Not applicable.
Not applicable.
A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or patent disclosure as it appears in the Patent and Trademark Office, patent file or records, but otherwise reserves all copyright rights whatsoever.
One or more embodiments of the invention generally relate to fluid treatment. More particularly, the invention relates to an integrated process for fluid treatment.
In conventional fluid treatment plants (FTP), processes and technologies are typically applied in series (e.g., stage by stage) to achieve multiple treatment objectives. For example, fluid treatments such as, but not limited to, coagulation, filtration, disinfection, and advanced oxidation, which can be found typically in drinking water and wastewater treatment plants, are used sequentially to remove organic suspended solids, pathogens, chemical and biochemical oxygen demand, natural organic matter, and other micro and macro pollutants. In coagulation and flocculation processes, aggregation of dispersed and colloidal material is promoted by adding polyvalent cations to form larger-sized flocs, which can eventually be removed by settling or filtration. Disinfection and advanced oxidation are further polishing steps entailing the use of physical or chemical oxidants to inactivate pathogens and/or to destroy persistent micropollutants such as, but not limited to, pharmaceuticals, personal care products and endocrine disrupting compounds.
In all these stages, ad-hoc chemical, biological and physical compounds (e.g. treating agents) are introduced into the contaminated fluid stream separately in a sequential manner while mixing is provided via active (e.g., rotating) or passive (e.g. static) blades.
The flocculation stage 110 can be followed or enhanced by the addition of an absorbent 121 in a coagulation stage 120 if further treatment is required. Similarly as for flocculation stage 110, adsorbent 121 is added to fluid 103 and then properly mixed in a rapid mix vessel 123, for example, using rotating blades 122. Fluid 103 mixed with adsorbent 121 then enters a settling tank 124 that separates the exhausted absorbent 121 from treated water 104 while generating sludge 126, which is finally drained from the bottom of a second settling tank 125.
When the microbial or micropollutant contamination exiting the coagulation, flocculation and absorption stages still exceeds the maximum allowed concentration, treated water 104 is subjected to further treatment such as a disinfection/advanced oxidation stage 130, a process meant to remove disease-causing organisms and potentially toxic or carcinogenic micropollutants from the fluid stream. Thus, a disinfectant and/or oxidant 131 is delivered to treated water 104 via a metering device and then mixed to ensure proper dispersion with a mixing device such as a rotating blades portion 132 in a rapid mixing zone 133. Once disinfectant and/or oxidant 131 is/are properly dispersed in treated water 104, a contact tank 134 allows the pathogens/micropollutants to accumulate the needed dose and contact time for inactivation/oxidation.
Finally, a treated fluid 105 can be supplied for drinking purposes, discharged into a receiving body (e.g., a lake, the soil, an ocean, etc.) or reused for agricultural, industrial or recreational purposes. As clearly shown in
In fluid treatment applications, mixing is often needed in order to enhance treatment performance and efficiency. As an example, effective rapid mixing generally ensures the fluid particles comes into contact with the injected treating agents for the designated time such that purification reactions get initiated and occur over time. It is well documented the lack of mixing is responsible for diffusion-limited or incomplete reactions, known as one of the main causes of treatment inefficiency and undesired byproduct formation in chemical reactor engineering. Therefore, proper rapid mixing leads to maximization of process efficiency and minimization of treatment time (and cost) for a given treatment objective. It is equally relevant that a reactor is designed in a way that the contact time experienced by a parcel of fluid is as uniform as possible, which would lead to a maximization of process efficiency and minimization of treating agents' usage and undesired byproduct formation. It is therefore an objective of the present invention to provide an effective, fully controllable, modular and integrated mixing/treatment means for the purification of a contaminated fluid.
Mixing and treatment operations often are complex and multi-faceted. They can involve single-phase liquid mixing/treatment as well as multiphase mixing/treatment (liquid-liquid mixing, solid-liquid mixing, gas-liquid mixing, and, in some cases, three-phase mixing involving solids, liquids and gases).
Among various methods to promote mixing between treating agents and the contaminated fluid, the use of rotating blades in a mixing tank is probably the oldest and most widely used for fluid treatment. A primary function of such mixing vessels is to provide adequate stirring in vessels of various shapes and sizes. Baffles may or may not be incorporated in the vessels to break up the vortex and also to prevent solid-body rotation of the fluid. Pipes are appropriately located in the vessel to load and unload the fluid. Dip tubes are often employed to inject chemicals and fluids at specific locations. The type of rotating blades employed depends on the type of the vessel and the process objective.
One example of a currently known mixing tank comprises a vessel and two special blades that help produce a large mixing zone which, after adequate time, provides a thorough blending of such liquids.
Another current means of providing mixing is a mixing nozzle apparatus. In this mixing means, a polymer is introduced using special nozzles into a flowing fluid stream to produce a resultant thickened mixture for application in fire extinction. In the fluid mixing nozzle apparatus, two fluids enter into a relatively large vessel and exit through a convergence-divergence channel. The device provides a fluids mixing nozzle that is capable of mixing and atomizing fluids at low pressures. The use of such nozzles may generate substantial hydraulic head losses, and in many high flow-rate applications the hydraulic head losses are highly undesirable.
The use of elbow pipe to enhance mixing has also been previously exploited. More specifically, a fluid mixer apparatus for mixing a carrier liquid such as water with the second liquid substance can be made in the form of an elbow pipe interconnecting the carrier liquid inlet with a discharge pipe. The second liquid is introduced into the fluid stream of the carrier liquid at a point on the outer radius of the elbow where the high velocity stream of carrier liquid impinges upon the side of the elbow pipe to cause the second liquid to be impinged upon by the carrier stream at the point of its highest velocity to impart maximum shear to the agent liquid, thus ensuring maximum mixing of two liquids in the discharge pipe. Since the generated shear rates in the elbow are not significantly high and typically are not considered to be highly anisotropic, this method tends to not produce a uniform mixture. To further enhance mixing performance, more than one mixing elbow may be employed. In an assembly of pipe elbows for mixing and transporting substances along an assembly, assemblies of three pipe elbows are connected successively. Elbow assemblies have an inlet and an outlet disposed in parallel planes and axially offset from one another. The pipe elbows associated with a group have centerlines disposed in mutually perpendicular planes to cause the mixture to rotate as it travels along the pipe elbows.
In some processes (such as sulfuric or hydrofluoric acid alkylation of hydrocarbons), it is helpful that two fluids are mixed together before they come in contact with a third fluid. This can be achieved by an apparatus comprising an inner and outer tube concentrically arranged to form an injection nozzle, which itself is placed within a circulating conduit. The inner tube and the outer tube have ports located on their sidewalls to allow the passage of a fluid through the first tube and into the second tube forming a mixture that leaves the outer tube through ports thereon and enters a circulation vessel. As a result of the many small ports in this system, the pressure drop is large and the system may not be ideal for accommodating large flow rates.
A mixing device to increase the mixing efficiency is an enhanced-mixing corrugated jet pump. A corrugated jet pump incorporates a corrugated annular nozzle o-give that, during pumping operations, creates alternating low and high velocity zones in the o-give of the nozzle. These different velocity zones propagate shear planes that enhance the jet pumps downstream of the mixing. At the same time, the core of the corrugated annular nozzle ring creates alternating vortices in the low and high energy fluids, which also enhances mixing. Two vortices per crown region are generated. These vortices, or swirling actions, partially enhance the jet pump's mixing action.
Another method for mixing fluids uses a pin-based mixing pump. In this method, pins are placed to extend inwardly from a cylindrical housing and outwardly from a coaxial rotor shaft in intermeshing fashion. The pins are generally cylindrical in shape except for a set of half cylindrical pins on the rotor shaft designated for pumping of materials through the housing device. Flow through-put is further enhanced by a set of axially positioned vanes extending from the housing inwardly toward the rotor shaft with curved ends forming a scoop to receive materials being given a rotary flow component about the shaft by its rotation and convert the flow direction to an axial flow path.
Yet another prior art means for mixing fluids describes a mixing pump for pumping fluid from a reservoir with means for injecting additional fluids into the fluid stream on the suction side of the pump and on the discharge side of the pump. The fluids that are injected on the suction side of the pump are mixed with the fluid from the reservoir as these fluids pass through the impeller of the pump. The mixing pump provides effective mixing of the fluids. However, the injection means introduce the injected fluids into the fluid stream at once near the same location and do not enable fluids to be injected and mixed into the fluid stream in a prescribed sequence, and is helpful or needed in some fluid treatment systems. Also, in the present mixing means, the injection means are placed between the inlet and the pump impeller. This causes some of the fluids being injected to potentially escape through the inlet to contaminate the reservoir, and is undesirable in some treatment processes such as, but not limited to, chemigation. In addition, the inlet of the pump is a bell or scoop that is inserted into a tank or reservoir, which provides little flexibility when using these mixing means in fluid treatment systems as it may be difficult to incorporate a tank or reservoir into some systems. Furthermore, the pump has a fixed number of injectors, which also restricts the flexibility of this mixing means. From a mixing/treatment standpoint, the flexibility of the present means is further restricted by the fixed rotational speed of the pump, which would not allow controllable shear rate, mixing gradient, contact time and delivered treating agent dose. Furthermore, such mixing means does not contemplate the use of a catalytic material on the pump body which can promote reactions given the high mixing gradient generated by the pump rotor. Lastly, the mixing means described above would not allow a stage integration between the pumping operation, the treatment and the subsequent separation stage (such as, but not limited to, a pressurize filter) if present.
The chemical induction flash mixers represent another example of prior art. Although such mixing means do enhance mixing and the diffusion of the treating agent into the bulk fluid, it does not allow a full integration of the mixing and treatment stages. Also, it does not enable a precise control of the mixing gradient, gradient dose and contact time as the rotor speed may not be operated at variable speed. The chemical induction flash mixers are not usually suitable to provide a positive head pressure the fluid and are not suitable as multiple arrays of mixers in series or in parallel. As such, they are not typically effective as a means to control the mixing gradient and the contact time.
In view of the foregoing, there is a need for improved techniques for providing a more efficient, adaptable and integrated mixing/treatment method consisting of an effective mixing system and a processing tank unit for the treatment of a contaminated fluid that uses solid, gaseous or liquid treating agents.
The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
Unless otherwise indicated illustrations in the figures are not necessarily drawn to scale.
To achieve the forgoing and other objectives and in accordance with the purpose of the present invention, an integrated method and system for treating contaminated fluids is presented. It is to be understood that the present invention is not limited to the particular methodology, compounds, materials, manufacturing techniques, uses, and applications, described herein, as these may vary. It is to be understood that the terminology used herein is used for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention.
In one embodiment of the present invention, an integrated method for an exemplary sequence of the mode of action of a at least one pump-mixer comprises the steps of transferring and mixing, simultaneously, the contaminated fluid containing gaseous, solid or liquid contaminants, possibly having large clusters of particles, and treating agents/compositions in a processing tank. Furthermore, treating agents may be dispensed/injected into the body of at least one pump-mixer associated with the suction stream of the contaminated fluid in the suction pipe. A rapid and vigorous mixing is provided by the at least one pump-mixer. Such rapid and vigorous mixing enhances the treating agents' processing rates and it disassociates/disaggregates the large cluster of particles, if present in the contaminated fluid, into smaller size particles, thus making the contaminated fluid prawn to treatment. The process residuals originated by the treatment, usually in the form of “sludge”, are then separated from the treated fluid. If catalytic or oxidative processes are promoted, rapid and vigorous mixing of treating agents within the contaminated fluid are instrumental in substantially enhancing such processing rates, for example by improving the efficiency of diffusion-limited reaction kinetics such as, but not limited to, the ones of oxidative or catalytic processes promoted by the treating agents.
In another embodiment of the present invention, a method for an exemplary sequence of the mode of action of an at least one pump-mixer comprises the steps of incorporating an ultrasonic treatment mechanism to the integrated process for treating the contaminated fluid, in-conjunction with an at least one pump-mixer. Incorporating an ultrasonic treatment mechanism to the process unit for treating the contaminated fluid may substantially improve the reaction and processing rates of the treating agents and consequently achieving relatively rapid reaction kinetics such as, but not limited to, the ones of catalytic and oxidative processes promoted by treating agents to further improve the overall efficiency of the foregoing integrated process.
In another embodiment of the present invention, a method for an exemplary sequence of the mode of action of a at least one pump-mixer comprises the steps of configuring a heating mechanism such as, but not limited to, microwaves, heating coils, or super heated stream to heat the contaminated fluid admixed with treating agents, to a predetermined range of temperature, to achieve, relatively rapid and improved reaction kinetics such as, but not limited to, the ones of catalytic processes caused by treating agents.
In another embodiment of the present invention, a method for an exemplary sequence of the mode of action of an at least one pump-mixer comprises the steps of incorporating an electromagnetic/electrostatic treatment mechanism for treating the contaminated fluid in conjunction with an at least one pump-mixer. Incorporating an electromagnetic/electrostatic treatment mechanism to the process unit for treating the contaminated fluid may substantially improve the reaction and processing rates and, consequently, the system efficiency by achieving relatively rapid reaction kinetics such as, but not limited to, the ones of oxidative and/or catalytic processes performed by treating agents, which further improve the overall efficiency of the foregoing integrated process.
The heating mechanism, in-conjunction with the high-frequency ultrasound mechanism and the electromagnetic/electrostatic mechanism, and the at least one pump-mixer may further substantially improve the overall reaction and processing rates and efficiency of the foregoing process for treating the contaminated fluids.
In another embodiment of the present invention, a method for an exemplary sequence of the mode of action of an at least one pump-mixer comprises the steps of configuring an at least one pump-mixer to an least one processing tank functioning as a “circulation” pump-mixer, to achieve rapid and vigorous mixing of the contaminated fluid admixed with treating agents may enhance reaction kinetics such as, but not limited to, the ones of catalytic and oxidative processes promoted by treating agents. It is to be noted that configuring an at least one pump-mixer to an least one processing tank functioning as a circulation pump-mixer may provide relatively uniform mixing for the contaminated fluid admixed with treating agents and also for a slurry phase contaminated fluid as well.
In another modified embodiment of the present invention, a method for an exemplary sequence of the mode of action of a at least one pump-mixer, comprising the steps of conducting the integrated fluid treatment process with or without the dispensing/injection stage, for example, but not limited to, when the treating agents are dispensed/injected using metering pumps, or when the injectors are located directly on the body of the at least one pump-mixer, which may be a suction pipe removably connected to the at least one pump-mixer.
In another embodiment of the present invention, a method for an exemplary sequence of the mode of action of an at least one pump-mixer comprises the steps of increasing the overall processing efficiencies by limiting the anti-synergistic actions between treating agents. This is achieved by the rapid mixing mode of action of the at least one pump-mixer which enables an instantaneous dispersion of the treating agents with the contaminated fluid. It is to be emphasized that the rapid mixing, generally, prevents the treating agents from coming into contact with each other prior to being dispersed in the matrix of the contaminated fluid. For example, without limitation, it is known to those skilled in the art that activated carbon quenches oxidants such as hydrogen peroxide and chlorine, however its quenching rate depends on the activated carbon and oxidant local concentrations; notably, such a quenching rate can be significantly reduced by lowering their concentrations by dilution/dispersion with the contaminated fluid using substantially rapid mixing
In another embodiment of the present invention, the system comprises a treatment unit. The treatment unit further comprises at least one pump-mixer unit having an at least one at least one pump-mixer. The at least one pump-mixer performs multiple functions, for example, but not limited to, a means for transferring the contaminated fluid admixed with treating agents, a means for rapid and vigorous mixing mode and a means for providing positive head pressure to the contaminated fluid. The rapid and vigorous mixing mode is used by the at least one pump-mixer for desegregating/disassociating large clusters of particles into smaller size particles present in the contaminated fluid, which ultimately allows the rapid penetration of the treating agents into the particle core thus preventing process inefficiency due to presence of particle-associated contaminants and their diffusion-limited reaction kinetics.
In another embodiment of the present invention, the treatment unit may further be equipped with at least one injector for delivering, either simultaneously or in a prescribed sequence, the liquid, solid or gaseous treating agents into the contaminated fluid to be treated.
In another embodiment of the present invention, the treatment unit may further be equipped with a processing tank having the dual function of treatment and separation unit such as, but not limited to, a clarifier, with or without internal surfaces such as, but not limited to, lamellas to streamline/direct the fluid, configured to simultaneously promote an enhanced separation of a gaseous and/or solid phase from the liquid by providing surface friction and/or advanced treatment (such as, but not limited to, coagulation/absorption/disinfection/oxidation) by generally ensuring that parcels of contaminated fluid (e.g., liquid, gaseous or solid component) receive the same treating agent dose and contact time.
In another embodiment of the present invention, the treatment unit may further be configured with a granular, polymeric or ceramic filter with pore size ranging from millimeters (e.g., sand or anthracite filters) to nanometers (e.g., nano-filtration membranes) to further substantially enhance gaseous, liquid or solid particles separation, advanced treatment (such as, but not limited to, coagulation/absorption/disinfection/oxidation), and the removal of process residuals including, but not limited to, excess sludge and byproducts.
In another embodiment of the present invention, the treatment unit may also be equipped with at least one at least one pump-mixer to break down the contaminated solid, gaseous and liquid particles, potentially present into the contaminated fluid, into relatively, smaller size particles while simultaneously delivering gaseous, liquid or solid treating agents into the particle cores.
In another embodiment of the present invention, the treatment unit may also be equipped with one or more at least one pump-mixers, either connected in series or in parallel for simultaneously providing positive head pressure, and at least one uniform mixing of the contaminated fluid.
In another embodiment of the present invention, the treatment unit may be configured with at least one heating mechanism such as, but not limited to, microwaves, heating coils or super heated steam for heating the contaminated fluid in-conjunction with treating agents, to a predetermined temperature range, to achieve the rapid reaction kinetics such as, but not limited to, the ones of catalytic processes performed by treating agents to further improve the overall processing efficiency for treating the contaminated fluid.
In another embodiment of the present invention, the treatment unit may be configured with one or more high-frequency ultrasonic mechanisms to facilitate an integrated mixing of the contaminated fluid, and to achieve the rapid reaction kinetics such as, but not limited to, the ones of catalytic processes performed by treating agents to further substantially improve the overall processing efficiency for treating the contaminated fluid.
In another embodiment of the present invention, the treatment unit may be configured with an electromagnetic/electrostatic treatment mechanism for enhancing the processing rate of the contaminated fluid, as well as to facilitate the separation between the process residuals and the purified fluid.
In another embodiment of the present invention, a system for an exemplary sequence of the mode of action for the at least one pump-mixer may be configured to implement simultaneous application of conflicting treating agents, since the rapid mixing promoted by the at least one at least one pump-mixer substantially increases the overall efficiency of the process due to limitation of the anti-synergistic actions of the treating agents. The rapid mixing, generally, prevents the treating agents form coming into contact with each other before they are dispersed in the contaminated fluid. For example, without limitation, it is known to those skilled in the art that activated carbon quenches oxidants such as hydrogen peroxide and chlorine, however its quenching rate depends on the activated carbon and oxidant local concentrations; notably, such a rate can be significantly reduced by lowering their concentrations by dilution with the contaminated fluid using substantially rapid mixing.
In another embodiment of the present invention, the integrated method and system for fluid treatment may be used as a pre-treatment to improve the ability for treatment of subsequent processes such as, but not limited to, the ones carried out in mechanical, physical, biological and chemical processing units.
In another embodiment of the present invention, the integrated method and system for fluid treatment system may be used as a post-treatment of effluents exiting previous treatment stages such as, but not limited to, the ones carried out in mechanical, physical, biological and chemical processing units.
Other features, advantages, and objects of the present invention will become more apparent and be more readily understood from the following detailed description, which should be read in conjunction with the accompanying drawings.
The present invention is best understood by reference to the detailed figures and description set forth herein.
Embodiments of the invention are discussed below with reference to the Figures. However, those skilled in the art will readily appreciate that the detailed description given herein with respect to these figures is for explanatory purposes as the invention extends beyond these limited embodiments. For example, it should be appreciated that those skilled in the art will, in light of the teachings of the present invention, recognize a multiplicity of alternate and suitable approaches, depending upon the needs of the particular application, to implement the functionality of any given detail described herein, beyond the particular implementation choices in the following embodiments described and shown. That is, there are numerous modifications and variations of the invention that are too numerous to be listed but that all fit within the scope of the invention. Also, singular words should be read as plural and vice versa and masculine as feminine and vice versa, where appropriate, and alternative embodiments do not necessarily imply that the two are mutually exclusive.
It is to be further understood that the present invention is not limited to the particular methodology, compounds, materials, manufacturing techniques, uses, and applications, described herein, as these may vary. It is also to be understood that the terminology used herein is used for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention. It must be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include the plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to “an element” is a reference to one or more elements and includes equivalents thereof known to those skilled in the art. Similarly, for another example, a reference to “a step” or “a means” is a reference to one or more steps or means and may include sub-steps and subservient means. All conjunctions used are to be understood in the most inclusive sense possible. Thus, the word “or” should be understood as having the definition of a logical “or” rather than that of a logical “exclusive or” unless the context clearly necessitates otherwise. Structures described herein are to be understood also to refer to functional equivalents of such structures. Language that may be construed to express approximation should be so understood unless the context clearly dictates otherwise.
Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Preferred methods, techniques, devices, and materials are described, although any methods, techniques, devices, or materials similar or equivalent to those described herein may be used in the practice or testing of the present invention. Structures described herein are to be understood also to refer to functional equivalents of such structures. The present invention will now be described in detail with reference to embodiments thereof as illustrated in the accompanying drawings.
From reading the present disclosure, other variations and modifications will be apparent to persons skilled in the art. Such variations and modifications may involve equivalent and other features which are already known in the art, and which may be used instead of or in addition to features already described herein.
Although Claims have been formulated in this Application to particular combinations of features, it should be understood that the scope of the disclosure of the present invention also includes any novel feature or any novel combination of features disclosed herein either explicitly or implicitly or any generalization thereof, whether or not it relates to the same invention as presently claimed in any Claim and whether or not it mitigates any or all of the same technical problems as does the present invention.
Features which are described in the context of separate embodiments may also be provided in combination in a single embodiment. Conversely, various features which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable sub-combination. The Applicants hereby give notice that new Claims may be formulated to such features and/or combinations of such features during the prosecution of the present Application or of any further Application derived therefrom.
References to “one embodiment,” “an embodiment,” “example embodiment,” “various embodiments,” etc., may indicate that the embodiment(s) of the invention so described may include a particular feature, structure, or characteristic, but not every embodiment necessarily includes the particular feature, structure, or characteristic. Further, repeated use of the phrase “in one embodiment,” or “in an exemplary embodiment,” do not necessarily refer to the same embodiment, although they may.
As is well known to those skilled in the art many careful considerations and compromises typically must be made when designing for the optimal manufacture of a commercial implementation any system, and in particular, the embodiments of the present invention. A commercial implementation in accordance with the spirit and teachings of the present invention may configured according to the needs of the particular application, whereby any aspect(s), feature(s), function(s), result(s), component(s), approach(es), or step(s) of the teachings related to any described embodiment of the present invention may be suitably omitted, included, adapted, mixed and matched, or improved and/or optimized by those skilled in the art, using their average skills and known techniques, to achieve the desired implementation that addresses the needs of the particular application.
It is to be understood that any exact measurements/dimensions or particular construction materials indicated herein are solely provided as examples of suitable configurations and are not intended to be limiting in any way. Depending on the needs of the particular application, those skilled in the art will readily recognize, in light of the following teachings, a multiplicity of suitable alternative implementation details.
An embodiment of the present invention and at least one variation thereof provides an integrated treatment system to purify an untreated or contaminated fluid. Some embodiments comprise a treatment unit with a dual function pump and rapid mixer unit (e.g., pump-mixer) formed by one or more pumps acting as a high-energy mixer and a number of injectors that deliver, either simultaneously or in a prescribed sequence, the liquid, solid or gaseous treating agents into a fluid to be treated. Some embodiments may incorporate a treatment unit with a dual function separation and processing tank such as, but not limited to, a clarifier, with or without internal surfaces such as, but not limited to, lamellas to streamline/direct the fluid, meant to simultaneously promote enhanced separation by providing surface friction and/or advanced treatment (such as, but not limited to, coagulation/absorption/disinfection/oxidation) by generally ensuring that liquid, gaseous or solid particle receive the same treating agent dose and contact time. Some embodiments use a granular, polymeric or ceramic filter with pore sizes ranging from millimeters (e.g., sand or anthracite filters) to nanometers (e.g., nanofiltration membranes) to further enhance gaseous, liquid or solid particles separation, coagulation/absorption/disinfection/oxidation as well as the removal of process residuals including, but not limited to, excess sludge and byproducts. Some embodiments comprise one or more pumps acting as high-energy mixers to break up the contaminated solid, gaseous and liquid particles into smaller ones while simultaneously delivering a gaseous, liquid or solid treating agent into the particle cores, thus allowing the treatment of challenging multiphase fluids such as, but not limited to, combined sewer overflow, raw effluents and sludge. Some embodiments comprise a system made of one or more pumps connected in series or in parallel able to simultaneously provide positive head pressure, high-energy mixing and milling to the constituents of an untreated or contaminated fluid. In some of these embodiments, the system functions without the use of injection or metering pumps.
In some embodiments of the present invention, a method for an exemplary sequence of the mode of action of an at least one pump-mixer comprises the steps of incorporating an ultrasonic treatment mechanism to the integrated process for treating the contaminated fluid in-conjunction with an at least one pump-mixer. Incorporating an ultrasonic treatment mechanism to the process unit for treating the contaminated fluid may substantially, improve the reaction rate of the treating agents and consequently, achieving relatively rapid reaction kinetics such as, but not limited to, the ones of oxidative and/or catalytic processes performed by treating agents to further improve the overall efficiency of the foregoing integrated process.
In another embodiment of the present invention, a method for an exemplary sequence of the mode of action of a at least one pump-mixer comprises the steps of configuring a heating mechanism such as, but not limited to, heating coils, or superheated stream to heat the contaminated fluid admixed with treating agents, to a predetermined range of temperature, to achieve, relatively rapid and improved reaction kinetics such as, but not limited to, the ones of oxidative and/or catalytic processes caused by treating agents.
In another embodiment of the present invention, a method for an exemplary sequence of the mode of action of a at least one pump-mixer comprises the steps of configuring an electromagnetic/electrostatic mechanism such as, but not limited to, an illuminating device, magnetic separators, or electroseparators to enhance the oxidative and/or catalytic processing rates occurring in the contaminated fluid admixed with treating agents, as well as to provide a predetermined range of activation energy to fluid admixed with the catalyst.
The combination of heating mechanism, the high-frequency ultrasound mechanism and the electromagnetic/electrostatic mechanism, and the at least one pump-mixer may further substantially improve the overall efficiency of the foregoing process for treating the contaminated fluids.
Referring to
In some embodiments, process residuals in the form of sludge 333 containing exhausted treating agents (coagulation/adsorption/oxidation) may be recycled upstream (either as they are or after appropriate treatment) to one of the injection modules using an injector located on the injection stage 310. In some other embodiments, a portion of mixture 322, treated fluid 302 or sludge 333 can be recycled upstream to one of the injection modules via the set of injectors in injection stage 310 to allow further treatment, either using metering pumps or exploiting the suction conditions generated by fluid pump 321 and the set of injectors, and are typically employed to deliver fresh treating agents to the system.
In the present embodiment, the mixing pump is able to provide positive head pressure and rapid and adjustable mixing of gaseous, liquid or solid treating agents into a contaminated flow stream. The rapid mixing of the pump enhances fast and diffusion-limited reaction kinetics such as, but not limited to, the ones of oxidative and/or catalytic processes performed by the treating agents. Furthermore, the high shear rates created by the pump are able to disaggregate contaminated particles while simultaneously delivering the treating agents to the particle core, as shown by way of example in
Those skilled in the art, in light of the present teachings, will readily recognize that the pump described in the foregoing is for exemplary purposes and that various different types of pumps or pumps with different features may be used in alternate embodiments. For example, without limitation, direct lift, positive displacement pumps such as, but not limited to, gear pumps, progressing cavity pumps, roots-type pumps, peristaltic pumps, reciprocating-type pumps, compressed-air-powered double-diaphragm pumps, impulse pumps, hydraulic ram pumps, etc. may be used in some alternate embodiments. Some alternate embodiments may employ velocity pumps such as, but not limited to, centrifugal pumps, radial flow pumps, axial flow pumps, mixed flow pumps, eductor-jet pumps, etc. Density pumps, gravity pumps, or steam pumps may also be used in some alternate embodiments.
Those skilled in the art, in light of the present teachings, will readily recognize that the injector described in the foregoing is for exemplary purposes and that various different types of injectors with different features may be used in alternate embodiments. For example, without limitation, other kind of injectors such as jets nozzles, high velocity nozzles, propelling nozzles, magnetic nozzles, spray nozzles, vacuum nozzles, or shaping nozzles as injectors can be used in alternate embodiments. Similarly, specially shaped injectors such as, but not limited to, L-shaped or angled injectors can be used for example, without limitation, to direct the treating agents towards a targeted region of the contaminated fluid or to generally prevent early mixing between the treating agents which may cause anti-synergistic action thus reducing the processing rates or generating conditions for local corrosion. In some alternate embodiments, treating agents can also be delivered to the contaminated fluid using a venturi injector as well as external metering pumps such as, but not limited to, small radial flow centrifugal pumps (i.e., booster pump), peristaltic pumps, membrane pumps, positive displacement pumps, etc.
Those skilled in the art, in light of the present teachings, will readily recognize that the horizontally uniform plate spacing lamella described in the foregoing is for exemplary purposes and that numerous plate spacing and plate configurations may be used in alternate embodiments to offer the flexibility needed to handle variations in effluent characteristics. For example, without limitation, horizontally non-uniform coarse to fine inclined plates (
Those skilled in the art, in light of the present teachings, will readily recognize that the processing tanks described in the foregoing is for exemplary purposes and that various different types of separation techniques or processing tanks with different features, membranes, or filters may be used in alternate embodiments. For example, without limitation, a circular or rectangular clarifier, with or without baffles, may be utilized in which contaminated fluid fully mixed with treating agents supplied through a tangential or radial pipe injector causing fluid to lower its velocity such that particle settling is allowed. Centrifugal settlers such as, but not limited to, hydro-cyclones can also be used in alternate embodiments to enhance the separation process. In these embodiments, the fluid rotation creates a vortex, which imparts centrifugal forces onto any solid particles within the fluid. These centrifugal forces move the particles away from the center of the tank, thus leaving a relatively clean fluid at the center. Similarly, a serpentine-like tank may be used in some alternate embodiments to increase the residence time and produce low speed flow, leading to separation of solid particles from the fluid stream. In addition, alternate physical, mechanical, chemical and biological separation processes can be used in alternate embodiments of the present invention. For example, without limitation, granular filters such as, but not limited to, sand and carbon filters, membrane filters such as, but not limited to, microfiltration, ultrafiltration and nanofiltration systems, magnetic separators, or hydrocyclones can be used in alternate embodiments to remove the delivered treating agents in their solid, liquid and gaseous state from the contaminated fluids.
The mixing method for many embodiments of the present invention may be used in different configurations for easy integration into various types of systems. For example, without limitation, parallel and series configurations of mixing are illustrated by way of example in
The effects of the pump speed on the mixing of treating agents, numerical simulation and computations performed for different impeller angular velocities in an exemplary integrated fluid treatment system are shown by way of example in
A flow scenario that produces a larger value for G results in improved mixing of the existing treating agents in the fluid flow. For incompressible fluid flow, the first term in the above equation (∂ui/∂xi) is zero due to the continuity equation, and thus G is reduced to the following equation:
where Sij=∂ui/∂xj+∂uj/∂xi is the strain rate and √{square root over (SijSij)} the strain rate magnitude.
Thus, the G parameter is calculated by the following equation:
Referring to
A number of experiments have been designed and carried out in order to estimate the treatment efficiency of this exemplary system in terms of chemical oxygen demand (COD) removal, coliform inactivation and sludge production. Four injectors are used in the present embodiment in order to deliver a known amount of coagulant, adsorbent, and disinfectant; however, fewer or more injectors may be used in alternate embodiments. In testing of the present embodiment, the following treating agents were tested: polyaluminium chloride (0-150 μL/L), powder activated carbon (0-30 mg/L), sodium hypochlorite (0-7.5 mg/L), and micronized zeolite (0-150 mg/L). Those skilled in the art, in light of the present teachings, will readily recognize that various different treating agents may be used in alternate embodiments. Table 1 summarizes the combinations tested in the present embodiment, designed according to a well-known statistical technique (e.g. orthogonal Latin square).
Referring to
Those skilled in the art, in light of the present teachings, will readily recognize that the pump-mixer described in the foregoing is for exemplary purposes and that various different types of pumps or pumps with different features may be used in alternate embodiments. For example, without limitation, direct lift, positive displacement pumps such as, but not limited to, gear pumps, progressing cavity pumps, roots-type pumps, peristaltic pumps, reciprocating-type pumps, compressed-air-powered double-diaphragm pumps, impulse pumps, hydraulic ram pumps, etc. may be used in some alternate embodiments. Some alternate embodiments may employ velocity pumps such as, but not limited to, centrifugal pumps, radial flow pumps, axial flow pumps, mixed flow pumps, eductor-jet pumps, etc. Density pumps, gravity pumps, or steam pumps may also be used in some alternate embodiments.
Having fully described at least one embodiment of the present invention, other equivalent or alternative methods of providing an integrated fluid treatment system according to the present invention will be apparent to those skilled in the art. The invention has been described above by way of illustration, and the specific embodiments disclosed are not intended to limit the invention to the particular forms disclosed. For example, the particular implementation of the system may vary depending upon the particular type of application for which it is to be used. The systems described in the foregoing were directed to fluid treatment implementations; however, similar techniques are to use the integrated system for other types of chemical processes such as, but not limited, to, manufacturing processes, refining processes, food processing, etc. Non-fluid treatment implementations of the present invention are contemplated as within the scope of the present invention. The invention is thus to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the following claims.
Claim elements and steps herein may have been numbered and/or lettered solely as an aid in readability and understanding. Any such numbering and lettering in itself is not intended to and should not be taken to indicate the ordering of elements and/or steps in the claims.
The present Utility patent application claims priority benefit of the U.S. provisional application for patent Ser. No. 61/444,115 entitled “INTEGRATED FLUID TREATMENT SYSTEM”, filed on 17, Feb. 2011, under 35 U.S.C. 119(e). The contents of this related provisional application are incorporated herein by reference for all purposes to the extent that such subject matter is not inconsistent herewith or limiting hereof.
Number | Date | Country | |
---|---|---|---|
61444115 | Feb 2011 | US |