The present invention relates generally to control systems and their design. More particularly, the present invention relates to a torque control system for a hydraulic actuator and the design of such system.
Hydraulic actuators are widely used to drive robotic manipulators in industry for tasks such as earth moving, material handling, construction and manufacturing automation due to their large power-to-mass ratio. However, precise control of hydraulic actuators is more difficult than control of conventional electric motors due to the presence of non-linear flow-pressure characteristics, such as: variations in the trapped fluid volume in each actuator chamber; fluid compressibility; friction between moving parts; variations of hydraulic parameters; presence of leakage; and transmission non-linearities.
Much of the work on hydraulic control relies on linear control design methodology that is based on local liberalization of the actuator dynamics about a nominal operating point. However, these methods suffer from two major drawbacks: First, since the actuator dynamics are highly non-linear, a single linear time invariant controller can be only tuned for a particular operating point and the performance degrades as the system state moves away from the operating point. Second, since the dynamics of actuator and load are coupled together, the dynamics of the load (which can be very complex) are implicitly embedded in the linearized model of the actuator, which complicates the treatment of the situation; it is then difficult to achieve precise control. As a result, these methods rely highly on the knowledge of the load characteristics and variation in those characteristics.
Mechatronics systems, such as electro-hydraulic robot manipulators, are essentially multi-dimensional non-linear systems composed of mechanical and actuator subsystems accounting for load dynamics and actuator dynamics, respectively. The control problem can be greatly simplified in many applications, if actuators behave as an ideal source of force/torque with low impedance, i.e. similar to electric motors. However, the force/torque generated by a hydraulic actuator is affected by its own motion resulting in a coupled dynamics of the actuator and load.
To account for parametric uncertainty of estimated and/or somewhat inaccurate parameters, non-linear adaptive control methods have previously been employed. An adaptive robust method can also be used, which takes the nonparametric unmodeled dynamics into account by assuming a known bound on the nonparametric uncertainty.
Dynamic feedback linearization has been used to attempt to cancel out the actuator non-linear dynamics. The advantage of this method is that for force control purpose, no knowledge of load dynamics is required because it cancels out the effect of velocity perturbation. However, in practice, exact cancellation of the actuator dynamics is not possible due to parametric and nonparametric modeling uncertainties. This problem has been addressed by transforming the linearized system into standard linear fractional uncertain structures; however, no method has been presented for computation of uncertainty bounds.
The control of a torque/force output is very different in nature from known attempts to control motion or position. When a controller is for controlling a system in which there is no motion, or negligible motion, much of the hydraulic behaviour is masked, and friction is the main observable factor affecting the system. This is one reason why many known systems seek to compensate for frictional components. It is also necessary to consider the dynamics of the whole system together, namely the combination of the actuator and the load. In torque/force control situations such as those discussed according to embodiments of the present invention, it is necessary to consider the effect of velocity on the system; as such, the torque/force control problem is quite different in nature from the motion and displacement control problems.
It is, therefore, desirable to provide a procedure for identification of actuator non-linear dynamics and quantification of modelling error. Most existing adaptive methods deal only with parametric uncertainties and some robust adaptive schemes assume a known bound for non-parametric uncertainties in actuator non-linear dynamics. No method is known to estimate this bound, and attempts to account for non-linear dynamics have drawbacks.
It is an object of the present invention to obviate or mitigate at least one disadvantage of previous torque/force controllers and methods of their design.
The robot control problem is simplified by minimizing the coupling between the two sub-systems that can be achieved by minimizing the effect of velocity disturbance on actuator torque. Then the robot control problem is effectively reduced to the torque control of the hydraulic actuator and the control of the multi-body dynamics of a manipulator that traditionally relies on torque control inputs.
In a first aspect, the present invention provides a controller for a hydraulic actuator, the hydraulic actuator being for generating a manipulating influence to be applied to a load. The controller includes a linearizing controller for storing a linear model representing non-linear dynamic behaviour of an unloaded hydraulic actuator. The linearizing controller is shown as part of an inner loop. A robust linear controller is also provided for compensating for non-linearities in the linear model using an uncertainty model having a non-linear component, and an estimated bound for the uncertainty model. The robust linear controller is shown as part of an outer loop, preferably cascaded with the inner loop.
In the case where the hydraulic actuator includes a joint, the non-linear dynamic behaviour of the unloaded hydraulic actuator can be obtained by substantially minimizing effects of the load on the manipulating influence. This is achieved by perturbing the linear model in response to a velocity of the joint. The linear model can be based on measured linear parameters of the hydraulic actuator. The linearizing controller can include means for obtaining the linear model based on a linearizing control law for the hydraulic actuator, or means for determining the linearizing control law for the hydraulic actuator. The controller can further include means for calculating the estimated bound. The manipulating influence can include a torque or a force, and the hydraulic actuator can be a rotary hydraulic actuator or a linear hydraulic actuator.
In another aspect, the present invention provides a control architecture for torque control of a hydraulic actuator. The control architecture includes a dynamic feedback linearizing inner loop, and a robust linear feedback outer loop. The outer loop is cascaded with the inner loop to permit the actuator to generate a desired torque irrespective of motion of the hydraulic actuator.
In a further aspect, the present invention provides a method of designing a hydraulic actuator controller. The method includes the following steps: determining an uncertainty model for a linearized model of the hydraulic actuator, the uncertainty model including a non-linear component; estimating an uncertainty bound, for the uncertainty model, based on identified parameters of non-linear behaviour of the actuator; and designing a robust linear controller based on the determined uncertainty model and the estimated uncertainty bound.
The step of estimating the uncertainty bound can include the following steps: applying a linearizing control law using control input as an excitation signal; identifying a linear discrete time model as the uncertainty model, based on measured values of torque and control input; and computing a minimum value of the uncertainty bound such that the uncertainty model is not invalidated by the measured values of torque and control input.
The non-linear component can be based on unmodeled actuator dynamics. The linearizing control law can be a dynamic feedback linearizing control law. The step of designing the robust linear controller can include imposing robust stability and performance constraints based on characteristics of the uncertainty model. The method can further include the step of calculating a linearizing control law based on the identified parameters of non-linear behaviour of the actuator. The method can further include the step of extracting the identified parameters based on measured signals.
According to another aspect, the present invention provides a computer-readable storage medium, comprising statements and instructions which, when executed, cause a computer to perform a method according to embodiments of the present invention.
Other aspects and features of the present invention will become apparent to those ordinarily skilled in the art upon review of the following description of specific embodiments of the invention in conjunction with the accompanying figures.
Embodiments of the present invention will now be described, by way of example only, with reference to the attached Figures, wherein:
Generally, the present invention provides a method and system for identification and torque/force control for hydraulic actuators, such as rotary hydraulic actuators. The methodology can be readily applied to linear hydraulic actuators. The composite controller consists of a dynamic feedback linearizing inner loop cascaded with a robust linear feedback outer loop. The proposed controller allows the actuator to generate desired torque irrespective of the actuator motion. In fact, the controller reduces significantly the impedance of the actuator as seen by its external load, making the system an ideal, or substantially ideal, source of torque suitable for many robotics and automation applications. An identification method to extract the parameters of non-linear model of actuator dynamics and to estimate a bound for modeling uncertainty, used for synthesis of the outer optimal controller, is also presented. Results are illustrated experimentally on a pitch actuator of a Schilling industrial robot.
In the realm of hydraulic actuators, rotary hydraulic actuators produce a torque output, whereas linear hydraulic actuators produce a force output. The term “manipulating influence” is used herein to represent either a torque or a force, and is used as a generic term to cover both possibilities, depending on whether a hydraulic actuator is linear or rotary. The terms “torque/force control” and “hydraulic actuator output control” are used herein to refer to the control of the output of the hydraulic actuator, whether it is a linear or rotary actuator. The terms “torque/force controller” and “hydraulic actuator output controller” as used herein represent a controller for controlling force (in the case of a rotary actuator) and/or for controlling torque (in the case of a linear actuator). Of course, the term “controller” is also used herein to refer to a torque/force controller. The term “velocity” is used herein to represent a speed and trajectory (either linear or angular). Though reference is made to actuator velocity, joint velocity, and load velocity, it is to be understood that each of these velocities is describing the same velocity in the case where an actuator is applying a torque/force to a load. As such, a calculation of load velocity can be used to determine actuator velocity.
The control of a torque/force output is very different in nature from known attempts to control motion or position. When a controller is for controlling a system in which there is no motion, or negligible motion, much of the hydraulic behaviour is masked, and friction is the main observable factor affecting the system. This is one reason why many known systems seek to compensate for frictional components. It is also necessary to consider the dynamics of the whole system together, namely the combination of the actuator and the load. In torque/force control situations such as those discussed according to embodiments of the present invention, it is necessary to consider the effect of velocity on the system; as such, the torque/force control problem is quite different in nature from the motion and displacement control problems. In torque/force control according to embodiments of the present invention, the two subsystems are decoupled by way of velocity feedback. This results in system modularity. It is no longer required to model the environment, since the actuator can be controlled independently of the effects of the load.
The robot control problem is greatly simplified by minimizing the coupling between the two sub-systems that can be achieved by minimizing or eliminating the effect of velocity disturbance on actuator torque. Then the robot control problem is reduced to the torque control of hydraulic actuator and the control of the multi-body dynamics of manipulator that traditionally relies on torque control inputs.
A combined scheme of identification and torque control is described for hydraulic actuators, such as rotary hydraulic actuators. The methodology is readily applicable for linear hydraulic actuators. The composite controller includes a dynamic feedback linearizing inner loop cascaded with an optimal robust linear feedback outer loop. The proposed controller allows the actuator to generate desired torque irrespective of the actuator motion. In fact, the controller reduces significantly the impedance of the actuator as seen by its external load, making the system an ideal source of torque suitable for many robotics and automation applications. Discussion of and “ideal” source herein is to be understood as referring to a source having behaviour that is substantially ideal.
The controller allows a hydraulic actuator to generate desired torque or force regardless of actuator motion. It can reduce significantly the impedance of the actuator as seen by its external load, making the system an ideal, or near ideal, source of torque or force suitable for many robotics and automation applications. The dynamic feedback linearizing controller can be constructed based on an identification procedure which identifies parameters of actuator non-linear model. Since the feedback-linearized model is not perfectly “linear”, a novel identification procedure is developed to fit an “uncertain” model structure to the almost linearized system. The robust outer-loop controller permits to consider different types of performance objective, either in time domain or in frequency domain. The proposed linear robust outer-loop controller presents a very efficient means for attenuating limit-cycle oscillations in servo-valve dynamics, and is discrete and easily implementable. All design procedures can be realized by means of powerful convex optimization algorithms.
The identification and control scheme according to embodiments of the present invention relies neither on a priori knowledge of load dynamics nor external torques, and makes the controlled actuator as a source of torque with low impedance, i.e. acting virtually as an electro-motor. Moreover, no a prior assumption is made on a bound for actuator unmodeled dynamics. The bound is estimated via an identification procedure. The controller synthesis procedure allows imposing several performance objectives either in time-domain or frequency domain and it comprises numerically tractable convex optimizations. An identification method to extract the parameters of non-linear model of actuator dynamics and to estimate a bound for modelling uncertainty, used for synthesis of the outer optimal controller, is also presented.
In the case where the hydraulic actuator includes a joint, the non-linear dynamic behaviour of the unloaded hydraulic actuator can be obtained by substantially minimizing effects of the load on the manipulating influence. This is achieved by perturbing the linear model in response to a velocity of the joint. The linear model can be based on measured linear parameters of the hydraulic actuator. The linearizing controller can include means for obtaining the linear model based on a linearizing control law for the hydraulic actuator, or means for determining the linearizing control law for the hydraulic actuator. The controller can further include means for calculating the estimated bound. The manipulating influence can include a torque or a force, and the hydraulic actuator can be a rotary hydraulic actuator or a linear hydraulic actuator.
Described in a different manner, an embodiment of the present invention provides a control architecture for torque control of a hydraulic actuator. The control architecture includes a dynamic feedback linearizing inner loop, and a robust linear feedback outer loop. The outer loop is cascaded with the inner loop to permit the actuator to generate a desired torque irrespective of motion of the hydraulic actuator.
As shown in
According to an embodiment of the present invention, the proposed controller scheme includes three main stages, with an optional initial stage, which can be implemented first. In the initial stage, parameters of the actuator non-linear model are identified. This identification can be achieved using the measured signals (actuator position, velocity, and chamber pressures) and by a standard least squares algorithm.
In the first main stage, using the identified parameters of the actuator non-linear model, a dynamic feedback linearizing control law u* is calculated (See
The third stage of the proposed method is to design the external linear controller C satisfying several performance and robust stability requirements. Specifically, we translate these requirements into I1 or H∞ control design specifications that in turn, are formulated by some mixed Linear Programming and Linear Matrix Inequality constraints.
Based on the identified non-linear model, a dynamic feedback linearizing control law can be calculated. This command should ideally transform the non-linear system into a simple Integrator. However, due to imperfect parameter identification and the presence of unmodeled dynamics, the feedback-linearized system may deviate from a simple integrator model.
To describe the foregoing in a different manner, reference is made to
The non-linear component can be based on unmodeled actuator dynamics. The linearizing control law can be a dynamic feedback linearizing control law. The step of designing the robust linear controller can include imposing robust stability and performance constraints based on characteristics of the uncertainty model (such constraints will be described later). The method can further include the step of calculating a linearizing control law based on the identified parameters of non-linear behaviour of the actuator. The method can further include the step of extracting the identified parameters based on measured signals.
Expressed in a slightly different manner, according to an embodiment of the invention, there is provided a method of designing a hydraulic actuator controller, comprising: determining an uncertainty model to compensate for differences between a linearized model of the hydraulic actuator and actual behaviour of the hydraulic actuator, the uncertainty model including a non-linear component; estimating an uncertainty bound, for the uncertainty model, based on identified parameters of non-linear behaviour of the actuator; and designing a robust linear controller based on the determined uncertainty model and the estimated uncertainty bound. The uncertainty model can include a linear time invariant model component.
A method according to an embodiment of the present invention can alternatively be described as an identification method for designing a hydraulic actuator controller. The method includes the following steps: determining the parameters of the non-linear model of the actuator dynamics; designing a linearizing control law based on the determined non-linear model; fitting an “uncertain” model structure to the almost linearized system, and estimating an uncertainty bound for the modelling uncertainty; and designing a robust linear controller based on the determined uncertainty model and the estimated uncertainty bound.
The model structure can include a linear time-invariant (LTI) model and an uncertainty block representing all factors that affect linearization quality. The LTI model together with an upper-bound for the uncertainty block can be estimated by an identification procedure. The identification method can handle non-linear uncertainty blocks, as opposed to existing methods that handle mainly linear uncertainties. The identification scheme requires no “a priori” information on the system dynamics.
The step of estimating the uncertainty bound can include the following steps: using a linearizing control input as an excitation signal and torque as the output signal; identifying a linear discrete time model as the uncertainty model, based on measured values of input/output signals; and computing a minimum value of the uncertainty bound such that the uncertainty model is not invalidated by the measured values of torque and control input signals.
Actuator Dynamics
The dynamics of hydraulic pressure of the chambers assuming compressible fluid are described by
where β is the effective bulk modulus, p1, p2 are pressures inside the two chambers of actuator, x is the position angle, V1(x)=V0+Vx(V2(x)=V0−Dx) is the trapped fluid volume in the first (second) chamber, respectively. D is the volume displacement of actuator and x∈(−D−1V0, D−1V0).
The coefficients of the internal and external leakages are denoted by c1 and cel, respectively. u is the spool-valve displacement and
Ki=0.5(ps−pa)−(−1)i sgn(u)[0.5(ps+pa)−pi],i=1,2, (2)
where ps is the supply pressure, pa is the external pressure and cp is the discharge coefficient of the valve. In this embodiment, we assume an identical discharge coefficient cp, for both inlet and outlet ports of the valve, although some servovalves have larger cp, for the outlet ports than the inlet ports. Generally, cp, depends on liquid density, however in this embodiment cp is considered constant. Obviously, it is possible to change the equations if different assumptions are made.
In this embodiment we neglect the servo-valve dynamics and hence the servo-valve displacement u is treated directly as control input signal. The torque generated by a rotary hydraulic actuator τ is proportional to the pressure difference between the two chambers, i.e.
τ=D(p1−p2) (3)
Input-to-torque Exact Linearization
Differentiating the actuator torque in (3) with respect to time and replacing {dot over (p)}1 and {dot over (p)}2 from the actuator dynamics equations yields (4) as follows:
{dot over (τ)}=−βD(c1+cel)P(x)(p1−p2)+βDcelP1(x)pa−βD2P(x)ω+βDcpQ(p1,p2,x,u)u
where ω={dot over (χ)} is the angular velocity of the actuator, and P(x), P1(x) and Q(p1, p2, x, u) are defined by
P(x)=V1(x)−1+V2(x)−1 (5)
P(x)=V1(x)−1−V2(x)−1 (6)
Q(p1,p2,x,u)=V1(x)−1√{square root over (K1)}+V2(x)−1√{square root over (K2)} (7)
Equation (1) describes the second order dynamics of the actuator. The fact that the command signal u appears in the first derivative of the generated torque shows that the relative degree of the system is one. It is evident from Equation (4) that the actuator torque depends on two inputs: motion variables i.e. position and velocity [x, ω] and spool-valve displacement u. Herein, the former is treated as known disturbance, while the latter is considered as control input. The goal of an ideal torque controller design is hence to perform precise torque tracking regardless of actuator motion.
From Equation (4), the linearizing command can be computed by
where ν is the new command signal. Obviously, this control law transforms ν-τ map into an integrator, i.e. τ=ν. In order to implement the linearizing command law in (8) we need to express the control signal u* explicitly in terms of the measured signals p1, p2, x, ω and the new input signal ν. However, Equation (8) does not express u* in an explicit form because u* appears in the right-hand side (RHS) of (8). This problem can be easily solved by observing the definitions of Q and Ki. In fact, one can infer from (2) and (7) that Q(.) depends only on the sign of u*
Therefore, by virtue of (8) and noting that scalars Q(.), cp, and β are all positive valued, we can say
sgn(u*)=sgn(β(c1+cel)(p1−p2)P(x)−βDcelpaP1(x)+D2βP(x)ω+ν)
which shows that u* depends only on p1, p2, x, ω and ν. Note that the linearizing command (8) is applicable when Q≠0. For (p1, p2)=(ps, pa) or (p1, p2)=(pa, ps), Q is zero and the actuator dynamics becomes uncontrollable from the input. The variations of p1 and p2 in this case, depend only on velocity.
Identification of Actuator Dynamics and Uncertainty Bounding
In this section we describe a two-stage procedure for parametric identification of actuator non-linear dynamics and for quantization of modeling uncertainty in l1 topology. At the first stage of this procedure, the parameters of the non-linear model of the actuator are identified. It is assumed that the measurements of the pressure signals p1, p2, the velocity ω, the input signal u and the position x are available; and the derivative of the torque signal {dot over (τ)} is computed by numerical differentiation. Define Y(p1p2,x,ω,u)=[−(p1−p2)P(x),−DpaP1(x),−D2P(x)ω, DQ(.)u] and θ=[β(c1+cel), βcel,β,βcp]T, then equation (4) can be expressed in standard linear regression form
{dot over (τ)}=Y(p1,p2,x,ω,u)θ (9)
The estimated parameter vector {circumflex over (θ)} is the solution to the following convex optimization problem
where ∥.∥p denotes signal p-norm.
However, in practice the noise caused by numerical differentiation of τ is not negligible. In order to analyze the effect of noise on the identification problem (10), let us denote e{dot over (τ)} as the noise introduced by numerical differentiation of τ and define
Also, define γ=[Y(to)T, Y(t1)T, . . . ,Y(tN)T]T. Let κ≧1 be the condition number of Y. Obviously, a large κ indicates that the regression matrix Y is close to singularity. If (10) is considered as a least squares problem (p=2), then it can be shown that for ε<k−1, we have
∥Y{tilde over (θ)}∥2≦2(1+κ)∥e{dot over (τ)}∥2+∥{dot over (τ)}∥2O(ε2) (11)
where {tilde over (θ)}=θ−{circumflex over (θ)}.
It is observed that the operator Δ enters as an additive uncertainty to the integrator system. Now, the main problem is to compute an upperbound for this operator. The proposed method consists of a new identification procedure as follows: Based on the estimated parameters {circumflex over (θ)}, the linearizing control law (8) is applied while input ν is considered as the excitation signal. Then, by using the measured values of τ and ν, we identify a linear discrete time model Ĝ and compute the minimum value of γ where ∥Δ∥1≦γ, such that the following uncertainty model structure
τ=(Ĝ+WΔ)ν+e (14)
is not in validated by the experimental data τ and ν.
It is evident from this inequality that the propagation of noise to the identification problem can be minimized when κ is close to one. Since Y is a function of input signal u, then κ obviously depends on the choice of u. This fact suggests that the input signal has an important role in achieving the minimum possible parametric error {tilde over (θ)}. From experimental point of view, if a set of feasible input signals is available for identification purpose, then one can choose the best input signal that minimizes κ
Unmodeled dynamics: On the other hand, there is always a part of the actuator dynamics that are not captured by the actuator torque dynamics equation (4); this part is referred to as unmodeled dynamics. According to an embodiment of the present invention, we represent the unmodeled dynamics by a perturbation signal d(p1,p2,x,ω,u,t). The unmodeled dynamics can be due to the servo-valve dynamics, hysteresis in the electromagnetic circuit that derives the valve operation, deadband in control valve, delay in the servo-valve, etc. Moreover, the actuator can be affected by any perturbation that is not a function of actuator states. As shown in
{dot over (τ)}=Y(p1,p2,x,ω,u)θ+d(p1,p2,x,ω,u,t)
which implies that if the identified parameters are used in the linearizing command law (8), the resulting dynamics will take the form
{dot over (τ)}−ν=Y(p1,p2,x,ω,u){tilde over (θ)}+d(p1,p2,x,ω,u,t) (12)
The first term in the RHS of (12) refers to the parametric uncertainty. Note that the perturbation d(p1, p2,x,ω,u,t) is only a function of the estimated parameters (through its dependence on u) and not a function of the parametric error {tilde over (θ)}. As a result, we consider d(.) as the non-parametric uncertainty. In the sequel we present two methods for representation of uncertainty. Clearly, there are many other representations that can deal with specific cases of parametric or nonparametric uncertainties. The choice of each representation depends on the nature of uncertainty as well as the available tools for solving the resulting identification problem. In general, uncertainty can be represented by linear fractional forms. However, the solution of the resulting model validation problem usually leads to non-convex optimizations that are not numerically tractable (e.g. when Δ∈H∞ one should solve a so-called μ problem)
Case A
Assume that both the parametric and non-parametric uncertainty terms are bounded and that they can be represented by
where Δ is a bounded non-linear operator with ∥Δ∥1≦γ where the I1 norm of an operator like Δ mapping the signal x to the signal y, is defined by
with ∥x∥∞=supt|x(t)|. Moreover, e (t) represents any perturbation that is not a function of system states. Consequently, equation (12) becomes
τ=(D−1+Δ)ν+e(t) (13)
where D−1 is the integration operator.
It is observed that the operator Δ enters as an additive uncertainty to the integrator system. Now, the main problem is to compute an upperbound for this operator. The proposed method consists of a new identification procedure as follows: Based on the estimated parameters {circumflex over (θ)}, the linearizing control law (8) is applied while input ν is considered as the excitation signal. Then,
* by using the measured values of τ and ν, we identify a linear discrete time model Ĝ and compute the minimum value of γ where ∥Δ∥1≦γ, such that the following uncertainty model structure
τ=(Ĝ+WΔ)ν+e (14)
is not invalidated by the experimental data τ and ν.
Here e represents sensor noise or any other external disturbance to the actuator dynamics that is independent of system states. This signal is assumed to be bounded by
∥e∥∞≦σ (15)
In literature, this type of identification scheme has been recognized as model validation-based identification and it is based on the model validation concept. In the uncertainty model structure (14), W is a known weighting transfer function and the model Ĝ represents the effect of integrator term in (13).
The main reason for using the l1 norm (or the induced l∞ to l∞ norm) for characterization of the uncertainty, is due to the fact that the uncertainty in the actuator dynamics has non-linear characteristic. Therefore, unlike many existing methods for bounding LTI uncertainties in H2 or H∞ topologies, herein we need to use an induced operator norm for characterizing the non-linear model uncertainty. Moreover, the advantage of using l1 norm over the other induced norms is that the resulting identification problem can be solved by a linear programming.
For model G in form of a rational transfer function Ĝ(q−1)=B(q−1)/A(q−1), where q−1 is a unit delay operator, the formulated identification problem is tantamount to solving a non-convex optimization problem. An iterative algorithm known in the art can then be used to solve the problem. Here it is assumed that the model Ĝ is expressed in terms of the orthonormal basis functions as
where Fk(q−1) is the k-th known orthonormal basis and {circumflex over (l)}ks are the parameters to be identified.
With this model description, the parameters appear linearly and the resulting optimization will be convex. The ongoing analysis shows that the stated identification problem can be solved via linear programming. Let {circumflex over (l)}=[{circumflex over (l)}0, . . . ,{circumflex over (l)}n]T be the vector of parameters and Tτ represent the first n columns of a lower triangular Toeplitz matrix constructed from [τ(0), . . . , τ(N)T]. Moreover,
Proposition 1 Suppose that N+1 samples of the experimental data ν and τ are available (νN and τN) and a bound on the noise signal e as (15) is available. Then the following linear programming problem identifies the parameters of the model Ĝ and computes the value of the smallest γ with ∥Δ∥1≦γ such that the model structure (1.4) is not invalidated by the given experimental data:
In the above optimization problem, the parameter vector {circumflex over (l)}, the noise vector eN and the scalar γ are the optimization variables and 1 is a vector of dimension N+1 with unit elements. Moreover, the k−th element of the vector function Eν=[Eν(0), . . . , Eν(N)]T is defined by
It is worthwhile to note that in the above proposition, the value of γ is an upperbound for the additive model uncertainty with respect to the given set of experimental data. Finding an upperbound for the additive modeling error for all possible experimental data, known in the literature as the so-called worst-case uncertainty bounding, has been the subject of many researches in the past several years, particularly for case of LTI uncertainties. However, the problem of computing a worst-case upperbound for non-linear uncertainties still remains an open issue.
Case B1: When Only β is Unknown and Load Dynamics is Stable
As mentioned previously, the model structure (14) is a special case for representing the uncertainty in actuator dynamics. To demonstrate another example, let us consider the case when the only source of parametric uncertainty is the error in bulk modulus coefficient β. This error indicates that the effect of velocity has not been perfectly eliminated by the linearizing controller. Applying the linearizing command signal u* with nominal {circumflex over (β)} implies that
{dot over (τ)}−ν={tilde over (β)}D2P(x)ω
Now let the mapping from τ+τext to ω to w be expressed by ω=(τ+τext) where τext represents any external torque and is an operator representing load dynamics. Define the uncertain block as Δ=D2P(x){tilde over (β)}, then
{dot over (τ)}=ν+Δτ+Δτext (20)
Note that Δ is still a non-linear operator due to the presence of P(x). As it can be seen from
Ĝτ=ν+ΔWτ+e (21)
where e e=ΔLτext represents the effect of external disturbance to actuator dynamics resulting from external torque τext. Obviously,
∥e∥∞≦∥Δ∥1∥L∥1∥τext∥∞=γ∥L∥1∥τext∥∞
Note that here Ĝ stands for the derivative operator (rather than integrator operator in model structure (14)). Moreover, we assume that a bound on both ∥L∥1 and ∥τext∥∞ are known. With the same argument as in proof of Proposition 1, one can show that the following linear programming problem solves the identification problem
Case B2: When Only β is Unknown and Load Dynamics are Unstable
Equation (20) can be written as
−1{dot over (τ)}=−1ν+Δτ+Δτext (22)
The following model structure is then proposed
Ĝ1τ=Ĝ2ν+Δτ+e (23)
where Ĝ1 represents a model for sL(s) and Ĝ2 is a model for L(s)−1. Obviously, Ĝ1 and Ĝ2 include load dynamics and hence, load dynamics is considered unknown. Similarly, e represents the term Δτext and it is bounded by ∥e∥∞≦∥Δ∥1∥τext ∥∞=γ∥τext∥∞.
The models Ĝ1 and Ĝ2 are parameterized as in (16) with parameter vectors {circumflex over (l)}1 and {circumflex over (l)}2, respectively. Therefore, given N+1 samples of ν, τ together with knowledge of ∥τext∥∞, the identification problem is to find {circumflex over (l)}1 and {circumflex over (l)}2 and minimum value of γ such that the model structure (23) is not invalidated by data. The following linear programming can be similarly shown to solve the identification problem
Remark 1 It is possible that the parametric and non-parametric uncertainties that are represented by Δ are time-varying. In other words, if θ varies with time then {tilde over (θ)} will be also time-dependent. All previous identification results are still valid in this case. However, it should be noted that when parameter variation is very significant (and assuming that the overall identification procedure is long enough to capture the variation of θ), the estimated bound for Δ can be large. This means that the robust external controller designed based on this large upperbound will be conservative. Apart from an adaptive approach, one way to resolve this problem is to repeat the identification-controller design in some time intervals. Clearly, these time intervals should be long enough to let the identification and controller design procedure be completed while, on the other hand, short enough to be capable of following parameter variations. Such a repetitive identification-robust control design has been used in literature for slow-varying systems. In our particular case the preferable minimum time interval turns to be about 2 minutes. However, our implicit assumption is that the actuator operates in steady state and parameters do not vary significantly.
External Optimal l1-H∞ Controller Design
The nominal model Ĝ together with the uncertainty upperbound γ can be used in a robust control strategy for designing the external linear discrete-time controller C that maps the torque error signal {tilde over (τ)} to the new input signal ν. In the sequel, we specify different robust stability and performance conditions for the entire closed-loop system according to three model structures (14), (21) and (23).
Case A
The nominal output sensitivity function can be defined as S=(1+{tilde over (G)}C)−1 and the nominal input sensitivity function can be defined as Su=CS. The additive uncertain structure (14) induces a robust stability condition on the nominal input sensitivity function
∥WSu∥1<γ−1 (24)
Moreover, in order to attenuate the effect of high frequency sensor noise on the input signal ν, and to limit the amplitude of the input signal ν, an H∞ constraint should be imposed on the input sensitivity function
For the feedback loop shown in
Since H2 and H∞ norm of any LTI system are bounded by its l1 norm, this performance objective obviously minimizes an upperbound for the H2 and H∞ norm of the output sensitivity function. This is a property that no optimal H2 or H∞ controller possesses. The minimization of ∥S∥1 also minimizes the effect of external disturbance e in τ, however one should note that due to the presence of non-linear operator Δ in model structure (14), a bounded disturbance can destabilize the system depending on initial conditions and nature of non-linearity. Therefore, one should keep in mind that the effect of external disturbance is minimized as long as initial conditions are sufficiently close to system equilibrium point.
Case B1
Given the model structure (21), the robust stability condition becomes
Recalling that W=L it becomes clear that for the loads with high flexibility, the frequency response of W(jω) is large in some resonant frequencies. Therefore, constraint (27) requires that the closed loop sensitivity function
be small in load resonance frequencies. This implies that when the effect of velocity is not perfectly eliminated by the linearizing controller, a limitation is imposed on the achievable performance through a robust stability constraint. This result is in accordance with known analysis describing the limitation effects of lightly damped modes of load on the achievable performance of force controllers. It is worthwhile to notice that these lightly damped modes affect the performance of our proposed controller only when the effect of velocity is not perfectly compensated. However, these modes limit the performance of typical PID force controllers even in absence of uncertainty in actuator dynamics, due to particular structure of these controllers.
In order to minimize the amplitude of tracking error, the same performance objective as in (26) can be considered herein. Note that here in definition of all sensitivity functions S,Su, one should replace Ĝ by Ĝ−1.
Case B2
Similar to case Δ and case B1, model structure (23), induces a robust stability constraint such as
on the external controller C. Note that since {tilde over (G)}1 represents sL(s) and L(s) is unstable, the transfer function
is non-minimum phase and this fact can impose some limitations on the achievable performance of torque controller.
Limit-Cycle
When the gain of external controller is high, a self exciting oscillation (limit-cycle) is observed in the generated torque.
If limit-cycle is considered to be caused only by load dynamics, its effect is injected into torque dynamics (4) through the velocity signal ω. The effect of velocity can then be perfectly compensated by the linearizing controller in absence of uncertainty and especially in absence of parametric error in bulk modulus β. However, when {tilde over (β)} is not zero, a constraint like (27) should be imposed to ensure robust stability with an acceptable level of oscillation attenuation. On the other hand, if limit-cycle originates from actuator dynamics, its effect can be represented by an uncertainty term as in model structure (14). A constraint like (24) can then ensure the stability robustness together with a level of performance. Another efficient way to attenuate the oscillations is to impose point-wise constraints on the input sensitivity function Su (as defined in case A) in the frequency ranges where the oscillations occur. These constraints aim to cancel out the effect of the main harmonics of the limit-cycle by preventing them to be injected into the system through ν. We describe these constraints by
|Su(jωκ)|≦δκ, for κ=1, . . . m (28)
In any case, the existence of limit-cycle obviously limits the achievable performance of the torque controller.
Synthesis
From a synthesis point of view, there are more constraints that should de imposed on the output sensitivity function S. For example, if the nominal model Ĝ has any unstable pole-zeros or pure delays, the complementary sensitivity function 1-S should also contain exactly the same dynamics in order to avoid any unstable pole-zero simplification between the controller and the model. These constraints are usually referred to as zero interpolation conditions, and they are transformed into LP constraints.
A synthesis procedure according to an embodiment of the present invention for designing the external controller C is based on the formulation of convex Linear Matrix Inequality (LMI) or Linear Programming (LP) constraints for each of the control design specifications (24)-(26). In general, these constraints are infinite-dimensional but in many cases they can be reduced to finite-dimensional optimization. For example, it is known that in SISO case, a pure l minimization in (26) has an Finite Impulse Response solution for S. Moreover, the minimization problem (26) together with (28) has typically an FIR solution for S. However, by imposing all the control specifications (24)-(25), the optimal solution for S can be no longer FIR. One way to check this property is to approximate all infinite-dimensional constraints by finite-dimensional ones via finitely many variables and finitely many equations methods. Here in our problem, we considered an FIR structure for the output sensitivity function S. The interpolation conditions as well as the control specifications (24) and (26) are consequently transformed into LP constraints. Furthermore, by the application of Bounded Real Lemma, the H∞ constraint (25) is transformed into an LMI constraint. Also, the point-wise constraints in (28) are transformed into an LMI by using methods known in the art.
Experimental Results
The experimental tests have been conducted on the pitch actuator of the Titan II Schilling industrial robot which is located at the robotics laboratory of the Canadian Space Agency. In a particular experimental result, the joint is driven by a vane type rotary hydraulic actuator that generates a nominal torque of 500 Nm at nominal supply pressure of 3000 Psi. The position angle of the actuator can vary between −90° to +90° and it is measured by a 16-bit encoder. The maximum velocity of the actuator is 192°/sec. The chamber pressure p1 and p2 are measured by two pressure transducers. All analog signals are sampled at 1 kHz.
Identification and Uncertainty Bounding
The parameters of the actuator non-linear model are estimated via a typical least-squares optimization (10) using 1000 time-domain data samples. The identified parameters ĉp, ĉ1+ĉel and {circumflex over (β)} of the non-linear model are shown in Table 1.
The identification procedure typically needs computation of {dot over (τ)} through numerical differentiation. In order to decrease noise amplification during differentiation, we decimated τ with a factor of 5 before differentiation. As discussed earlier, the choice of input signal u has a strong impact on the condition number of the regression matrix γ which in its turn can affect the parametric error. It is known that for persistently exciting input signals with wide frequency bandwidth, this condition number is close to one and consequently the parametric error is reduced. However, when such persistent input signals are applied in a hydraulic actuator they can cause sharp variation of torque signal τ, which can complicate the numerical differentiation of τ needed for identification purpose. So it seems that there is a compromise between the degree of persistency of input signal and the degree of difficulty in numerical differentiation of τ.
After identification of actuator parameters and in order to validate the non-linear model, we computed the estimated input signal û from equation (4) using the identified parameters and the measured signals {dot over (τ)},p1,p2,ω and x. The estimated input û was compared with the measured input signal u.
Ideally, the identified parameters, which are used to compute the feedback linearization control law (8), results in an integrator system mapping the new input ν to actuator torque τ. In practice, however, the mapping deviates from an integrator due to unmodeled dynamics. Using model structure (14) we identified the nominal model Ĝ, assuming W=1,
via the identification procedure described earlier. The frequency response of Ĝ is shown in
Optimal l1-H∞ Robust Control Design
The synthesis of C is based on models structure (14) and constraints presented in section 5.1. Since the l1 norm of the additive non-linear uncertainty is bounded by 0.16, we must have ∥Su∥1<0.16−1=6.25 to maintain robust stability. Moreover, in order to attenuate the effect of the noise on the new input signal ν, we specify high pass filter Wn as weighting function in constraint (25)
Note that in SISO case the constraint (25) is equivalent to bound |Su(jω)|by|Wn−1(jω)|
As discussed previously, the system may exhibit limit-cycle if high gain linear controller is used.
The controller synthesized based on all these design specifications is a 21th order discrete-time transfer function. The optimal controller gives an output sensitivity function with ∥S∥1=2.04 which implies that the amplitude of tracking error for any reference signal with ∥τref∥∞≦1 does not exceed 2.04.
Note that the complexity of external controller is a natural consequence of imposing several robust stability and performance constraints. For example, in case of pointwise constraints (28), the controller needs to include narrow-band behavior in two different frequencies and consequently its order becomes high. Moreover, unlike H∞ control, in l1 case, no direct relationship exists between the order of optimal controller and that of the model. This means that the order of optimal l1 controllers can be arbitrarily high regardless of model order. However, in H∞ or H2 case, the controller order is bounded by order of model and weighting functions.
From implementation point of view, since the resulting controller is designed in discrete-time domain, its implementation does not need any continuous-to-discrete transformation. Although in none of our experiments we had an implementation problem due to complexity of C, standard model-reduction techniques can be applied provided that the reduced order controller does not violate key stability and performance criteria.
Performance Evaluation
In order to demonstrate back-drivability (equivalently low sensitivity of the controlled actuator to velocity and external torque perturbations), we conducted an experiment in presence of two types of controllers.
During the experiment, the end-effector of the robot was moved by hand while controllers were regulating the torque of pitch actuator to zero. It is evident from the figures that the sensitivity of the control system to external torque disturbance is substantially reduced when the feedback linearization is used. Let us define backdrivability index of an actuator as the ratio of torque amplitude to velocity amplitude when τref≡0 and when actuator is subject to external torques
Obviously, for an ideal source of torque η=0. This index is also a measure of impedance of actuator. Without feedback linearization inner loop (a), the backdrivability index is 27 but for the proposed cascade controller (b), this quantity decreases to 7.9. Low sensitivity to external torque disturbance in case (b) implies that the hydraulic system is backdrivable and performance of torque controller is not much affected by load variations or external torques.
In many robotics applications such as contact force control, the hydraulic actuators motion is negligible. Therefore, the distortion caused by velocity in the generating torque is reduced. In order to check the performance of the designed controller in absence of velocity, we conducted the previous experiments when robot end-effector was locked.
Comparison of Step Response of System
In presence and in absence of velocity in
Conclusion
A novel combined scheme for identification and robust torque control of rotary hydraulic actuators has been presented. The feedback linearization loop has been used to linearize the actuator dynamics and to compensate for non-linear effect of velocity disturbance, while the outer l1-H∞ optimally loop has been implemented to ensure best degree of achievable robustness and performance for the system in the face of possible uncompensated non-linearities. The stability analysis of the internal dynamics provides some necessary results that could be considered in developing new methods for design of the torque controllers achieving global stability. The experimental results described herein illustrate the implementability and efficiency of the proposed combined scheme.
As will be understood by those of skill in the art, the methods of design, methods and systems relating to torque/force controller embodiments of the present invention can be generally embodied as software residing on a general purpose, or other suitable, computer having a modem or internet connection to a desired optical network. The application software embodying methods of design, methods and/or systems relating to torque/force controller embodiments of the present invention can be provided on any suitable computer-useable medium for execution by the computer, such as CD-ROM, hard disk, read-only memory, or random access memory, or as part of any carrier signal or carrier wave. In a presently preferred embodiment, the application software is written in a suitable programming language, such as C++ or Matlab/Simulink, and is organized, as described above, into a plurality of modules or elements that perform the method steps described. The methods could be implemented in a digital signal processor (DSP) or other similar hardware-related implementation. When reference is made to a means for performing steps of methods according to an embodiment of the present invention, such means are to be understood to include computer-readable means as described above.
Therefore, according to an aspect as described above, the present invention provides a computer-readable storage medium, comprising computer instructions for: calculating a linearizing control law based on identified parameters of an actuator non-linear model; determining an uncertainty model for the actuator, the uncertainty model including a non-linear component; estimating an uncertainty bound based on the identified parameters; and designing an external linear controller based on the calculated linearizing control law, the determined uncertainty model, and the estimated uncertainty bound.
Although embodiments of the present invention have primarily been described in conjunction with a torque/force controller, it is to be understood that such a controller can be provided separately, or can be provided integrally with an actuator. For instance, a manufacturer or reseller of hydraulic actuators could include a torque/force controller according to an embodiment of the present invention integral with the hydraulic actuator. As such, in an aspect, there is provided a hydraulic actuator, comprising a controller according to embodiments of the present invention. In another aspect, there is provided a hydraulic actuator comprising a computer-readable storage medium, comprising statements and instructions which, when executed, cause a computer (or a processor in data communication with the actuator) to perform a method according to embodiments of the present invention.
Embodiments of the present invention can find application in association with hydraulic actuators used in many applications. For instance, they are widely used to drive robotic manipulators in industry for earth moving, material handling, and in the areas of construction, forestry and manufacturing automation. Other applications include high power industrial machinery such as machine tools, aircraft, material handling, construction, mining, and agricultural equipment. Robotic uses include assembly tasks, mobile robots, and robotic applications in space, for example with Special Purpose Dexterous Manipulators (SPDMs) such as the Canadarm™. General engineering applications include vibration isolation and automobile active suspension. Military applications also exist in aerospace, aviation, submarines and maritime applications.
The above-described embodiments of the present invention are intended to be examples only. Alterations, modifications and variations may be effected to the particular embodiments by those of skill in the art without departing from the scope of the invention, which is defined solely by the claims appended hereto.
This application claims the benefit of priority of U.S. Provisional Patent Application No. 60/631,990 filed Dec. 1, 2004, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4647004 | Bihlmaier | Mar 1987 | A |
5209661 | Hildreth et al. | May 1993 | A |
5953977 | Krishna et al. | Sep 1999 | A |
6084371 | Kress et al. | Jul 2000 | A |
6212466 | Ulyanov et al. | Apr 2001 | B1 |
6904422 | Calise et al. | Jun 2005 | B2 |
6968241 | Vonnoe et al. | Nov 2005 | B2 |
7277764 | Hovakimyan et al. | Oct 2007 | B2 |
Number | Date | Country | |
---|---|---|---|
20060116783 A1 | Jun 2006 | US |
Number | Date | Country | |
---|---|---|---|
60631990 | Dec 2004 | US |