The invention pertains to digital data processing and, more particularly, by way of example, to the transferring of data between a client and a server and has application to areas including medical imaging, atmospheric studies, astrophysics, microscopy, spectroscopy, satellite imaging and geophysics.
Many computer applications today demand high network bandwidth over the internet. Good examples are systems that download large amount of data such as files, music or videos. Most of the internet traffic today is carried out via the Transmission Control Protocol (TCP). The main advantage of TCP is that it provides reliable data transfer to the application layer. The application does not have to deal with lost data packets, corrupted data packets, or out-of-order arrival of packets. All types of error detection and retransmission algorithms are already implemented in the TCP protocol. Also, sophisticated methods for congestion avoidance and flow control have been added to the TCP protocol. Most of these methods are intended to optimize bandwidth, i.e., data throughput, over a network.
Maximized data throughput usually comes at the price of increased latency. For example, a common technique is to not send out small pieces of data immediately but to wait until more data is available, so that larger packets can be sent then (e.g. Nagle algorithm). This increases bandwidth but also introduces extra delay. Another approach is to send out large amounts of data before getting an acknowledgement by the receiver. This also increases bandwidth but at the same time may increase the time a data packet is in transfer.
For many applications maximum bandwidth is by far the most important criterion. Increased latency is often not a problem. This is not true for applications like voice over Internet Protocol (IP) or teleconferencing. Here low response times, i.e. low latency, are crucial. These applications usually disable the Nagle algorithm or do not use TCP at all. Often bandwidth requirements are not that high for such applications.
Another class of applications requires both high bandwidth and low latency. This is true for example for a client-server based medical image viewer. Such a system needs to display large amounts of image data which are streamed from the server to the client. Often it is advisable to send images before they are requested by the client such as in traditional streaming applications. For example, if a doctor looks at the first image of a 3D image series then it is likely that she will also look at the second image soon. But if the doctor proceeds, some images that are scheduled for later streaming suddenly have to be transferred immediately, or images have to be rendered on the server and then displayed on the client as soon as possible. Thus it is important that the server stays always responsive and that new data can be sent as quickly as possible to the client based on current user interaction.
A general aspect of network based applications is that often not all parameters of the network are known, or can be influenced by the application. For example routers or other network devices between the endpoints may introduce latencies and buffers that are not application controlled. Often the network has to be regarded a black box.
In an embodiment of the present invention, a client-server based medical image viewing system that sends data over a standard TCP connection in such a way that high data throughput is achieved without impacting responsiveness. Special timestamp messages inserted into the data stream allow the system to detect situations where network latency increases noticeably and to obtain a reliable estimate of sustained transfer bandwidth. In an embodiment of the present invention, the system applies a feedback scheme that avoids network delays by limiting send bandwidth. In various embodiments of the present invention, other parameters, in particular image compression settings, can be dynamically adjusted depending on current network latency.
The transitional term “comprising” is synonymous with “including,” “containing,” or “characterized by,” is inclusive or open-ended and does not exclude additional, unrecited elements or method steps.
The transitional phrase “consisting of” excludes any element, step, or ingredient not specified in the claim, but does not exclude additional components or steps that are unrelated to the invention such as impurities ordinarily associated with a composition.
The transitional phrase “consisting essentially of” limits the scope of a claim to the specified materials or steps and those that do not materially affect the basic and novel characteristic(s) of the claimed invention.
The term “bandwidth” and “send bandwidth” refer to various bit-rate measures, representing the available or consumed data communication resources expressed in bits per second or multiples of it.
The term “adaptive bandwidth management” means methods that continuously adjust the amount of data that is sent into a network per time in order to avoid or reduce network congestion and transfer delay.
The term “buffer” or “network buffer” refers to a temporary storage area acting as a holding area, enabling the computer or network to manipulate data before transferring it to a device.
The term “client-server” refers to a computer system that selectively shares its resources; a client is a computer or computer program that initiates contact with a server in order to make use of a resource. This sharing of computer resources allows multiple people to use a computer server at the same time. Because a computer does a limited amount of work at any moment, a time-sharing system must quickly prioritize its tasks to accommodate the clients. Clients and servers exchange messages in a request-response messaging pattern: The client sends a request, and the server returns a response.
The term “application layer” or “application-level protocol” refers to the communications between computers. To communicate, the computers must have a common language, and they must follow rules so that both the client and the server know what to expect. The language and rules of communication are defined in a communications protocol. All client-server protocols operate in the application layer.
The term “lossy compression” refers to a data encoding method that compresses data by discarding or losing some of it. The procedure aims to minimize the amount of data that needs to be held, handled, and/or transmitted by a computer.
The term “network latency” can be measured either ‘one-way’ as the time taken for the source to send a packet to a destination or ‘round-trip’ from the one-way latency from source to destination plus the one-way latency from the destination back to the source.
The term “pseudo code” is an informal high-level description of the operating principle of a computer program or other algorithm.
The term “timestamp message” refers to a message that contains an indication of a point in time on either the server or the client, or the difference between two such points in time. Timestamp messages may be exchanged between client and server in both directions.
The term “Transmission Control Protocol” or TCP includes using a “congestion window” to determine how many packets can be sent at one time. The larger the congestion window size, the higher the throughput. The TCP “slow start” and “congestion avoidance” algorithms determine the size of the congestion window. The maximum congestion window is related to the amount of buffer space that the kernel allocates for each socket.
In the following description, various aspects of the present invention will be described. However, it will be apparent to those skilled in the art that the present invention may be practiced with only some or all aspects of the present invention. For purposes of explanation, specific numbers, materials, and configurations are set forth in order to provide a thorough understanding of the present invention. However, it will be apparent to one skilled in the art that the present invention may be practiced without the specific details. In other instances, well-known features are omitted or simplified in order not to obscure the present invention.
Parts of the description will be presented in data processing terms, such as data, selection, retrieval, generation, and so forth, consistent with the manner commonly employed by those skilled in the art to convey the substance of their work to others skilled in the art. As is well understood by those skilled in the art, these quantities (data, selection, retrieval, generation) take the form of electrical, magnetic, or optical signals capable of being stored, transferred, combined, and otherwise manipulated through electrical, optical, and/or biological components of a processor and its subsystems.
Various operations will be described as multiple discrete steps in turn, in a manner that is most helpful in understanding the present invention; however, the order of description should not be construed as to imply that these operations are necessarily order dependent.
Various embodiments will be illustrated in terms of exemplary classes and/or objects in an object-oriented programming paradigm. It will be apparent to one skilled in the art that the present invention can be practiced using any number of different classes/objects, not merely those included here for illustrative purposes. Furthermore, it will also be apparent that the present invention is not limited to any particular software programming language or programming paradigm.
The invention is illustrated by way of example and not by way of limitation in the figures of the accompanying drawings in which like references indicate similar elements. It should be noted that references to ‘an’ or ‘one’ embodiment in this disclosure are not necessarily to the same embodiment, and such references mean at least one.
A render server program is described in U.S. application Ser. No. 13/831,967, entitled “Multi-User Mult-GPU Render Server Apparatus and Methods”, inventors M. Westerhoff et al, which was filed Mar. 15, 2013, is herein expressly incorporated by reference in its entirety. A rule based render server program is described in U.S. application Ser. No. 13/831,975, entitled “Method and System for Rule-Based Display of Sets of Images”, inventors M. Westerhoff et al, which was filed Mar. 15, 2013, is herein expressly incorporated by reference in its entirety.
In one embodiment of the present invention, a client-server based medical image viewing system uses the TCP protocol for data transfer, but at the same time avoids network congestion and thus achieves both high data throughput and low latency. The system is non-intrusive in that it does not change the TCP implementation and does not make use of special network drivers. Instead, the transport layer is considered as a black box and only the actual performance of the network is monitored. Based on the monitoring results different actions are taken by the application itself in order to cope with the current network quality.
Water Pipe Model
The following analogy helps to illustrate an embodiment of the present invention. Assume that a network behaves like a system of water pipes of different cross-sections. Somewhere inside the system there are “water barrels” or network buffers that can fill up as shown in
In order to keep the server responsive it is important to prevent the network buffers 100 from filling up 110 as depicted in
Detecting Latency Increase
In an embodiment of the present invention, the system uses its own message-based protocol that is transported over a TCP connection. In this embodiment, all benefits of TCP are retained for ease of use and reliability. Small timestamp messages are sent from the server to the client and back from the client to the server.
A timestamp message that the server sends to the client only contains the time ‘t’ in milliseconds since the server was started. In addition, the server stores the timestamp message in a First In, First Out (FIFO) queue. Together with the message the server also stores the total number of bytes ‘c’ that were sent to the client up to that point in time, as well as the current send bandwidth bsend in bytes/sec.
In an embodiment of the present invention, every timestamp message that arrives at the client is immediately sent back to the server. In an embodiment of the present invention, the order of messages is preserved. In an embodiment of the present invention, messages that are sent back to the server contain the difference ‘d’ between the client time (measured in milliseconds since client was started) and the server time ‘t’ that was contained in the incoming timestamp message. In an embodiment of the present invention, it is not required that clocks on server and client are synchronized, i.e., that both clocks were started at the same time.
In an embodiment of the present invention, the smallest value dmin that occurs in any of the timestamp messages that arrive back at the server defines a baseline for detecting increased latency. Without synchronized clocks it is difficult if not impossible to determine how long it really takes for a message to pass from the server to the client. However, it is possible to determine how much more travel time was needed for an arbitrary message compared to the fastest message. This increase of travel time or delay is given by e=d−dmin. If ‘e’ increases significantly it is apparent that network buffers are filling up and that send bandwidth must be reduced.
Estimating Bandwidth
In an embodiment of the present invention, a key requirement for the system to be able to choose a reasonable send bandwidth and to adjust other application settings to network quality is a reliable estimate of sustained transfer bandwidth. An estimate is computed as follows:
If a timestamp message arrives back at the server, it is taken out of the FIFO queue. The time that was spent on the client between receiving the last two timestamp messages is given by:
T=ti−ti-1+di−di-1
The amount of data C that was read in that time is given by the number of bytes that were sent between the last two timestamp messages:
C=ci−ci-1
From these quantities the read bandwidth at the client is determined as:
bread=C/T.
In an embodiment of the present invention, if send bandwidth bsend is significantly larger than read bandwidth bread (e.g. by more than 30%) we assume that the network is saturated and that bread is a good estimate of transfer bandwidth. In an embodiment of the present invention, a running average is computed of multiple (e.g. 10) such bread samples in order to obtain a best estimate best of transfer bandwidth. In an unexpected result, in order to quickly get reliable results, especially shortly after the client was started and the network is not yet saturated, it turned out to be beneficial to also include bread samples into the running average if they are significantly larger than the current best estimate (e.g. by more than 40%). Further, in an embodiment of the present invention, outliers can be discarded by clamping bread so that it does not exceed twice the current best estimate best.
Limiting Send Bandwidth
In an embodiment of the present invention, a good estimate best of sustained transfer bandwidth allows the transfer to be slowed in case latency increases noticeably. In an embodiment of the present invention, send bandwidth is limited if the delay ‘e’ exceeds a certain threshold emax. In an embodiment of the present invention, send bandwidth is limited when e is greater than approximately 40 msec. In an alternative embodiment of the present invention, send bandwidth is limited when e is greater than approximately 50 msec. When calculating ‘e’ approximately refers to plus or minus twenty percent. In an embodiment of the present invention, a bandwidth limit blimit of approximately sixty (60) percent of best is enforced when ‘e’ exceeds emax. In an alternative embodiment of the present invention, a bandwidth limit blimit of approximately seventy (70) percent of best is enforced when ‘e’ exceeds emax. When calculating ‘b’ approximately refers to plus or minus twenty percent. In an embodiment of the present invention, if delay ‘e’ later drops below emax, the bandwidth limit is gradually lifted again by incrementing the current limit by a value that is increased if extra latency is reduced.
In various embodiments of the present invention, extra safeguards can be incorporated into the scheme in order to make it more robust against measurement errors and noise. In an embodiment of the present invention, bandwidth is not reduced if there are less than 10 KB of data in the line. In an embodiment of the present invention, the number of bytes in the line can be estimated by c−ci, where c is the current total number of bytes that were sent to the client up to that point in time and ci is the total number of bytes that were sent to the client at the time the current timestamp message was sent. In an embodiment of the present invention, if a bandwidth limit is already active it is never reduced by more than 50%.
The resulting feedback scheme leads to a transmission rate on the server side that constantly oscillates around the estimated sustained transfer bandwidth best. Usually oscillation frequency is higher if the total latency between server and client is lower. This is because timestamp messages return earlier at the server, and thus the server can adjust transmission rate more quickly. On higher latency connections oscillation frequency is lower, and amplitude of latency oscillation is greater. In various embodiments of the present invention, the overall behavior of the feedback scheme can be tuned by varying the different parameters. In practice, the values stated above turned out to work very well for different kinds of networks ranging from metropolitan area networks, domestic connections, and intercontinental lines.
Feedback Scheme Pseudo Code:
Adjusting Compression Settings and Buffering
In an embodiment of the present invention, the server always stays responsive by limiting send bandwidth. In an embodiment of the present invention, if a large number of data files (e.g., images) are queued for transfer on the server, when the client requests a large data file (e.g., a new image) or some other information be delivered instantly, then this new data can be sent without significant extra delay as seen in
In an embodiment of the present invention, a good estimate of transfer bandwidth also allows the application to dynamically adjust other settings to current network quality, like image compression settings. If network bandwidth is poor, the application can react to that occurrence. For a single-stream application, such as streaming a single video or audio channel, the compression ratio can simply be adjusted such that the resulting bandwidth is slightly under the available bandwidth, which combined with buffering yields the desired result.
In another embodiment of the present invention, in an interactive visualization application, adjustable lossy compression can be applied in a similar manner in order to achieve smooth interaction. Image quality might be degraded, but images can still be displayed very quickly. Higher quality versions of the images can be resent later and the view can be refined. It is not obvious though, how buffering can be applied, because the interaction is not known ahead of time.
An example for such an application is a client server system to display medical image studies. Medical image studies can consist of multiple images that can be organized in multiple series. It is desirable to be able to view these images in a multi-viewport layout on the client computer. As the user looks at a series of images, the user will interact with the images, e.g., scrolling, rotating panning or zooming. It is not known in advance, in which direction a user will scroll, or if multiple image series exist, which of these the user will look at first. The same is true for any other interaction with the scene, such as rotation of a 3D volume rendering.
Another embodiment of the present invention monitors the current user interaction and allows the application to anticipate the next views to be streamed. These views are then streamed to the client and buffered, so that they can be displayed without delay.
For example if a user looks at and interacts with a viewport displaying one image series (“Current Series”), images from that series will more likely be displayed next than images from other series. Thus these images will be streamed to a buffer on the client side first. The order is determined by the distance of images to the currently displayed image in the sorting order of the series: The closest image will be streamed first. The same concept applies to other types of displays and other types of interaction. For example if a 3D volume rendered view of a data set is shown and the user currently rotates the model about e.g. the X-axis, then from the current view, the next views can be anticipated and pre-streamed and buffered locally.
In another embodiment of the present invention, if the user stops rotating, then some views that may have been buffered already may need to be discarded from the buffer, but that is typically a small number compared to the whole sequence. In order to use these techniques in interactive applications, a high-degree of responsiveness is required to avoid lags when the user decides to change e.g. scrolling or rotation direction or starts interacting with another view port. This responsiveness is achieved by the adaptive bandwidth management as described above.
While the present invention has been described in some detail for purposes of clarity and understanding, one skilled in the art will appreciate that various changes in form and detail can be made without departing from the true scope of the invention. All figures, tables, and appendices, as well as patents, applications, and publications, referred to above, are hereby incorporated by reference.
Aspects of the Invention
In an embodiment of the invention, a method of identifying network latency comprising the steps of sending a request for image data from a client computer, including inserting a first timestamp message into the request for image data at an application level, transferring the request and the first timestamp message to a server using a standard Transmission Communications Protocol (TCP) connection, receiving the first timestamp message at the server, calculating a first time for the first timestamp message to be sent from the client computer to the server, sending one or more second timestamp messages from the server to the client computer, returning the one or more second timestamp messages from the client computer to the server, receiving the one or more second timestamp messages from the client computer at the server, calculating a second time and subsequent times taken for the one or more second timestamp messages to be sent from the client computer to the server, calculating an estimate of current network bandwidth based on one or more of the first time, the second time and the subsequent times and using the estimate of current network bandwidth to determine network latency.
In an embodiment of the invention, a method of identifying network latency comprising the steps of sending a request for image data from a client computer, including inserting a first timestamp message into the request for image data at an application level, transferring the request and the first timestamp message to a server using a standard Transmission Communications Protocol (TCP) connection, receiving the first timestamp message at the server, calculating a first time for the first timestamp message to be sent from the client computer to the server, sending one or more second timestamp messages from the server to the client computer, returning the one or more second timestamp messages from the client computer to the server, receiving the one or more second timestamp messages from the client computer at the server, calculating a second time and subsequent times taken for the one or more second timestamp messages to be sent from the client computer to the server, calculating an estimate of current network bandwidth based on one or more of the first time, the second time and the subsequent times and using the estimate of current network bandwidth to determine network latency, where the estimate of current network bandwidth is calculated from a difference between the first time and the second time or the second time and the subsequent times.
In an embodiment of the invention, a method of identifying network latency comprising the steps of sending a request for image data from a client computer, including inserting a first timestamp message into the request for image data at an application level, transferring the request and the first timestamp message to a server using a standard Transmission Communications Protocol (TCP) connection, receiving the first timestamp message at the server, calculating a first time for the first timestamp message to be sent from the client computer to the server, sending one or more second timestamp messages from the server to the client computer, returning the one or more second timestamp messages from the client computer to the server, receiving the one or more second timestamp messages from the client computer at the server, calculating a second time and subsequent times taken for the one or more second timestamp messages to be sent from the client computer to the server, calculating an estimate of current network bandwidth based on one or more of the first time, the second time and the subsequent times and using the estimate of current network bandwidth to determine network latency, where the estimate of current network bandwidth is compared with a minimum network bandwidth.
In an embodiment of the invention, a method of identifying network latency comprising the steps of sending a request for image data from a client computer, including inserting a first timestamp message into the request for image data at an application level, transferring the request and the first timestamp message to a server using a standard Transmission Communications Protocol (TCP) connection, receiving the first timestamp message at the server, calculating a first time for the first timestamp message to be sent from the client computer to the server, sending one or more second timestamp messages from the server to the client computer, returning the one or more second timestamp messages from the client computer to the server, receiving the one or more second timestamp messages from the client computer at the server, calculating a second time and subsequent times taken for the one or more second timestamp messages to be sent from the client computer to the server, calculating an estimate of current network bandwidth based on one or more of the first time, the second time and the subsequent times and using the estimate of current network bandwidth to determine network latency, where the estimate of current network bandwidth is compared with a minimum network bandwidth, further comprising refining the estimate of current network bandwidth based on a comparison.
In an embodiment of the invention, a method of identifying network latency comprising the steps of sending a request for image data from a client computer, including inserting a first timestamp message into the request for image data at an application level, transferring the request and the first timestamp message to a server using a standard Transmission Communications Protocol (TCP) connection, receiving the first timestamp message at the server, calculating a first time for the first timestamp message to be sent from the client computer to the server, sending one or more second timestamp messages from the server to the client computer, returning the one or more second timestamp messages from the client computer to the server, receiving the one or more second timestamp messages from the client computer at the server, calculating a second time and subsequent times taken for the one or more second timestamp messages to be sent from the client computer to the server, calculating an estimate of current network bandwidth based on one or more of the first time, the second time and the subsequent times and using the estimate of current network bandwidth to determine network latency, where information related to one or more of the first timestamp message and the one or more second timestamp messages is not included in the first timestamp message, where the information is stored in a first in first out queue, so that the information can be evaluated when the first timestamp message arrives back at the server.
In an embodiment of the invention, a method of identifying network latency comprising the steps of sending a request for image data from a client computer, including inserting a first timestamp message into the request for image data at an application level, transferring the request and the first timestamp message to a server using a standard Transmission Communications Protocol (TCP) connection, receiving the first timestamp message at the server, calculating a first time for the first timestamp message to be sent from the client computer to the server, sending one or more second timestamp messages from the server to the client computer, returning the one or more second timestamp messages from the client computer to the server, receiving the one or more second timestamp messages from the client computer at the server, calculating a second time and subsequent times taken for the one or more second timestamp messages to be sent from the client computer to the server, calculating an estimate of current network bandwidth based on one or more of the first time, the second time and the subsequent times and using the estimate of current network bandwidth to determine network latency, where one or more of the first timestamp message and the one or more second timestamp messages are used to compute read bandwidth (C/T), where C=ci−ci-1, where C is an amount of data C that was read in a time between a last two timestamp messages (ci, ci-1), and T=ti−ti-1+di−di-1, where di and di-1 are client time and ti−ti-1 are server time in a last two incoming timestamp messages.
In an embodiment of the invention, a method of identifying network latency comprising the steps of sending a request for image data from a client computer, including inserting a first timestamp message into the request for image data at an application level, transferring the request and the first timestamp message to a server using a standard Transmission Communications Protocol (TCP) connection, receiving the first timestamp message at the server, calculating a first time for the first timestamp message to be sent from the client computer to the server, sending one or more second timestamp messages from the server to the client computer, returning the one or more second timestamp messages from the client computer to the server, receiving the one or more second timestamp messages from the client computer at the server, calculating a second time and subsequent times taken for the one or more second timestamp messages to be sent from the client computer to the server, calculating an estimate of current network bandwidth based on one or more of the first time, the second time and the subsequent times and using the estimate of current network bandwidth to determine network latency, where one or more of the first timestamp message and the one or more second timestamp messages are used to compute read bandwidth (C/T), where C=ci−ci-1, where C is an amount of data C that was read in a time between a last two timestamp messages (ci, ci-1), and T=ti−ti-1+di−di-1, where di and di-1 are client time and ti−ti-1 are server time in a last two incoming timestamp messages, further comprising determining a running average, where samples of read bandwidth are combined into the running average.
In an embodiment of the invention, a method of identifying network latency comprising the steps of sending a request for image data from a client computer, including inserting a first timestamp message into the request for image data at an application level, transferring the request and the first timestamp message to a server using a standard Transmission Communications Protocol (TCP) connection, receiving the first timestamp message at the server, calculating a first time for the first timestamp message to be sent from the client computer to the server, sending one or more second timestamp messages from the server to the client computer, returning the one or more second timestamp messages from the client computer to the server, receiving the one or more second timestamp messages from the client computer at the server, calculating a second time and subsequent times taken for the one or more second timestamp messages to be sent from the client computer to the server, calculating an estimate of current network bandwidth based on one or more of the first time, the second time and the subsequent times and using the estimate of current network bandwidth to determine network latency, where one or more of the first timestamp message and the one or more second timestamp messages are used to compute read bandwidth (C/T), where C=ci−ci-1, where C is an amount of data C that was read in a time between a last two timestamp messages (ci, ci-1), and T=ti−ti-1+di−di-1, where di and are client time and ti−ti-1 are server time in a last two incoming timestamp messages, further comprising determining a running average, where samples of read bandwidth are combined into the running average, where samples are excluded from the running average when send bandwidth is less than between a lower limit of approximately 20 percent of read bandwidth and an upper limit of approximately 40 percent of read bandwidth.
In an alternative embodiment of the present invention, a method of minimizing network latency comprises the steps of sending a request for image data from a client computer, including inserting one or more first timestamp messages into the request for image data at an application level, transferring the request and the one or more first timestamp messages to a server using a standard Transmission Communications Protocol (TCP) connection, receiving the one or more first timestamp messages at the server, calculating a first time for the one or more first timestamp messages sent from the client computer to the server, sending one or more second timestamp messages from the server to the client computer, sending the one or more second timestamp messages from the client computer to the server, receiving the one or more second timestamp messages from the client computer at the server, calculating a second time and subsequent times taken for the one or more second timestamp messages to be sent from the client computer to the server, calculating an estimate of current network bandwidth based on one or more of the first time, the second time and the subsequent times, determining situations where network latency will otherwise increase due to congestion and using the estimate of current network bandwidth to one or both reduce and modify client computer requests to minimize network latency.
In an alternative embodiment of the present invention, a method of minimizing network latency comprises the steps of sending a request for image data from a client computer, including inserting one or more first timestamp messages into the request for image data at an application level, transferring the request and the one or more first timestamp messages to a server using a standard Transmission Communications Protocol (TCP) connection, receiving the one or more first timestamp messages at the server, calculating a first time for the one or more first timestamp messages sent from the client computer to the server, sending one or more second timestamp messages from the server to the client computer, sending the one or more second timestamp messages from the client computer to the server, receiving the one or more second timestamp messages from the client computer at the server, calculating a second time and subsequent times taken for the one or more second timestamp messages to be sent from the client computer to the server, calculating an estimate of current network bandwidth based on one or more of the first time, the second time and the subsequent times, determining situations where network latency will otherwise increase due to congestion and using the estimate of current network bandwidth to one or both reduce and modify client computer requests to minimize network latency, where the estimate of current network bandwidth is calculated from a difference between the first time and the second time or the second time and the subsequent times.
In an alternative embodiment of the present invention, a method of minimizing network latency comprises the steps of sending a request for image data from a client computer, including inserting one or more first timestamp messages into the request for image data at an application level, transferring the request and the one or more first timestamp messages to a server using a standard Transmission Communications Protocol (TCP) connection, receiving the one or more first timestamp messages at the server, calculating a first time for the one or more first timestamp messages sent from the client computer to the server, sending one or more second timestamp messages from the server to the client computer, sending the one or more second timestamp messages from the client computer to the server, receiving the one or more second timestamp messages from the client computer at the server, calculating a second time and subsequent times taken for the one or more second timestamp messages to be sent from the client computer to the server, calculating an estimate of current network bandwidth based on one or more of the first time, the second time and the subsequent times, determining situations where network latency will otherwise increase due to congestion and using the estimate of current network bandwidth to one or both reduce and modify client computer requests to minimize network latency, where the estimate of current network bandwidth is compared with a minimum network bandwidth.
In an alternative embodiment of the present invention, a method of minimizing network latency comprises the steps of sending a request for image data from a client computer, including inserting one or more first timestamp messages into the request for image data at an application level, transferring the request and the one or more first timestamp messages to a server using a standard Transmission Communications Protocol (TCP) connection, receiving the one or more first timestamp messages at the server, calculating a first time for the one or more first timestamp messages sent from the client computer to the server, sending one or more second timestamp messages from the server to the client computer, sending the one or more second timestamp messages from the client computer to the server, receiving the one or more second timestamp messages from the client computer at the server, calculating a second time and subsequent times taken for the one or more second timestamp messages to be sent from the client computer to the server, calculating an estimate of current network bandwidth based on one or more of the first time, the second time and the subsequent times, determining situations where network latency will otherwise increase due to congestion and using the estimate of current network bandwidth to one or both reduce and modify client computer requests to minimize network latency, where the estimate of current network bandwidth is compared with a minimum network bandwidth, further comprising refining the estimate of current network bandwidth based on a comparison between times.
In an alternative embodiment of the present invention, a method of minimizing network latency comprises the steps of sending a request for image data from a client computer, including inserting one or more first timestamp messages into the request for image data at an application level, transferring the request and the one or more first timestamp messages to a server using a standard Transmission Communications Protocol (TCP) connection, receiving the one or more first timestamp messages at the server, calculating a first time for the one or more first timestamp messages sent from the client computer to the server, sending one or more second timestamp messages from the server to the client computer, sending the one or more second timestamp messages from the client computer to the server, receiving the one or more second timestamp messages from the client computer at the server, calculating a second time and subsequent times taken for the one or more second timestamp messages to be sent from the client computer to the server, calculating an estimate of current network bandwidth based on one or more of the first time, the second time and the subsequent times, determining situations where network latency will otherwise increase due to congestion and using the estimate of current network bandwidth to one or both reduce and modify client computer requests to minimize network latency, where information related to one or both the one or more first timestamp messages and the one or more second timestamp messages is not included in the one or more first timestamp messages and the one or more second timestamp messages, where the information is stored in a first in first out queue, so that the information can be evaluated when the one or more first timestamp messages and the one or more second timestamp messages arrives back at the server.
In an alternative embodiment of the present invention, a method of minimizing network latency comprises the steps of sending a request for image data from a client computer, including inserting one or more first timestamp messages into the request for image data at an application level, transferring the request and the one or more first timestamp messages to a server using a standard Transmission Communications Protocol (TCP) connection, receiving the one or more first timestamp messages at the server, calculating a first time for the one or more first timestamp messages sent from the client computer to the server, sending one or more second timestamp messages from the server to the client computer, sending the one or more second timestamp messages from the client computer to the server, receiving the one or more second timestamp messages from the client computer at the server, calculating a second time and subsequent times taken for the one or more second timestamp messages to be sent from the client computer to the server, calculating an estimate of current network bandwidth based on one or more of the first time, the second time and the subsequent times, determining situations where network latency will otherwise increase due to congestion and using the estimate of current network bandwidth to one or both reduce and modify client computer requests to minimize network latency, where information related to one or both the one or more first timestamp messages and the one or more second timestamp messages is not included in the one or more first timestamp messages and the one or more second timestamp messages, where the information is stored in a first in first out queue, so that the information can be evaluated when the one or more first timestamp messages and the one or more second timestamp messages arrives back at the server, where one or both the one or more first timestamp messages and the one or more second timestamp messages are used to compute read bandwidth (C/T), where C=ci−ci-1, where C is an amount of data C that was read in a time between a last two timestamp messages (ci, ci-1), and T=ti−ti-1+di−di-1 is the time elapsed on the client computer between the last two timestamp messages, where ti−ti-1 is the time elapsed on the server between the last two timestamp messages, and di and di-1 are differences between client computer time and server time when the messages arrived at the client computer.
In an alternative embodiment of the present invention, a method of minimizing network latency comprises the steps of sending a request for image data from a client computer, including inserting one or more first timestamp messages into the request for image data at an application level, transferring the request and the one or more first timestamp messages to a server using a standard Transmission Communications Protocol (TCP) connection, receiving the one or more first timestamp messages at the server, calculating a first time for the one or more first timestamp messages sent from the client computer to the server, sending one or more second timestamp messages from the server to the client computer, sending the one or more second timestamp messages from the client computer to the server, receiving the one or more second timestamp messages from the client computer at the server, calculating a second time and subsequent times taken for the one or more second timestamp messages to be sent from the client computer to the server, calculating an estimate of current network bandwidth based on one or more of the first time, the second time and the subsequent times, determining situations where network latency will otherwise increase due to congestion and using the estimate of current network bandwidth to one or both reduce and modify client computer requests to minimize network latency, where information related to one or both the one or more first timestamp messages and the one or more second timestamp messages is not included in the one or more first timestamp messages and the one or more second timestamp messages, where the information is stored in a first in first out queue, so that the information can be evaluated when the one or more first timestamp messages and the one or more second timestamp messages arrives back at the server, where one or both the one or more first timestamp messages and the one or more second timestamp messages are used to compute read bandwidth (C/T), where C=ci−ci-1, where C is an amount of data C that was read in a time between a last two timestamp messages (ci, ci-1), and T=ti−ti-1+di−di-1 is the time elapsed on the client computer between the last two timestamp messages, where ti−ti-1 is the time elapsed on the server between the last two timestamp messages, and di and di-1 are differences between client computer time and server time when the messages arrived at the client computer, further comprising determining a running average, where samples of read bandwidth are combined into the running average.
In an alternative embodiment of the present invention, a method of minimizing network latency comprises the steps of sending a request for image data from a client computer, including inserting one or more first timestamp messages into the request for image data at an application level, transferring the request and the one or more first timestamp messages to a server using a standard Transmission Communications Protocol (TCP) connection, receiving the one or more first timestamp messages at the server, calculating a first time for the one or more first timestamp messages sent from the client computer to the server, sending one or more second timestamp messages from the server to the client computer, sending the one or more second timestamp messages from the client computer to the server, receiving the one or more second timestamp messages from the client computer at the server, calculating a second time and subsequent times taken for the one or more second timestamp messages to be sent from the client computer to the server, calculating an estimate of current network bandwidth based on one or more of the first time, the second time and the subsequent times, determining situations where network latency will otherwise increase due to congestion and using the estimate of current network bandwidth to one or both reduce and modify client computer requests to minimize network latency, where information related to one or both the one or more first timestamp messages and the one or more second timestamp messages is not included in the one or more first timestamp messages and the one or more second timestamp messages, where the information is stored in a first in first out queue, so that the information can be evaluated when the one or more first timestamp messages and the one or more second timestamp messages arrives back at the server, where one or both the one or more first timestamp messages and the one or more second timestamp messages are used to compute read bandwidth (C/T), where C=ci−ci-1, where C is an amount of data C that was read in a time between a last two timestamp messages (ci−ci-1), and T=ti−ti-1+di−di-1 is the time elapsed on the client computer between the last two timestamp messages, where ti−ti-1 is the time elapsed on the server between the last two timestamp messages, and di and di-1 are differences between client computer time and server time when the messages arrived at the client computer, further comprising determining a running average, where samples of read bandwidth are combined into the running average, where samples are excluded from the running average when send bandwidth is less than between a lower limit of approximately 130 percent of the read bandwidth measured at a time a timestamp message arrived at the client computer and an upper limit of approximately 140 percent of the estimate of current network bandwidth.
In an alternative embodiment of the present invention, a method of minimizing network latency comprises the steps of sending a request for image data from a client computer, including inserting one or more first timestamp messages into the request for image data at an application level, transferring the request and the one or more first timestamp messages to a server using a standard Transmission Communications Protocol (TCP) connection, receiving the one or more first timestamp messages at the server, calculating a first time for the one or more first timestamp messages sent from the client computer to the server, sending one or more second timestamp messages from the server to the client computer, sending the one or more second timestamp messages from the client computer to the server, receiving the one or more second timestamp messages from the client computer at the server, calculating a second time and subsequent times taken for the one or more second timestamp messages to be sent from the client computer to the server, calculating an estimate of current network bandwidth based on one or more of the first time, the second time and the subsequent times, determining situations where network latency will otherwise increase due to congestion and using the estimate of current network bandwidth to one or both reduce and modify client computer requests to minimize network latency, where information related to one or both the one or more first timestamp messages and the one or more second timestamp messages is not included in the one or more first timestamp messages and the one or more second timestamp messages, where the information is stored in a first in first out queue, so that the information can be evaluated when the one or more first timestamp messages and the one or more second timestamp messages arrives back at the server, where one or both the one or more first timestamp messages and the one or more second timestamp messages are used to compute read bandwidth (C/T), where C=ci−ci-1, where C is an amount of data C that was read in a time between a last two timestamp messages (ci, ci-1), and T=ti−ti-1+di−di-1 is the time elapsed on the client computer between the last two timestamp messages, where ti−ti-1 is the time elapsed on the server between the last two timestamp messages, and di and di-1 are differences between client computer time and server time when the messages arrived at the client computer, further comprising determining a running average, where samples of read bandwidth are combined into the running average, where a bandwidth limit is applied on the server in order to avoid network delays, where the bandwidth limit is computed using a feedback scheme.
In an alternative embodiment of the present invention, a method of minimizing network latency comprises the steps of sending a request for image data from a client computer, including inserting one or more first timestamp messages into the request for image data at an application level, transferring the request and the one or more first timestamp messages to a server using a standard Transmission Communications Protocol (TCP) connection, receiving the one or more first timestamp messages at the server, calculating a first time for the one or more first timestamp messages sent from the client computer to the server, sending one or more second timestamp messages from the server to the client computer, sending the one or more second timestamp messages from the client computer to the server, receiving the one or more second timestamp messages from the client computer at the server, calculating a second time and subsequent times taken for the one or more second timestamp messages to be sent from the client computer to the server, calculating an estimate of current network bandwidth based on one or more of the first time, the second time and the subsequent times, determining situations where network latency will otherwise increase due to congestion and using the estimate of current network bandwidth to one or both reduce and modify client computer requests to minimize network latency, where information related to one or both the one or more first timestamp messages and the one or more second timestamp messages is not included in the one or more first timestamp messages and the one or more second timestamp messages, where the information is stored in a first in first out queue, so that the information can be evaluated when the one or more first timestamp messages and the one or more second timestamp messages arrives back at the server, where one or both the one or more first timestamp messages and the one or more second timestamp messages are used to compute read bandwidth (C/T), where C=ci−ci-1, where C is an amount of data C that was read in a time between a last two timestamp messages (ci, −ci-1), and T=ti−ti-1+di−di-1 is the time elapsed on the client computer between the last two timestamp messages, where ti−ti-1 is the time elapsed on the server between the last two timestamp messages, and di and di-1 are differences between client computer time and server time when the messages arrived at the client computer, further comprising determining a running average, where samples of read bandwidth are combined into the running average, where a bandwidth limit is applied on the server in order to avoid network delays, where the bandwidth limit is computed using a feedback scheme, where the feedback scheme uses a pseudo code.
In an alternative embodiment of the present invention, a method of minimizing network latency comprises the steps of sending a request for image data from a client computer, including inserting one or more first timestamp messages into the request for image data at an application level, transferring the request and the one or more first timestamp messages to a server using a standard Transmission Communications Protocol (TCP) connection, receiving the one or more first timestamp messages at the server, calculating a first time for the one or more first timestamp messages sent from the client computer to the server, sending one or more second timestamp messages from the server to the client computer, sending the one or more second timestamp messages from the client computer to the server, receiving the one or more second timestamp messages from the client computer at the server, calculating a second time and subsequent times taken for the one or more second timestamp messages to be sent from the client computer to the server, calculating an estimate of current network bandwidth based on one or more of the first time, the second time and the subsequent times, determining situations where network latency will otherwise increase due to congestion and using the estimate of current network bandwidth to one or both reduce and modify client computer requests to minimize network latency, where information related to one or both the one or more first timestamp messages and the one or more second timestamp messages is not included in the one or more first timestamp messages and the one or more second timestamp messages, where the information is stored in a first in first out queue, so that the information can be evaluated when the one or more first timestamp messages and the one or more second timestamp messages arrives back at the server, where one or both the one or more first timestamp messages and the one or more second timestamp messages are used to compute read bandwidth (C/T), where C=ci−ci-1, where C is an amount of data C that was read in a time between a last two timestamp messages (ci, ci-1), and T=ti−ti-1+di−di-1 is the time elapsed on the client computer between the last two timestamp messages, where ti−ti-1 is the time elapsed on the server between the last two timestamp messages, and di and di-1 are differences between client computer time and server time when the messages arrived at the client computer, further comprising determining a running average, where samples of read bandwidth are combined into the running average, where a bandwidth limit is applied on the server in order to avoid network delays, where the bandwidth limit is computed using a feedback scheme, where the feedback scheme uses a pseudo code, where the pseudo code includes an expression
In an alternative embodiment of the present invention, a method of minimizing network latency comprises the steps of sending a request for image data from a client computer, including inserting one or more first timestamp messages into the request for image data at an application level, transferring the request and the one or more first timestamp messages to a server using a standard Transmission Communications Protocol (TCP) connection, receiving the one or more first timestamp messages at the server, calculating a first time for the one or more first timestamp messages sent from the client computer to the server, sending one or more second timestamp messages from the server to the client computer, sending the one or more second timestamp messages from the client computer to the server, receiving the one or more second timestamp messages from the client computer at the server, calculating a second time and subsequent times taken for the one or more second timestamp messages to be sent from the client computer to the server, calculating an estimate of current network bandwidth based on one or more of the first time, the second time and the subsequent times, determining situations where network latency will otherwise increase due to congestion and using the estimate of current network bandwidth to one or both reduce and modify client computer requests to minimize network latency, where information related to one or both the one or more first timestamp messages and the one or more second timestamp messages is not included in the one or more first timestamp messages and the one or more second timestamp messages, where the information is stored in a first in first out queue, so that the information can be evaluated when the one or more first timestamp messages and the one or more second timestamp messages arrives back at the server, where one or both the one or more first timestamp messages and the one or more second timestamp messages are used to compute read bandwidth (C/T), where C=ci−ci-1, where C is an amount of data C that was read in a time between a last two timestamp messages (ci, ci-1), and T=ti−ti-1+di−di-1 is the time elapsed on the client computer between the last two timestamp messages, where ti−ti-1 is the time elapsed on the server between the last two timestamp messages, and di and di-1 are differences between client computer time and server time when the messages arrived at the client computer, further comprising determining a running average, where samples of read bandwidth are combined into the running average, where a bandwidth limit is applied on the server in order to avoid network delays, where the bandwidth limit is computed using a feedback scheme, where the bandwidth limit is used to compute a lossy compression rate, where the lossy compression rate is calculated in order to achieve a desired interactive speed, where the feedback scheme uses a pseudo code, where the lossy compression rate is used to stream compressed images with a compression ratio, where the pseudo code includes an expression
In an alternative embodiment of the present invention, a method of minimizing network latency comprises the steps of sending a request for image data from a client computer, including inserting one or more first timestamp messages into the request for image data at an application level, transferring the request and the one or more first timestamp messages to a server using a standard Transmission Communications Protocol (TCP) connection, receiving the one or more first timestamp messages at the server, calculating a first time for the one or more first timestamp messages sent from the client computer to the server, sending one or more second timestamp messages from the server to the client computer, sending the one or more second timestamp messages from the client computer to the server, receiving the one or more second timestamp messages from the client computer at the server, calculating a second time and subsequent times taken for the one or more second timestamp messages to be sent from the client computer to the server, calculating an estimate of current network bandwidth based on one or more of the first time, the second time and the subsequent times, determining situations where network latency will otherwise increase due to congestion and using the estimate of current network bandwidth to one or both reduce and modify client computer requests to minimize network latency, where information related to one or both the one or more first timestamp messages and the one or more second timestamp messages is not included in the one or more first timestamp messages and the one or more second timestamp messages, where the information is stored in a first in first out queue, so that the information can be evaluated when the one or more first timestamp messages and the one or more second timestamp messages arrives back at the server, where one or both the one or more first timestamp messages and the one or more second timestamp messages are used to compute read bandwidth (C/T), where C=ci−ci-1, where C is an amount of data C that was read in a time between a last two timestamp messages (ci, −ci-1), and T=ti−ti-1+di−di-1 is the time elapsed on the client computer between the last two timestamp messages, where ti−ti-1 is the time elapsed on the server between the last two timestamp messages, and di and di-1 are differences between client computer time and server time when the messages arrived at the client computer, further comprising determining a running average, where samples of read bandwidth are combined into the running average, where a bandwidth limit is applied on the server in order to avoid network delays, where the bandwidth limit is computed using a feedback scheme, where the bandwidth limit is used to compute a lossy compression rate, where the lossy compression rate is calculated in order to achieve a desired interactive speed, where the feedback scheme uses a pseudo code, where the lossy compression rate is used to stream compressed images with a compression ratio, where images are streamed to the client computer using a buffering system, where the pseudo code includes an expression
In an alternative embodiment of the present invention, a method of minimizing network latency comprises the steps of sending a request for image data from a client computer, including inserting one or more first timestamp messages into the request for image data at an application level, transferring the request and the one or more first timestamp messages to a server using a standard Transmission Communications Protocol (TCP) connection, receiving the one or more first timestamp messages at the server, calculating a first time for the one or more first timestamp messages sent from the client computer to the server, sending one or more second timestamp messages from the server to the client computer, sending the one or more second timestamp messages from the client computer to the server, receiving the one or more second timestamp messages from the client computer at the server, calculating a second time and subsequent times taken for the one or more second timestamp messages to be sent from the client computer to the server, calculating an estimate of current network bandwidth based on one or more of the first time, the second time and the subsequent times, determining situations where network latency will otherwise increase due to congestion and using the estimate of current network bandwidth to one or both reduce and modify client computer requests to minimize network latency, where information related to one or both the one or more first timestamp messages and the one or more second timestamp messages is not included in the one or more first timestamp messages and the one or more second timestamp messages, where the information is stored in a first in first out queue, so that the information can be evaluated when the one or more first timestamp messages and the one or more second timestamp messages arrives back at the server, where one or both the one or more first timestamp messages and the one or more second timestamp messages are used to compute read bandwidth (C/T), where C=ci−ci-1, where C is an amount of data C that was read in a time between a last two timestamp messages (ci, c1), and T=ti−ti-1+di−di-1 is the time elapsed on the client computer between the last two timestamp messages, where ti−ti-1 is the time elapsed on the server between the last two timestamp messages, and di and di-1 are differences between client computer time and server time when the messages arrived at the client computer, further comprising determining a running average, where samples of read bandwidth are combined into the running average, where a bandwidth limit is applied on the server in order to avoid network delays, where the bandwidth limit is computed using a feedback scheme, where the bandwidth limit is used to compute a lossy compression rate, where the lossy compression rate is calculated in order to achieve a desired interactive speed, where the feedback scheme uses a pseudo code, where the lossy compression rate is used to stream compressed images with a compression ratio, where images are streamed to the client computer using a buffering system, where the buffering system is based on monitoring user interaction and anticipating a next image that will be requested by the client computer, where the pseudo code includes an expression
In an alternative embodiment of the present invention, a method of minimizing network latency comprises the steps of sending a request for image data from a client computer, including inserting one or more first timestamp messages into the request for image data at an application level, transferring the request and the one or more first timestamp messages to a server using a standard Transmission Communications Protocol (TCP) connection, receiving the one or more first timestamp messages at the server, calculating a first time for the one or more first timestamp messages sent from the client computer to the server, sending one or more second timestamp messages from the server to the client computer, sending the one or more second timestamp messages from the client computer to the server, receiving the one or more second timestamp messages from the client computer at the server, calculating a second time and subsequent times taken for the one or more second timestamp messages to be sent from the client computer to the server, calculating an estimate of current network bandwidth based on one or more of the first time, the second time and the subsequent times, determining situations where network latency will otherwise increase due to congestion and using the estimate of current network bandwidth to one or both reduce and modify client computer requests to minimize network latency, where information related to one or both the one or more first timestamp messages and the one or more second timestamp messages is not included in the one or more first timestamp messages and the one or more second timestamp messages, where the information is stored in a first in first out queue, so that the information can be evaluated when the one or more first timestamp messages and the one or more second timestamp messages arrives back at the server, where one or both the one or more first timestamp messages and the one or more second timestamp messages are used to compute read bandwidth (C/T), where C=ci−ci-1, where C is an amount of data C that was read in a time between a last two timestamp messages (ci, ci-1), and T=ti−ti-1+di−di-1 is the time elapsed on the client computer between the last two timestamp messages, where ti−ti-1 is the time elapsed on the server between the last two timestamp messages, and di and di-1 are differences between client computer time and server time when the messages arrived at the client computer, further comprising determining a running average, where samples of read bandwidth are combined into the running average, where a bandwidth limit is applied on the server in order to avoid network delays, where the bandwidth limit is computed using a feedback scheme, where the bandwidth limit is used to compute a lossy compression rate, where the lossy compression rate is calculated in order to achieve a desired interactive speed, where the feedback scheme uses a pseudo code, where the lossy compression rate is used to stream compressed images with a compression ratio, where images are streamed to the client computer using a buffering system, where the buffering system is based on monitoring user interaction and anticipating a next image that will be requested by the client computer, where the bandwidth limit is used to compute the lossy compression rate, where the lossy compression rate is used to calculate a compression ratio, where one or more compressed images are streamed with the compression ratio, where a target compression quality is defined by a user, where a first image is streamed with a first compression quality, where the first compression quality minimizes network latency during interaction based on bandwidth monitoring and where the first image is streamed with a second compression quality when the user stops interacting, where the second compression quality is greater than the first compression quality if the first compression quality is lower than a target compression quality, where the pseudo code includes an expression
In an alternative embodiment of the present invention, a method of minimizing network latency comprises the steps of sending a request for image data from a client computer, including inserting one or more first timestamp messages into the request for image data at an application level, transferring the request and the one or more first timestamp messages to a server using a standard Transmission Communications Protocol (TCP) connection, receiving the one or more first timestamp messages at the server, calculating a first time for the one or more first timestamp messages sent from the client computer to the server, sending one or more second timestamp messages from the server to the client computer, sending the one or more second timestamp messages from the client computer to the server, receiving the one or more second timestamp messages from the client computer at the server, calculating a second time and subsequent times taken for the one or more second timestamp messages to be sent from the client computer to the server, calculating an estimate of current network bandwidth based on one or more of the first time, the second time and the subsequent times, determining situations where network latency will otherwise increase due to congestion and using the estimate of current network bandwidth to one or both reduce and modify client computer requests to minimize network latency, where information related to one or both the one or more first timestamp messages and the one or more second timestamp messages is not included in the one or more first timestamp messages and the one or more second timestamp messages, where the information is stored in a first in first out queue, so that the information can be evaluated when the one or more first timestamp messages and the one or more second timestamp messages arrives back at the server, where one or both the one or more first timestamp messages and the one or more second timestamp messages are used to compute read bandwidth (C/T), where C=ci−ci-1, where C is an amount of data C that was read in a time between a last two timestamp messages (ci, ci-1), and T=ti−ti-1+di−di-1 is the time elapsed on the client computer between the last two timestamp messages, where ti−ti-1 is the time elapsed on the server between the last two timestamp messages, and di and di-1 are differences between client computer time and server time when the messages arrived at the client computer, further comprising determining a running average, where samples of read bandwidth are combined into the running average, where a bandwidth limit is applied on the server in order to avoid network delays, where the bandwidth limit is computed using a feedback scheme, where the bandwidth limit is used to compute a lossy compression rate, where the lossy compression rate is calculated in order to achieve a desired interactive speed, where the feedback scheme uses a pseudo code, where the lossy compression rate is used to stream compressed images with a compression ratio, where images are streamed to the client computer using a buffering system, where the buffering system is based on monitoring user interaction and anticipating a next image that will be requested by the client computer, where the bandwidth limit is used to compute the lossy compression rate, where the lossy compression rate is used to calculate a compression ratio, where one or more compressed images are streamed with the compression ratio, where the pseudo code includes an expression
In an alternative embodiment of the present invention, a method of minimizing network latency comprises the steps of sending a request for image data from a client computer, including inserting one or more first timestamp messages into the request for image data at an application level, transferring the request and the one or more first timestamp messages to a server using a standard Transmission Communications Protocol (TCP) connection, receiving the one or more first timestamp messages at the server, calculating a first time for the one or more first timestamp messages sent from the client computer to the server, sending one or more second timestamp messages from the server to the client computer, sending the one or more second timestamp messages from the client computer to the server, receiving the one or more second timestamp messages from the client computer at the server, calculating a second time and subsequent times taken for the one or more second timestamp messages to be sent from the client computer to the server, calculating an estimate of current network bandwidth based on one or more of the first time, the second time and the subsequent times, determining situations where network latency will otherwise increase due to congestion and using the estimate of current network bandwidth to one or both reduce and modify client computer requests to minimize network latency, where information related to one or both the one or more first timestamp messages and the one or more second timestamp messages is not included in the one or more first timestamp messages and the one or more second timestamp messages, where the information is stored in a first in first out queue, so that the information can be evaluated when the one or more first timestamp messages and the one or more second timestamp messages arrives back at the server, where one or both the one or more first timestamp messages and the one or more second timestamp messages are used to compute read bandwidth (C/T), where C=ci−ci-1, where C is an amount of data C that was read in a time between a last two timestamp messages (ci, ci-1), and T=ti−ti-1+di−di-1 is the time elapsed on the client computer between the last two timestamp messages, where ti−ti-1 is the time elapsed on the server between the last two timestamp messages, and di and di-1 are differences between client computer time and server time when the messages arrived at the client computer, further comprising determining a running average, where samples of read bandwidth are combined into the running average, where a bandwidth limit is applied on the server in order to avoid network delays, where the bandwidth limit is computed using a feedback scheme, where the bandwidth limit is used to compute a lossy compression rate, where the lossy compression rate is calculated in order to achieve a desired interactive speed, where the feedback scheme uses a pseudo code, where the lossy compression rate is used to stream compressed images with a compression ratio, where images are streamed to the client computer using a buffering system, where the buffering system is based on monitoring user interaction and anticipating a next image that will be requested by the client computer, where the bandwidth limit is used to compute the lossy compression rate, where the pseudo code includes an expression
In an alternative embodiment of the present invention, a method of minimizing network latency comprises the steps of sending a request for image data from a client computer, including inserting one or more first timestamp messages into the request for image data at an application level, transferring the request and the one or more first timestamp messages to a server using a standard Transmission Communications Protocol (TCP) connection, receiving the one or more first timestamp messages at the server, calculating a first time for the one or more first timestamp messages sent from the client computer to the server, sending one or more second timestamp messages from the server to the client computer, sending the one or more second timestamp messages from the client computer to the server, receiving the one or more second timestamp messages from the client computer at the server, calculating a second time and subsequent times taken for the one or more second timestamp messages to be sent from the client computer to the server, calculating an estimate of current network bandwidth based on one or more of the first time, the second time and the subsequent times, determining situations where network latency will otherwise increase due to congestion and using the estimate of current network bandwidth to one or both reduce and modify client computer requests to minimize network latency, where information related to one or both the one or more first timestamp messages and the one or more second timestamp messages is not included in the one or more first timestamp messages and the one or more second timestamp messages, where the information is stored in a first in first out queue, so that the information can be evaluated when the one or more first timestamp messages and the one or more second timestamp messages arrives back at the server, where one or both the one or more first timestamp messages and the one or more second timestamp messages are used to compute read bandwidth (C/T), where C=ci−ci-1, where C is an amount of data C that was read in a time between a last two timestamp messages (ci, ci-1), and T=ti−ti-1+di−di-1 is the time elapsed on the client computer between the last two timestamp messages, where ti−ti-1 is the time elapsed on the server between the last two timestamp messages, and di and di-1 are differences between client computer time and server time when the messages arrived at the client computer, further comprising determining a running average, where samples of read bandwidth are combined into the running average, where a bandwidth limit is applied on the server in order to avoid network delays, where the bandwidth limit is computed using a feedback scheme, where the bandwidth limit is used to compute a lossy compression rate, where the lossy compression rate is calculated in order to achieve a desired interactive speed, where the feedback scheme uses a pseudo code, where the pseudo code includes an expression
In an alternative embodiment of the present invention, a method of minimizing network latency comprises the steps of sending a request for image data from a client computer, including inserting one or more first timestamp messages into the request for image data at an application level, transferring the request and the one or more first timestamp messages to a server using a standard Transmission Communications Protocol (TCP) connection, receiving the one or more first timestamp messages at the server, calculating a first time for the one or more first timestamp messages sent from the client computer to the server, sending one or more second timestamp messages from the server to the client computer, sending the one or more second timestamp messages from the client computer to the server, receiving the one or more second timestamp messages from the client computer at the server, calculating a second time and subsequent times taken for the one or more second timestamp messages to be sent from the client computer to the server, calculating an estimate of current network bandwidth based on one or more of the first time, the second time and the subsequent times, determining situations where network latency will otherwise increase due to congestion and using the estimate of current network bandwidth to one or both reduce and modify client computer requests to minimize network latency, where information related to one or both the one or more first timestamp messages and the one or more second timestamp messages is not included in the one or more first timestamp messages and the one or more second timestamp messages, where the information is stored in a first in first out queue, so that the information can be evaluated when the one or more first timestamp messages and the one or more second timestamp messages arrives back at the server, where one or both the one or more first timestamp messages and the one or more second timestamp messages are used to compute read bandwidth (C/T), where C=ci−ci-1, where C is an amount of data C that was read in a time between a last two timestamp messages (ci, ci-1), and T=ti−ti-1+di−di-1 is the time elapsed on the client computer between the last two timestamp messages, where ti−ti-1 is the time elapsed on the server between the last two timestamp messages, and di and di-1 are differences between client computer time and server time when the messages arrived at the client computer, further comprising determining a running average, where samples of read bandwidth are combined into the running average, where a bandwidth limit is applied on the server in order to avoid network delays, where the bandwidth limit is computed using a feedback scheme, where the bandwidth limit is used to compute a lossy compression rate, where the feedback scheme uses a pseudo code, where the pseudo code includes an expression
In another embodiment of the present invention, a display protocol defines multiple viewers, each with one or more tiles, i.e., viewports. To each viewer one or more image sets can be assigned based on Viewer Assignment Rules that are similar to the protocol section rules described herein. Viewer Assignment Rules are defined in the display protocol. The rules determine which image set shall be initially shown in a viewer. In case multiple image sets are assigned to a viewer, the one with the highest score is chosen. Afterwards users may cycle quickly through the remaining image sets using dedicated tools (Previous/Next Image Set), or pick another image set from a special image set menu.
This application is a continuation of (1) U.S. application Ser. No. 16/403,219 entitled ‘METHOD AND SYSTEM FOR TRANSFERRING DATA TO IMPROVE RESPONSIVENESS WHEN SENDING LARGE DATA SETS’, inventors D Stalling et al., filed May 3, 2019 which is a continuation of (2) U.S. application Ser. No. 15/652,164 entitled ‘METHOD AND SYSTEM FOR TRANSFERRING DATA TO IMPROVE RESPONSIVENESS WHEN SENDING LARGE DATA SETS’, inventors D Stalling et al., filed Jul. 17, 2017 which issued Jun. 11, 2019 as U.S. Pat. No. 10,320,684 which is a continuation of and claims priority to (3) U.S. application Ser. No. 15/361,038 entitled ‘METHOD AND SYSTEM FOR TRANSFERRING DATA TO IMPROVE RESPONSIVENESS WHEN SENDING LARGE DATA SETS’, inventors D Stalling et al., filed Nov. 24, 2016 which issued Aug. 29, 2017 as U.S. Pat. No. 9,749,245 which is a continuation of and claims priority to (4) U.S. application Ser. No. 13/831,982 entitled ‘METHOD AND SYSTEM FOR TRANSFERRING DATA TO IMPROVE RESPONSIVENESS WHEN SENDING LARGE DATA SETS’, inventors D Stalling et al., filed Mar. 15, 2013 which issued Nov. 29, 2016 as U.S. Pat. No. 9,509,802, the teachings of (1) to (4) are explicitly incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2658310 | Cook | Nov 1953 | A |
3431200 | Davis et al. | Mar 1969 | A |
3645040 | Ort | Feb 1972 | A |
4137868 | Pryor | Feb 1979 | A |
4235043 | Harasawa et al. | Nov 1980 | A |
4258661 | Margen | Mar 1981 | A |
4267038 | Thompson | May 1981 | A |
4320594 | Raymond | Mar 1982 | A |
4746795 | Stewart et al. | May 1988 | A |
4905148 | Crawford | Feb 1990 | A |
4910912 | Lowrey, III | Mar 1990 | A |
4928250 | Greenberg et al. | May 1990 | A |
4958460 | Nielson et al. | Sep 1990 | A |
4984160 | Saint Felix et al. | Jan 1991 | A |
5031117 | Minor et al. | Jul 1991 | A |
5091960 | Butler | Feb 1992 | A |
5121708 | Nuttle | Jun 1992 | A |
5128864 | Waggener et al. | Jul 1992 | A |
5218534 | Trousset et al. | Jun 1993 | A |
5235510 | Yamada | Aug 1993 | A |
5241471 | Trousset et al. | Aug 1993 | A |
5253171 | Hsiao et al. | Oct 1993 | A |
5274759 | Yoshioka | Dec 1993 | A |
5280428 | Wu et al. | Jan 1994 | A |
5287274 | Saint Felix et al. | Feb 1994 | A |
5293313 | Cecil et al. | Mar 1994 | A |
5307264 | Waggener et al. | Apr 1994 | A |
5355453 | Row et al. | Oct 1994 | A |
5368033 | Moshfeghi | Nov 1994 | A |
5375156 | Kuo-Petravic et al. | Dec 1994 | A |
5412703 | Goodenough et al. | May 1995 | A |
5412764 | Tanaka | May 1995 | A |
5442672 | Bjorkholm et al. | Aug 1995 | A |
5452416 | Hilton | Sep 1995 | A |
5488700 | Glassner | Jan 1996 | A |
5560360 | Filler | Oct 1996 | A |
5594842 | Kaufman et al. | Jan 1997 | A |
5602892 | Llacer | Feb 1997 | A |
5633951 | Moshfeghi | May 1997 | A |
5633999 | Clowes et al. | May 1997 | A |
5640436 | Kawai et al. | Jun 1997 | A |
5671265 | Andress | Sep 1997 | A |
5744802 | Muehllehner et al. | Apr 1998 | A |
5774519 | Lindstrom et al. | Jun 1998 | A |
5790787 | Scott et al. | Aug 1998 | A |
5793374 | Guenter et al. | Aug 1998 | A |
5793879 | Benn et al. | Aug 1998 | A |
5813988 | Alfano et al. | Sep 1998 | A |
5821541 | Tumer | Oct 1998 | A |
5825842 | Taguchi | Oct 1998 | A |
5838756 | Taguchi et al. | Nov 1998 | A |
5841140 | Mc Croskey et al. | Nov 1998 | A |
5909476 | Cheng et al. | Jun 1999 | A |
5930384 | Guillemaud et al. | Jul 1999 | A |
5931789 | Alfano et al. | Aug 1999 | A |
5950203 | Stakuis | Sep 1999 | A |
5960056 | Lai | Sep 1999 | A |
5963612 | Navab | Oct 1999 | A |
5963613 | Navab | Oct 1999 | A |
5963658 | Klibanov et al. | Oct 1999 | A |
6002739 | Heumann | Dec 1999 | A |
6018562 | Willson | Jan 2000 | A |
6032264 | Beffa et al. | Feb 2000 | A |
6044132 | Navab | Mar 2000 | A |
6049390 | Notredame | Apr 2000 | A |
6049582 | Navab | Apr 2000 | A |
6072177 | Mccroskey et al. | Jun 2000 | A |
6088423 | Krug et al. | Jul 2000 | A |
6091422 | Ouaknine et al. | Jul 2000 | A |
6104827 | Benn et al. | Aug 2000 | A |
6105029 | Maddalozzo, Jr. et al. | Aug 2000 | A |
6108007 | Shochet | Aug 2000 | A |
6108576 | Alfano et al. | Aug 2000 | A |
6123733 | Dalton | Sep 2000 | A |
6175655 | George | Jan 2001 | B1 |
6205120 | Packer et al. | Mar 2001 | B1 |
6219061 | Lauer et al. | Apr 2001 | B1 |
6226005 | Laferriere | May 2001 | B1 |
6236704 | Navab et al. | May 2001 | B1 |
6243098 | Lauer et al. | Jun 2001 | B1 |
6249594 | Hibbard | Jun 2001 | B1 |
6255655 | Mc Croskey et al. | Jul 2001 | B1 |
6264610 | Zhu | Jul 2001 | B1 |
6268846 | Georgiev | Jul 2001 | B1 |
6278460 | Myers et al. | Aug 2001 | B1 |
6282256 | Grass et al. | Aug 2001 | B1 |
6289235 | Webber et al. | Sep 2001 | B1 |
6304771 | Yodh et al. | Oct 2001 | B1 |
6320928 | Vaillant et al. | Nov 2001 | B1 |
6324241 | Besson | Nov 2001 | B1 |
6377257 | Borrel | Apr 2002 | B1 |
6377266 | Baldwin | Apr 2002 | B1 |
6384821 | Borrel | May 2002 | B1 |
6404843 | Vaillant | Jun 2002 | B1 |
6415013 | Hsieh et al. | Jul 2002 | B1 |
6470067 | Harding | Oct 2002 | B1 |
6470070 | Menhardt | Oct 2002 | B2 |
6473793 | Dillon et al. | Oct 2002 | B1 |
6475150 | Haddad | Nov 2002 | B2 |
6507633 | Elbakri et al. | Jan 2003 | B1 |
6510241 | Vaillant et al. | Jan 2003 | B1 |
6519355 | Nelson | Feb 2003 | B2 |
6526305 | Mori | Feb 2003 | B1 |
6557102 | Wong et al. | Apr 2003 | B1 |
6559958 | Motamed | May 2003 | B2 |
6591004 | VanEssen et al. | Jul 2003 | B1 |
6615063 | Ntziachristos et al. | Sep 2003 | B1 |
6633688 | Nixon | Oct 2003 | B1 |
6636623 | Nelson et al. | Oct 2003 | B2 |
6654012 | Lauer et al. | Nov 2003 | B1 |
6658142 | Kam et al. | Dec 2003 | B1 |
6664963 | Zatz | Dec 2003 | B1 |
6674430 | Kaufman et al. | Jan 2004 | B1 |
6697508 | Nelson | Feb 2004 | B2 |
6707878 | Claus et al. | Mar 2004 | B2 |
6718195 | Van Der Mark et al. | Apr 2004 | B2 |
6731283 | Navab | May 2004 | B1 |
6740232 | Beaulieu | May 2004 | B1 |
6741730 | Rahn et al. | May 2004 | B2 |
6744253 | Stolarczyk | Jun 2004 | B2 |
6744845 | Harding et al. | Jun 2004 | B2 |
6745070 | Wexler et al. | Jun 2004 | B2 |
6747654 | Laksono et al. | Jun 2004 | B1 |
6754299 | Patch | Jun 2004 | B2 |
6765981 | Heumann | Jul 2004 | B2 |
6768782 | Hsieh et al. | Jul 2004 | B1 |
6770893 | Nelson | Aug 2004 | B2 |
6771733 | Katsevich | Aug 2004 | B2 |
6778127 | Stolarczyk et al. | Aug 2004 | B2 |
6785409 | Suri | Aug 2004 | B1 |
6798417 | Taylor | Sep 2004 | B1 |
6807581 | Starr et al. | Oct 2004 | B1 |
6825840 | Gritz | Nov 2004 | B2 |
6825843 | Allen et al. | Nov 2004 | B2 |
6923906 | Oswald et al. | Aug 2005 | B2 |
6947047 | Moy et al. | Sep 2005 | B1 |
6978206 | Pu | Dec 2005 | B1 |
7003547 | Hubbard | Feb 2006 | B1 |
7006101 | Brown et al. | Feb 2006 | B1 |
7031022 | Komori et al. | Apr 2006 | B1 |
7034828 | Drebin et al. | Apr 2006 | B1 |
7039723 | Hu | May 2006 | B2 |
7050953 | Chiang et al. | May 2006 | B2 |
7054852 | Cohen | May 2006 | B1 |
7058644 | Patchet et al. | Jun 2006 | B2 |
7076735 | Callegari | Jul 2006 | B2 |
7098907 | Houston et al. | Aug 2006 | B2 |
7120283 | Thieret | Oct 2006 | B2 |
7133041 | Kaufman et al. | Nov 2006 | B2 |
7154985 | Dobbs | Dec 2006 | B2 |
7167176 | Sloan et al. | Jan 2007 | B2 |
7184041 | Heng et al. | Feb 2007 | B2 |
7185003 | Bayliss et al. | Feb 2007 | B2 |
7219085 | Buck et al. | May 2007 | B2 |
7242401 | Yang et al. | Jul 2007 | B2 |
7262770 | Sloan et al. | Aug 2007 | B2 |
7274368 | Keslin | Sep 2007 | B1 |
7299232 | Stakutis et al. | Nov 2007 | B2 |
7315926 | Fridella et al. | Jan 2008 | B2 |
7324116 | Boyd et al. | Jan 2008 | B2 |
7339585 | Verstraelen et al. | Mar 2008 | B2 |
7472156 | Philbrick et al. | Dec 2008 | B2 |
7502869 | Boucher et al. | Mar 2009 | B2 |
7506375 | Kanda et al. | Mar 2009 | B2 |
7552192 | Carmichael | Jun 2009 | B2 |
7609884 | Stalling | Oct 2009 | B1 |
7693318 | Stalling | Apr 2010 | B1 |
7701210 | Ichinose | Apr 2010 | B2 |
7778392 | Bergman | Aug 2010 | B1 |
7876944 | Stalling | Jan 2011 | B2 |
7889895 | Nowinski | Feb 2011 | B2 |
7899516 | Chen et al. | Mar 2011 | B2 |
7907759 | Hundley | Mar 2011 | B2 |
7956612 | Sorensen | Jun 2011 | B2 |
7983300 | Vaughan et al. | Jul 2011 | B2 |
7991837 | Tahan | Aug 2011 | B1 |
7995824 | Yim | Aug 2011 | B2 |
8107592 | Bergman | Jan 2012 | B2 |
8189002 | Westerhoff | May 2012 | B1 |
8319781 | Westerhoff | Nov 2012 | B2 |
8369600 | Can et al. | Feb 2013 | B2 |
8386560 | Ma | Feb 2013 | B2 |
8392529 | Westerhoff | Mar 2013 | B2 |
8508539 | Vlietinck | Aug 2013 | B2 |
8538108 | Shekhar | Sep 2013 | B2 |
8542136 | Owsley et al. | Sep 2013 | B1 |
8548215 | Westerhoff | Oct 2013 | B2 |
8775510 | Westerhoff | Jul 2014 | B2 |
8976190 | Westerhoff | Mar 2015 | B1 |
9019287 | Westerhoff | Apr 2015 | B2 |
9167027 | Westerhoff | Oct 2015 | B2 |
9299156 | Zalis | Mar 2016 | B2 |
9355616 | Westerhoff | May 2016 | B2 |
9454813 | Westerhoff | Sep 2016 | B2 |
9509802 | Westerhoff | Nov 2016 | B1 |
9524577 | Westerhoff | Dec 2016 | B1 |
9531789 | Westerhoff | Dec 2016 | B2 |
9595242 | Westerhoff | Mar 2017 | B1 |
9728165 | Westerhoff | Aug 2017 | B1 |
9749245 | Stalling | Aug 2017 | B2 |
9860300 | Westerhoff | Jan 2018 | B2 |
9898855 | Westerhoff | Feb 2018 | B2 |
9904969 | Westerhoff | Feb 2018 | B1 |
9984460 | Westerhoff | May 2018 | B2 |
9984478 | Westerhoff | May 2018 | B2 |
10038739 | Westerhoff | Jul 2018 | B2 |
10043482 | Westerhoff | Aug 2018 | B2 |
10070839 | Westerhoff | Sep 2018 | B2 |
10311541 | Westerhoff | Jun 2019 | B2 |
10320684 | Stalling | Jun 2019 | B2 |
10373368 | Westerhoff | Aug 2019 | B2 |
10380970 | Westerhoff | Aug 2019 | B2 |
10395398 | Westerhoff | Aug 2019 | B2 |
10430914 | Westerhoff | Oct 2019 | B2 |
10540803 | Westerhoff | Jan 2020 | B2 |
10614543 | Westerhoff | Apr 2020 | B2 |
10631812 | Westerhoff | Apr 2020 | B2 |
10686868 | Westerhoff | Jun 2020 | B2 |
10706538 | Westerhoff | Jul 2020 | B2 |
10764190 | Stalling | Sep 2020 | B2 |
20010026848 | Van Der Mark | Oct 2001 | A1 |
20020016813 | Woods et al. | Feb 2002 | A1 |
20020034817 | Henry et al. | Mar 2002 | A1 |
20020049825 | Jewett et al. | Apr 2002 | A1 |
20020080143 | Morgan et al. | Jun 2002 | A1 |
20020089587 | White et al. | Jul 2002 | A1 |
20020099290 | Haddad | Jul 2002 | A1 |
20020099844 | Baumann et al. | Jul 2002 | A1 |
20020120727 | Curley et al. | Aug 2002 | A1 |
20020123680 | Vaillant | Sep 2002 | A1 |
20020138019 | Wexler | Sep 2002 | A1 |
20020150202 | Harding | Oct 2002 | A1 |
20020150285 | Nelson | Oct 2002 | A1 |
20020180747 | Lavelle et al. | Dec 2002 | A1 |
20020184238 | Chylla | Dec 2002 | A1 |
20020184349 | Manukyan | Dec 2002 | A1 |
20030001842 | Munshi | Jan 2003 | A1 |
20030031352 | Nelson et al. | Feb 2003 | A1 |
20030059110 | Wilt | Mar 2003 | A1 |
20030065268 | Chen et al. | Apr 2003 | A1 |
20030086599 | Armato | May 2003 | A1 |
20030103666 | Edic et al. | Jun 2003 | A1 |
20030120743 | Coatney et al. | Jun 2003 | A1 |
20030123720 | Launav et al. | Jul 2003 | A1 |
20030149812 | Schoenthal et al. | Aug 2003 | A1 |
20030158786 | Yaron | Aug 2003 | A1 |
20030176780 | Arnold | Sep 2003 | A1 |
20030179197 | Sloan et al. | Sep 2003 | A1 |
20030194049 | Claus et al. | Oct 2003 | A1 |
20030220569 | Dione | Nov 2003 | A1 |
20030220772 | Chiang et al. | Nov 2003 | A1 |
20030227456 | Gritz | Dec 2003 | A1 |
20030234791 | Boyd et al. | Dec 2003 | A1 |
20040010397 | Barbour et al. | Jan 2004 | A1 |
20040012596 | Allen et al. | Jan 2004 | A1 |
20040015062 | Ntziachristos et al. | Jan 2004 | A1 |
20040022348 | Heumann | Feb 2004 | A1 |
20040059822 | Jiang | Mar 2004 | A1 |
20040066384 | Ohba | Apr 2004 | A1 |
20040066385 | Kilgard | Apr 2004 | A1 |
20040066891 | Freytag | Apr 2004 | A1 |
20040078238 | Thomas et al. | Apr 2004 | A1 |
20040102688 | Walker | May 2004 | A1 |
20040125103 | Kaufman | Jul 2004 | A1 |
20040133652 | Miloushev et al. | Jul 2004 | A1 |
20040147039 | Van Der Mark | Jul 2004 | A1 |
20040162677 | Bednar | Aug 2004 | A1 |
20040170302 | Museth et al. | Sep 2004 | A1 |
20040210584 | Nir et al. | Oct 2004 | A1 |
20040215858 | Armstrong et al. | Oct 2004 | A1 |
20040215868 | Solomon et al. | Oct 2004 | A1 |
20040239672 | Schmidt | Dec 2004 | A1 |
20040240753 | Hu | Dec 2004 | A1 |
20050012753 | Karlov | Jan 2005 | A1 |
20050017972 | Poole et al. | Jan 2005 | A1 |
20050066095 | Mullick et al. | Mar 2005 | A1 |
20050088440 | Sloan et al. | Apr 2005 | A1 |
20050128195 | Houston et al. | Jun 2005 | A1 |
20050152590 | Thieret | Jul 2005 | A1 |
20050165623 | Landi et al. | Jul 2005 | A1 |
20050225554 | Bastos et al. | Oct 2005 | A1 |
20050231503 | Heng et al. | Oct 2005 | A1 |
20050239182 | Berzin | Oct 2005 | A1 |
20050240628 | Jiang et al. | Oct 2005 | A1 |
20050256742 | Kohan et al. | Nov 2005 | A1 |
20050259103 | Kilgard et al. | Nov 2005 | A1 |
20050270298 | Thieret | Dec 2005 | A1 |
20050271302 | Khamene et al. | Dec 2005 | A1 |
20060010438 | Brady et al. | Jan 2006 | A1 |
20060010454 | Napoli et al. | Jan 2006 | A1 |
20060028479 | Chun | Feb 2006 | A1 |
20060034511 | Verstraelen | Feb 2006 | A1 |
20060066609 | Iodice | Mar 2006 | A1 |
20060197780 | Watkins et al. | Sep 2006 | A1 |
20060214949 | Zhang | Sep 2006 | A1 |
20060239540 | Serra | Oct 2006 | A1 |
20060239589 | Omernick | Oct 2006 | A1 |
20060282253 | Buswell et al. | Dec 2006 | A1 |
20070005798 | Gropper et al. | Jan 2007 | A1 |
20070038939 | Challen | Feb 2007 | A1 |
20070046966 | Mussack | Mar 2007 | A1 |
20070067497 | Craft et al. | Mar 2007 | A1 |
20070092864 | Reinhardt | Apr 2007 | A1 |
20070097133 | Stauffer et al. | May 2007 | A1 |
20070116332 | Cai et al. | May 2007 | A1 |
20070127802 | Odry | Jun 2007 | A1 |
20070156955 | Royer, Jr. | Jul 2007 | A1 |
20070165917 | Cao et al. | Jul 2007 | A1 |
20070185879 | Roublev et al. | Aug 2007 | A1 |
20070188488 | Choi | Aug 2007 | A1 |
20070226314 | Eick et al. | Sep 2007 | A1 |
20070255704 | Baek et al. | Nov 2007 | A1 |
20070280518 | Nowinski | Dec 2007 | A1 |
20080009055 | Lewnard | Jan 2008 | A1 |
20080042923 | De Laet | Feb 2008 | A1 |
20080086557 | Roach | Apr 2008 | A1 |
20080115139 | Inglett et al. | May 2008 | A1 |
20080137929 | Chen et al. | Jun 2008 | A1 |
20080147554 | Stevens et al. | Jun 2008 | A1 |
20080155890 | Oyler | Jul 2008 | A1 |
20080174593 | Ham | Jul 2008 | A1 |
20080208961 | Kim et al. | Aug 2008 | A1 |
20080224700 | Sorensen | Sep 2008 | A1 |
20080281908 | McCanne et al. | Nov 2008 | A1 |
20080317317 | Shekhar | Dec 2008 | A1 |
20090005693 | Brauner et al. | Jan 2009 | A1 |
20090043988 | Archer et al. | Feb 2009 | A1 |
20090077097 | Lacapra et al. | Mar 2009 | A1 |
20090147793 | Hayakawa et al. | Jun 2009 | A1 |
20090208082 | Westerhoff et al. | Aug 2009 | A1 |
20090210487 | Westerhoff et al. | Aug 2009 | A1 |
20090225076 | Vlietinck | Sep 2009 | A1 |
20090245610 | Can et al. | Oct 2009 | A1 |
20090313170 | Goldner et al. | Dec 2009 | A1 |
20100054556 | Novatzky | Mar 2010 | A1 |
20100060652 | Karlsson | Mar 2010 | A1 |
20100123733 | Zaharia | May 2010 | A1 |
20100174823 | Huang | Jul 2010 | A1 |
20100272342 | Berman et al. | Oct 2010 | A1 |
20100278405 | Kakadiaris et al. | Nov 2010 | A1 |
20110044524 | Wang et al. | Feb 2011 | A1 |
20110112862 | Yu | May 2011 | A1 |
20120078088 | Whitestone et al. | Mar 2012 | A1 |
20120226916 | Hahn | Sep 2012 | A1 |
20120233153 | Roman et al. | Sep 2012 | A1 |
20130176319 | Westerhoff | Jul 2013 | A1 |
20130195329 | Canda | Aug 2013 | A1 |
20140331048 | Casas-Sanchez | Nov 2014 | A1 |
20150213288 | Bilodeau et al. | Jul 2015 | A1 |
20160012181 | Massey | Jan 2016 | A1 |
20170011514 | Westerhoff | Jan 2017 | A1 |
20170098329 | Westerhoff | Apr 2017 | A1 |
20170104811 | Westerhoff | Apr 2017 | A1 |
20170178593 | Westerhoff | Jun 2017 | A1 |
20170346883 | Westerhoff | Nov 2017 | A1 |
20190318512 | Westerhoff | Oct 2019 | A1 |
Number | Date | Country |
---|---|---|
10317384 | Apr 2004 | DE |
0492897 | Jul 1992 | EP |
0502187 | Sep 1992 | EP |
0611181 | Aug 1994 | EP |
0476070 | Aug 1996 | EP |
0925556 | Jun 1999 | EP |
0953943 | Nov 1999 | EP |
0964 366 | Dec 1999 | EP |
187340 | Mar 2001 | EP |
2098895 | Sep 2009 | EP |
2098994 | Sep 2009 | EP |
2405344 | Jan 2012 | EP |
WO9016072 | Dec 1990 | WO |
WO9102320 | Feb 1991 | WO |
WO9205507 | Apr 1992 | WO |
WO9642022 | Dec 1996 | WO |
WO9810378 | Mar 1998 | WO |
WO9812667 | Mar 1998 | WO |
WO9833057 | Jul 1998 | WO |
WO0120546 | Mar 2001 | WO |
WO0134027 | May 2001 | WO |
WO0163561 | Aug 2001 | WO |
WO0174238 | Oct 2001 | WO |
WO0185022 | Nov 2001 | WO |
WO0241760 | May 2002 | WO |
WO02067201 | Aug 2002 | WO |
WO02082065 | Oct 2002 | WO |
WO03061454 | Jul 2003 | WO |
WO03088133 | Oct 2003 | WO |
WO03090171 | Oct 2003 | WO |
WO03098539 | Nov 2003 | WO |
WO04019782 | Mar 2004 | WO |
WO04020996 | Mar 2004 | WO |
WO04020997 | Mar 2004 | WO |
WO04034087 | Apr 2004 | WO |
WO04044848 | May 2004 | WO |
WO04066215 | Aug 2004 | WO |
WO04072906 | Aug 2004 | WO |
WO05071601 | Aug 2005 | WO |
WO09029636 | Mar 2009 | WO |
WO09067675 | May 2009 | WO |
WO09067680 | May 2009 | WO |
WO11065929 | Jun 2011 | WO |
WO2015063188 | May 2015 | WO |
Entry |
---|
ATI Website Index, http://www.ati.com/developer/index.html, Dec. 20, 2002, 2 pages. |
Boone et al., Recognition of Chest Radiograph Orientation for Picture Archiving and Communications Systems Display Using Neural Networks, J. Digital Imaging, 1992, 5(3), 190-193. |
Boone et al., Automated Recognition of Lateral from PA Chest Radiographs: Saving Seconds in a PACS Environment, J. Digital Imaging, 2003, 16(4), 345-349. |
Luo et al., Automatic Image Hanging Protocol for Chest Radiographs in a Pacs, IEEE Transactions on Information Technology in Biomedicine, 2006, 10(2), 302-311. |
Cabral et al., Accelerated Volume Rendering and Tomographic Reconstruction Using Texture Mapping Hardware-, Silicon Graphics Computer Systems, 1995 IEEE, DD. 91-97. |
Carr, Nathan A., Jesse D. Hall, John C. Hart, The ray engine, Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, Sep. 1-2, 2002, pp. 37-46. |
Chidlow, et al., Rapid Emission Tomography Reconstruction, Proceedings of the 2003 Eurographics/IEEE TVCG Workshop on Volume Graphics, Tokyo, Japan, Jul. 7-8, 2003, 13 pages. |
Cohen, Michael, et al., A Progressive Refinement Approach to Fast Radiosity Image Generation, Computer Graphics, vol. 22, No. 4, Aug. 1988, pp. 75-84. |
Corner, B., University of Nebraska-Lincoln, MatLab.txt, 2003, 1 page. |
Dachille, et al., High-Quality Volume Rendering Using Texture Mapping Hardware, Siggraph/Eurographics Hardware Workshop (1998) (8 pages). |
Dempster, et al., Maximum Likelihood From Incomplete Data via the EM Algorithm, Harvard University and Educational Testing Service, Dec. 8, 1976, pp. 1-38. |
Dennis, C, et al.,, Overview of X-Ray Computed Tomography, http://www.howstuffworks.com/framed.htm?parent=c...tm&url=http://www.ctlab.geo.utexas.edu/overview/, Dec. 26, 2002, 5 pages. |
Dobbins, et al., Digital X-Ray Tomosynthesis: Current State of the Art and Clinical Potential, Physics in Medicine and Biology, vol. 48, pp. R65-R106 (2003). |
Doggett, Michael, ATI, Programmability Features of Graphics Hardware, (paper) Apr. 23, 2002, pp. C1-C22. |
Du, H., Sanchez-Elez, M., Tabrizi, N., Bagherzadeh, N., Anido, M. L., and Fernandez, M. 2003. Interactive ray tracing on reconfigurable SIMD MorphoSys. In Proceedings of the 2003 Conference on Asia South Pacific Design Automation (Kitakyushu, Japan, Jan. 21-24, 2003). ASPDAC. ACM, New York, NY, 471-476. |
Eldridge Matthew, Homan Igehy, Pat Hanrahan, Pomegranate: a fully scalable graphics architecture, Proceedings of the 27th annual conference on Computer graphics and interactive techniques, p. 443-454, Jul. 2000. |
Fang, L., et al., Fast Maximum Intensity Projection Algorithm Using Shear Warp Factorization and Reduced Resampling, Mangetic Resonance in Medicine 47:696-700 (2002). |
Filtered Backprojection Reconstruction, http://www.physics.ubd.ca/-mirg/home/tutorial/fbDrecon.html, 216/2003, 5 pages. |
Goddard et al., High-speed cone-beam reconstruction: an embedded systems approach, 2002, SPIE vol. 4681, pp. 483-491. |
Grass et al., Three-dimensional reconstruction of high contrast objects using C-arm image intensifier projection data, 1999, Computerized Medical Imaging and Graphics, 23, pp. 311-321. |
Hastreiter et al. (Integrated registration and visualization of medical image data, Proc. Computer Graphics International, Jun. 22-26, 1998, pp. 78-85). |
Hopf, M., Ertl, T., Accelerating 3d Convolution Using Graphics Hardware, Proc. IEEE Visualization, 1999, 5 pages. |
Hudson, et al., Accelerated Image Reconstruction Using Ordered Subsets of Projection Data, IEEE Transactions on Medical Imaging, vol. 13, No. 4, Dec. 1994, pp. 601-609. |
Iterative definition, Merriam-Webster on-line dictionary, printed Aug. 26, 2010, 3 pages. |
Jain, Anju, A Programmable Graphics Chip, pcquest.com, Jun. 18, 2001. |
Jones et al., Positron Emission Tomographic Images and Expectation Maximization: A VLSI Architecture for Multiple Iterations Per Second, Computer Technology and Imaging, Inc., 1988 IEEE, pp. 620-624. |
Kajiya, J. T., Ray tracing volume densities, Proc. Siggraph, Jul. 1984, Computer Graphics, vol. 18, No. 3, pp. 165-174. |
Karlsson, Filip; Ljungstedt, Carl Johan; Ray tracing fully implemented on programmable graphics hardware, Master's Thesis, Chalmers University of Technology, Dept. of Computer Engineering, Goteborg, Sweden, copyright © 2004, 29 pages. |
Kruger J. and R. Westermann, Acceleration Techniques for GPU-based Volume Rendering, Proceedings of IEEE Visualization, 2003, 6 pages. |
Lange et al., EM Reconstruction Algorithms for Emission and Transmission Tomography, J Computer Assisted Tomography 8, DD. 306, et seq. (1984). |
Lange et al., Globally Convergent Algorithms for Maximum a Posteriori Transmission Tomography, IEEE Transactions on Image Processing, Vo. 4, No. 10, Oct. 1995, pp. 1430-1438. |
Li et al., Tomographic Optical Breast Imaging Guided by Three-Dimensional Mammography, Applied Optics, Sep. 1, 2003, vol. 42, No. 25, pp. 5181-5190. |
Li, et al., A Brick Caching Scheme for 30 Medical Imaging, Apr. 15-18, 2004, IEEE International Symposium on Biomedical Imaging: Macro to Nano 2004, vol. 1, pp. 563-566. |
Maes, et al. Multimodality Image Registration by Maximization of Mutual Information, IEEE Tran. on Medical Imaging, vol. 16, No. 2, Apr. 1997. pp. 187-198). |
Max, N., Optical Models for Direct Volume Rendering, IEEE Transactions on Visualization and Computer Graphics, Jun. 1995, 1(2): pp. 99-108. |
McCool, M. et al., Shader Algebra, 2004, pp. 787-795. |
McCool, Michael J., Smash: A Next-Generation API for Programmable Graphics Accelerators, Technical Report CS-200-14, Computer Graphics Lab Dept. of Computer Science, University of Waterloo, Aug. 1, 2000. |
Microsoft, Architectural Overview Direct for 3D, http://msdn.microsoft.com/library/default.asp ?url=/library/en-us/dx8_c/directx_cpp/Graphics/ProgrammersGuide/GettingStarted/ Architecture, 12120/2002, 22 pages. |
Mitchell, Jason L., RadeonTM 9700 Shading, SIGGRAPH 2002—State of the Art in Hardware Shading Course Notes, DD.3.1-1-3.1-39, 39 pages. |
Mitschke et al., Recovering the X-ray projection geometry for three-dimensional tomographic reconstruction with additional sensors: Attached camera versus external navigation system, 2003, Medical Image Analysis, vol. 7, pp. 65-78. |
Mueller, K., and R. Yagel, Rapid 3-D Cone Beam Reconstruction With the Simultaneous Algebraic Reconstruction Technique (SART) Using 2-D Texture Mapping Hardware, IEEE Transactions on Medical Imaging, Dec. 2000, 19(12): pp. 1227-1237. |
Navab, N., et al., 3D Reconstruction from Projection Matrices in a C-Arm Based 3D-Angiography System, W.M. Wells e al., eds., MICCAI'98, LNCS 1496, pp. 119-129, 1998. |
Parker, S., et al., Interactive Ray Tracing for Isosurface rendering, IEEE, 1998, pp. 233-258. |
PCT/US2008/084282, Preliminary and International Search Reports, dated May 11, 2011, 7 pages. |
PCT/US2005/000837, Preliminary and International Search Reports, dated May 11, 2005, 7 pages. |
PCT/US2008/74397, Preliminary and International Search Reports, dated Dec. 3, 2008, 7 pages. |
PCT/US2008/84368, Preliminary and International Search Reports, dated Jan. 13, 2009, 7 pages. |
PCT/EP2016/067886, Preliminary and International Search Reports, dated Jan. 17, 2017, 18 pages. |
PCT/EP2018/075744, Preliminary and International Search Reports, dated Feb. 1, 2019, 17 pages. |
PCT/US2008/84376, Preliminary and International Search Reports, dated Jan. 12, 2009, 6 pages. |
JP2018-524544, Office Action, dated Jun. 2, 2020, 4 pages (& English translation). |
EP3329405, Office Action, dated Apr. 6, 2020, 5 pages. |
Pfister, H., et al., The VolumePro real-time ray-casting System, Computer Graphics Proceedings of SIGGRAPH), Aug. 1999, No. 251-260. |
Phong, B. T. Illumination for Computer Generated Pictures, Communications of the ACM, 18(6), Jun. 1975, pp. 311-317. |
Porter, D. H. 2002. Volume Visualization of High Resolution Data using PC-Clusters. Tech, rep., University of Minnesota. Available at http://www.lcse.umn.edu/hvr/pc_vol_rend_L.pdf. |
Potmesil, M. and Hoffert, E. M. 1989. The pixel machine: a parallel image computer. In Proceedings of the 16th Annual Conference on Computer Graphics and interactive Techniques SIGGRAPH '89. ACM, New York, NY, 69-78. |
Purcell, T., et al., Real-time Ray Tracing on Programmable Graphics Hardware, Department of Computer Science, Stanford University, Stanford, CA, Submitted for review to SIGGRAPH 2002, 2002. http://graphics.stanford.edu/papers/rtongfx/rtongfx_submit.pdf. |
Purcell, T., et al., Ray tracings on Programmable Graphics Hardware, Computer Graphics (Proceedings of SIGGRAPH), 1998, pp. 703-712. |
Purcell, Timothy J., Craig Donner, Mike Cammarano , Henrik Wann Jensen , Pat Hanrahan, Photon mapping on programmable graphics hardware, Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, Jul. 26-27, 2003, 11 pages. |
Ramirez et al. (Prototypes stability analysis in the design of a binning strategy for mutual information based medical image registration, IEEE Annual Meeting of the Fuzzy Information, Jun. 27-30, 2004, vol. 2, pp. 862-866. |
Rib Cage Projection, downloaded from http://www.colorado.edu/physics/2000/tomography/final_rib_cage.html on Dec. 26, 2002, 3 pages. |
Roettger, Stefan, et al., Smart Hardware-Accelerated Volume Rendering, Joint EUROGRAPHICS—IEEE TCVG Symposium on Visualization, 2003, pp. 231-238, 301. |
Sandborg, Michael, Computed Tomography: Physical principles and biohazards, Department of Radiation Physics, Faculty of Health Sciences, Linkoping University, Sweden, Report 81 ISSN 1102-1799, Sep. 1995 ISRN ULI-RAD-R--81--SE, 18 pages. |
Sarrut et al. (Fast 30 Image Transformations for Registration Procedures, Proc. Int. Conf. on Image Analysis and Processing, Sep. 27-29, 1999, pp. 446-451. |
Shekhar, R.; Zagrodsky, V., Cine MPR: interactive multiplanar reformatting of four-dimensional cardiac data using hardware- accelerated texture mapping, IEEE Transactions on Information Technology in Biomedicine, vol. 7, No. 4, pp. 384-393, Dec. 2003. |
Silver, et al., Determination and correction of the wobble of a C-arm gantry, Medical Imaging 2000: Image Processing, Kenneth M. Hanson, ed., Proceedings of SPIE vol. 3970 (2000). |
Stevens, Grant, et al., Alignment of a Volumetric Tomography System, Med. Phys., 28 (7), Jul. 2001. |
Tao, W., Tomographic mammography using a limited number of low dose cone beam projection images, Medical Physics, AIP, Melville, NY vol. 30, pp. 365-380, Mar. 2003, ISSN: 0094-2405. |
Tasdtzen, T., Ross Whitaker, Paul Burchard , Stanley Osher, Geometric surface processing via normal maps, ACM Transactions on Graphics (TOG), v.22 n.4, p. 1012-1033, Oct. 2003. |
Tasdizen, T.; Whitaker, R.; Burchard, P.; Osher, S.; Geometric surface smoothing via anisotropic diffusion of normals, IEEE Visualization, VIS 2002, Nov. 2002, pp. 125-132. |
Viola, I, et al., Hardware Based Nonlinear Filtering and Segmentation Using High Level Shading Languages, Technical Report TR-186-02-3-07, May 2003, 8 pages. |
Viola, P., Alignment by Maximization of Mutual Information, PhD Thesis MIT (Also Referred to as—AI Technical report No. 1548), MIT Artificial Intelligence Lab, Jun. 1, 1995, pp. 1-29. |
Weiler, M, M. Kraus and T. Ertl, Hardware-Based View-Independent Cell Projection, Proceedings IEEE Symposium on Volume Visualization 2002, pp. 13-22. |
Weiler, M. et al., Hardware-based ray casting for tetrahedral meshes, IEEE Visualization, VIS 2003, Oct. 24-24, 2003, pp. 333-340. |
Weiler, M. et al., Hardware-Based view-independent Cell Projection, IEEE, 2002, pp. 13-22. |
Weiskopf, D., T. Schafhitzel, T. Ertl, GPU-Based Nonlinear Ray Tracing, EUROGRAPHICS, vol. 23, No. 3, Aug. 2004. |
Wen, Junhai; Zigang Wang; Bin Li; Zhengrong Liang; An investigation on the property and fast implementation of a ray-driven method for inversion of the attenuated Radon transform with variable focusing fan-beam collimators, 2003 IEEE Nuclear Science Symposium Conference Record, vol. 3, Oct. 19-25, 2003, pp. 2138-2142. |
Wikipedia, Anonymous, ‘Volume Rendering’ May 30, 2015, retrieved Nov. 4, 2016, https://en.wikipedia.org/w/index.php?title=Volume_rendering&oldid=664765767. |
Wikipedia, Anonymous, ‘Tomographic Reconstruction’ Dec. 6, 2014, retrieved Nov. 4, 2016, https://en.wikipedia.org/w/index.php?title=Tomographic_Reconstruction&oldid=636925688. |
Wu et al., Tomographic Mammography Using a Limited Number of Low-dose Conebeam Projection Images, Med. Phys., pp. 365-380 (2003). |
Xu et al., Toward a Unified Framework for Rapid 30 Computed Tomography on Commodity GPUs, Oct. 19-25, 2003, IEEE Nuclear Science Symposium Conference 2003, vol. 4, pp. 2757-2759. |
Xu et al., Ultra-fast 30 Filtered Backprojection on Commodity Graphics Hardware, Apr. 1-18, 2004, IEEE International symposium on Biomedical Imaging: Macro to Nano, vol. 1, pp. 571-574 and corresponding power point presentation. v. |
Number | Date | Country | |
---|---|---|---|
20200366614 A1 | Nov 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16403219 | May 2019 | US |
Child | 16986000 | US | |
Parent | 15652164 | Jul 2017 | US |
Child | 16403219 | US | |
Parent | 15361038 | Nov 2016 | US |
Child | 15652164 | US | |
Parent | 13831982 | Mar 2013 | US |
Child | 15361038 | US |