless soil.
With reference to
With reference to
Tool assembly 20 for fragmenting bed 2 is located under skids 22, and comprises a number of powered cutters 26, 27 for fragmenting a layer of bed 2 along path P. In the example shown, tool assembly 20 comprises two cutters 26 arranged one over the other, with respective substantially horizontal axes parallel to each other; and a cutter 27 located next to cutters 26, with its axis perpendicular to the axes of cutters 26, so as to define with cutters 26 a rectangular work section substantially equal to the sum of the work sections of cutters 26 and 27. Tool assembly 20 is fitted to one of underframes 25, is located at the front of vehicle 7, and is movable selectively in a direction D2 perpendicular to direction D1 and substantially perpendicular to the top surface of bed 2. In other words, underframes 25 are powered and movable along bars 24 to adjust the depth of caisson 21 as a whole and of fragmenting tools 20.
As shown in
In an alternative embodiment not shown, a seat is dug along the path, in which to later lay the pipeline.
Caisson 21 comprises a frame 28; and two opposite supporting walls 29 fitted to frame 28 to support soil masses 12 along respective scarp slopes 13, as shown in
With reference to
Supporting structure 30 comprises two plates 33, between which rollers 31 (only one shown) extend to guide crawler 32. The two plates 33 are connected to one another by a panel 34 parallel to powered crawler 32, as shown in
A fluidifying device (not shown) is mounted on each vehicle 7, 8, 9, 10, and serves to inject water jets into fragmented soil mass 14 (
Vehicle 8 differs from vehicle 7 by frame 19 comprising four bars 24 longer than bars 24 of vehicle 7; by tool assembly 20 and caisson 21 being located deeper inside bed 2 (
Vehicle 9 differs from vehicle 8 by having bars 24 longer than bars 24 of vehicle 8; by tool assembly 20 and caisson 21 being located deeper; and by supporting walls 35 being higher.
Likewise, vehicle 10 differs from vehicle 9 by having bars 24 longer than bars 24 of vehicle 9; by tool assembly 20 and caisson 21 being located deeper; and by comprising two further supporting walls 35.
Vehicles 7, 8, 9, 10 fragment soil mass 14, which extends to a considerable depth and has an overall cross section defined by the width of bottom face 18 (
In this case, sinking pipeline 4 would be comprised by any yielding of soil masses 12. One of the functions of caissons 21 is to confine the fluidified area, which, should it also extend to the surrounding soil, could impair sinking pipeline 4 or result in greater energy consumption to fluidify a larger fragmented soil mass.
According to an embodiment of the present invention, when sinking pipeline 4 in fragmented soil mass 14, soil masses 12 are supported temporarily by supporting walls 29 and 35, and vehicles 7, 8, 9, 10 are driven forward by supporting walls 29, so friction between supporting walls 29 and soil masses 12 is rolling as opposed to sliding. Once pipeline 4 is sunk and supporting walls 29 and 35 move forward, soil masses 12 are allowed to slide, even though supported to a certain extent by fragmented soil mass 14.
Any mudslide after pipeline 4 is sunk is beneficial by assisting burial of pipeline 4.
In the embodiment shown in
Each supporting wall 39 comprises a base structure defined by a panel 40 having two opposite faces 41, 42 and, in use, a surface portion defined by a liquid film 43 along face 41. Face 41 faces scarp slope 13 of one of soil masses 12, and face 42 contacts fragmented soil mass 14.
Vehicle 7 is advanced by powered crawlers 38.
To form liquid film 43, each panel 40 comprises a number of nozzles 44 arranged along face 41; and a number of conduits 45 housed inside panel 40 to supply nozzles 44 with liquid. Conduits 45 are supplied with liquid by preferably centrifugal pumps (not shown) mounted on vehicle 7 and which pump water directly from the body of water.
Nozzles 44 are oriented to direct the liquid along face 41 in a preferential direction preferably opposite advancing direction D1.
Supporting wall 39 therefore does not aid in advancing vehicle 7, but greatly reduces friction between panel 40 and soil mass 12.
In the embodiment shown in
In the embodiment shown in
Each supporting wall 46 comprises a panel 48 having two opposite faces 49 and 50: face 49 faces the scarp slope 13 of one of soil masses 12; and face 50 faces fragmented soil mass 14.
Vibrating device 47 is fitted directly to panel 48, as shown in
The vibration induced in panels 48 reduces friction between panels 48 and soil masses 12, and eases the forward movement of vehicle 7.
In the embodiment shown in
In the example described with reference to the attached drawings, fluidification to induce sinking of pipeline 4 is achieved by a combination of water jets and hydrodynamic suction underneath the pipeline. This is the preferred method of sinking pipeline 4, and gives excellent results regardless of the type of soil. Possible variations of the method comprise removing all or part of the fragmented soil mass using dredge pumps (not shown); in which case, without the aid of fragmented soil mass 14 between the two scarp slopes 13 of soil masses 12, caissons 21 described are even more essential to prevent slide of soil masses 12 until pipeline 4 is laid on bottom face 18.
In another variation, the soil-working and burying vehicles are manned, as opposed to being controlled from the support vessel.
The advantages of at least some of the embodiments of the present invention substantially consist in enabling laying of an underwater pipeline in the bed of a body of water with less energy consumption as compared with conventional technology, while at the same time preventing the soil masses formed from sliding and so compromising or, more importantly, bringing work to a halt.
Though the above description refers specifically to an underwater pipeline, the present invention also applies to laying continuous elongated members, such as cables, umbilicals, pipe and/or cable bundles, in the bed of a body of water.
Number | Date | Country | Kind |
---|---|---|---|
MI2008A001581 | Sep 2008 | IT | national |
This application is a U.S. Nationalization of PCT International Application No. PCT/IB2009/006744 filed 2 Sep. 2009, which claims priority to Italian Patent Application No. MI2008A001581 filed 3 Sep. 2008, the entireties of both of the foregoing applications are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB09/06744 | 9/2/2009 | WO | 00 | 9/15/2011 |