The present invention relates to commodity-use reporting, more particularly to the reporting of consumer's commodity usage.
In accordance with illustrative embodiments, a computer-implemented method is provided for reducing a usage or cost of a commodity by reporting to consumers of their unusual usage of the commodity during a current billing period. The computer system retrieves a set of usage-information datasets corresponding to a set of consumers. Each dataset may include a) past usage of the commodity during at least one of a completed billing period that may correspond to a period of similar seasonality as the current billing period and b) a current usage of the commodity during a completed portion of the current billing period. The commodity refers to a utility-based commodity, such as electricity, water, gas, or an aggregation of several resources, such as total energy.
The computer system establishes a set of report-trigger conditions for a set of consumers for the current billing period, each of the report-trigger conditions corresponding to a consumer. In the various embodiments, the computer system may establish the report-trigger condition once for each billing period, such as at the start of the current billing period or before. The report-trigger condition may include at least one unusual usage condition and at least one permissive condition. An unusual usage condition may be defined as an estimated usage for the current bill period exceeding a specified percentage of a baseline defined based on the past usage. This specified percentage may be between 100 percent and 150 percent. An unusual usage condition may also be defined as an estimated usage for a remaining portion of current billing period exceeding a usage threshold defined by the past usage scaled by the specified percentage. Unusual usage conditions may further be defined in terms of an expected cost or an environmental impact. A permissive condition may include a) the consumer's consent to receive the report, b) the report being the first to be sent within the billing period, and c) the unusual condition occurring in an actionable window during the billing period. This actionable window maybe during portions of the billing period that the user may act to curb their usage. For example, in a four-week billing period, the actionable window may include the second and third week of that period.
The computer system may continuously or intermittently monitor usage or spending of the set of consumers to determine, for each consumer, whether their estimated usage, established for each consumer, fulfills their respective consumer's report-trigger condition. The computer system may determine the estimated usage based on a) usage for the completed portion of the current billing period and b) a forecast of the usage for the remaining portion of the current billing period. The forecast may be based upon a moving or trailing history window that may vary between a five-day and ten-day period.
Upon the estimated usage fulfilling the report-trigger condition for a respective consumer, the computer system outputs a report to the consumer. The report may include generating an electronic message or outputting a signal to an intermediary service that sends the report to the consumer. The computer system may transmit, or cause the transmission of, the report to a receiving consumer as an electronic message, such as short message services (SMS), automated voice-messaging service, and electronic mail (“e-mail”). Alternatively, the computer system may transmit, or cause the transmission of, electronic signals to electronic devices located at a consumer's premises to be displayed or relayed and then displayed to the consumer. These electronic devices may include thermostats or a utility meters that communicate with a device operating as a user portal at the premises. The report may include the unusual usage of the commodity such as unusual high cost, unexpected costs, high usage, or higher than expected environmental impact and/or carbon footprint.
In accordance with other embodiments of the invention, the computer-implemented method may detect an unusual usage by the consumer of the commodity, where the measured usage takes into account cost. The method may include retrieving a set of usage-information datasets where each of the dataset may correspond to the usage of the commodity by a consumer. The computer system may retrieve a cost-rate dataset for the current billing period, which may be price-tiers or time-of-use pricing. The computer system may establish a set of report-trigger conditions for a set of consumers for the current billing period where each of the report-trigger condition corresponds to a respective consumer. The report-trigger condition may be derived from the past usage data and the pricing data. The report-trigger condition may include a usage-trigger condition and a cost-trigger condition. The computer system may determine, for each consumer, whether an estimated cost that has been established for the respective consumer for that current billing period fulfills the cost-trigger condition, e.g., the estimated cost exceeds an unusual cost setpoint. The computer system may also determine whether an estimated usage established for the same consumer has also been exceeded (i.e., a usage-trigger condition). The computer system may output or cause to output a report to the consumer if both the usage-trigger and the cost-trigger conditions are fulfilled.
The described method may be employed as a computer program product, which is stored on a machine-readable medium, or computer data signal, embodied by an electromagnetic wave, comprising program code to be executed, particularly, in a computer.
The foregoing features of embodiments will be more readily understood by references to the following detailed description, taken with reference to the accompanying drawings, in which:
Providing an alert of unusual or anomalous utility usage allows consumers to manage their finances while promoting conservation. Consumers may set thresholds of when an alert or report would be sent. However, the thresholds by themselves are insufficient in curbing consumers' spending behavior. For example, the threshold may trigger an alert or report that may be late. When a significant portion of the billing period remains, the consumers may need to continue to spend or use the commodity. Consumers may set a lower threshold in order to receive an earlier warning. However, in order to do so, the consumers would have to understand their usage patterns to set the proper setpoint. Further compounding this problem is the variability in the consumers' usage patterns and the effects from seasonality.
Illustrative embodiments are directed to computer-implemented methods and systems for reporting unusual or anomalous usage of a commodity by consumers. In various illustrative embodiments, a report is provided to the consumers or to a utility or report service provider to relay to the consumers. The report may be electronic or may be generated as a physical hard copy that is mailed to the consumers. Illustrative embodiments further define usage patterns that constitute as being unusual while accounting for seasonality and allowing for the earlier detection of certain usage to curb the consumers' usage or spending.
As used herein, the term “report” generally refers to a signal that results in a visual or an audible indication. Report also refers to the transmission of a signal that results in the giving of such an indication.
The term “usage” refers to a quantity of use, a cost associated with the use, or a quantified metric representing the use or cost, such as environmental impact.
The term “commodity” refers to a utility-based commodity, such as electricity, water, and natural gas, which are consumable finite resources delivered to a fixed structure. Commodity also refers an aggregation of such resources, such as total energy.
The method includes a computer system retrieving 102 a set of usage-information datasets, each corresponding to the usage of the commodity by a set of consumers. For example, the usage-information dataset may include a) past usage of the commodity for a completed billing period and b) a current usage of the commodity during a completed portion of the current billing period.
The computer system may retrieve past usage data from a consumer's old utility bills. These old utility bills may be referred herein as completed billing periods. These bills may be stored in a database operated by the utility, by an archival provider, or by a service provider that sends the unusual usage report to the consumer. Past usage data may also be stored-meter readings that correspond to consumption of the commodity by the consumer.
The current usage of the commodity refers to the most recent, i.e., the last reading (or the last series of readings), from a usage monitoring device (i.e., a utility meter). Current usage may be referred in temporal terms, such as being within the last hour or day. The meter reading may be performed by a utility company or an independent service provider that provides the meter reading to the utility.
The computer system may perform this monitoring operation at a defined schedule during the billing period, such as at every hour, fractions of the hour or day, daily, or weekly. Alternatively, the computer system may perform this monitoring operation at specified events, such as when new usage data is retrieved from the meter or made available from a utility database. The computer system may also perform the monitor operation at a specified portion of the current billing period, such as during the middle of the billing period.
In the various embodiments, the computer system may retrieve current usage data from a database. The current usage data may be a meter reading, but may also be other usage collection device on the premises, such thermostats, sub-meters, and energy management systems.
Past usage for a consumer may also be derived from other consumers. In instances where a consumer has a limited usage history, such as at the beginning of a new service with the utility company, the computer system may use historical usage data of other consumers that have similar home characteristics to form the past usage for this new consumer. These home characteristics may include information, such as size of the premises (in square feet), number of occupants, general age of the premises, dwelling type, presence of a pool, meter reading cycle, distance from each other, and geographic location. In such embodiments, the computer system may analyze datasets of multiple consumers having several or all of these characteristics. Alternatively, the utility company may have estimates of past usage based on geographic location. These estimates may also serve as past usage data for new consumers.
Generally, a premises is equipped with a meter to monitor the usage of the commodity at the premises. A utility company providing the commodity to the premises typically performs a read of the meter in each billing cycle, typically on a monthly basis.
The computer system may establish 104 a report-trigger condition for the current billing period at the beginning or before the period, preferably before the beginning of the period. Alternatively, the report-trigger condition may be established during the current billing period, such as immediately before the report-trigger condition is used in the monitoring for unusual usage. This report-trigger condition is based at least in part from the past usage in the usage-information dataset.
Triggering condition=Uiactual>Uiunusual (Eqn. 1)
The actual usage, Uiactual, of the commodity generally refers to a meter reading or a usage reading. The variable “time i” refers to instances of time during the current billing period. It may be expressed in synchronous intervals, such as by minutes, tenth of an hour, quarter of an hour, hours, or days. For example, “time i” may be in 15-minute increments. Alternatively, the variable “time i” may be asynchronously acquired. It may, for example, be expressed in terms of event identifiers, such as when the meter or usage is read.
The unusual usage profile is the triggering condition that defines an unusual usage. It may be defined by Eqn. 2, where the profile is a baseline historical usage, Uhistorical, scaled by a threshold percentage, Tpercentage. The historical usage, Uhistorical serves as a baseline. The profile may be linear over the number of days in the billing period, N.
Threshold percentage is referred herein as the pre-defined threshold. The threshold percentage is preferable established around 130 percent. However it may vary between 100 percent and 200 percent. The consumer may receive recommendations of the setpoint to use and how it may correspond to various conservation efforts.
Alternatively, the Tpercentage value may be established such that fewer than three alerts are expected to be sent on average to each consumer. The Tpercentage value may also be established to maximize the number of consumers that would receive a report. For example, the threshold may be established by using a set of historical customer usage data for a given utility and determining the distribution of alert occurrences for different threshold levels. The distribution may be analyzed using a histogram. The Tpercentage value may be the threshold level with the maximum number of customers receiving at least one alert. The analysis may be performed across several seasons to reduce seasonal variability.
The baseline historical usage, Uhistorical, may be derived from past usage during similar seasonality. In the various embodiments, the past usage may correspond to usage from one year ago. The past usage data may be an average for the same month across different years.
The triggering condition 306 may include unusual or anomalous cost. Eqn. 3 defines such a triggering condition where the actual cost of the commodity, Ciactual, exceeds the unusual cost profile, Ciunusual, at “time i.”
Triggering condition=Ciactual>Ciunusal (Eqn. 3)
The unusual cost profile, Ciunusual, may be defined by Eqn. 4, where the profile is a baseline historical cost, Chistorical, scaled by a threshold percentage, Tpercentage. The profile may be linear over the number of days in the billing period, N.
Additionally, a consumer may personalize his or her threshold by providing a preference on the frequency of the alert. As a result, rather than an input of the threshold percentage, the system may provide options for a desired alert frequency, such as “normal”, “more frequent”, or “less frequent”. Then based upon the selected desired alert frequency, the computer system may adjust a personalized threshold percentage Tpercentage_customer_x for a given customer. For a normal alert frequency, the computer system may determine a Tpercentage value that would provide, for example, at least three alerts in a year. As such, a “more frequent” alert selection may correspond to a Tpercentage value that would provide an additional alert (e.g., four alerts). And a “less frequent” alert selection may correspond to a Tpercentage value that would provide fewer alerts (e.g., two alerts).
Alternatively, the unusual cost may be expressed in term of a change to environmental impact. Environmental impact may include, for example, carbon foot-print (shown in tons of carbon).
Environmental impact may also be expressed in terms of equivalents to other environmental quantities, for example, the number of miles driven, etc. Consumers may not understand their environmental impact based upon the tonnage of carbon that they generated, thus, the report may be alternatively expressed in relation to a more tangible reference. For example, the report may say that “the energy required to heat and/or to cool the home is equivalent to the consumer driving X number of miles.” The report may also be expressed in a manner to promote conservation. For example, where the consumer has exceeded his or her usage, the report may suggest that the consumer should drive a certain number of miles in order to offset the environmental impact of the extra energy used to heat and/or cool the home.
The environmental benefits or impacts may be calculated using data stored in a look-up-table and applied to the cost and/or usage information. The computer system may use environmental benefits information as published by various government entities or other similar databases.
Referring back to
Another permissive condition may include whether the unusual usage is detected in the middle of the billing period 312. For example, in a four-week billing period, a two-week monitoring window may be employed as a permissive or eligibility condition.
Referring back to
In the various embodiments, the trailing history data 508 may be duplicated to serve as the forecast 510 for the remaining portion of the current billing period. Where the remaining portion 502 of the current billing period is longer than the trailing history 504, the trailing history data 508 may be duplicated multiple times to generate forecast data 516 and an end-of-the-forecast data 518. The end-of-the-forecast data 518 may be shorter than the forecast data 516 depending on the length of the remaining portion 502 of the current billing period. The forecast data 516 may be duplicated as a mirror of (i.e., reversed from) the trailing history data 508. This scheme provides more weight to the most recent usage data among the trailing history data 508, because the end-of-the-forecast data 518 is based on the most recent data from the trailing history data 508. Alternatively, the forecast data 516 may merely be duplicated in the same sequence as the trailing history data 508. Where the report explains the forecasting method to the consumer, this approach may be more easily understood by consumers.
In an embodiment, the trailing window data 508 may also be averaged to provide an average rate of usage. The average rate of usage may then be used to extrapolate the forecast usage for the remaining portion 502 of the current billing period.
The inventors of the present invention discovered that a seven-day to ten-day trailing window provides a reasonable usage estimation of the consumer's usage trend of up to a month. This window size beneficially accounts for the high and low usage during a time period, while also remaining in the same weather period. This window is also sufficiently small to not be affected by seasonality effects, which may skew the forecast.
It should be appreciated by those skilled in the art that longer or shorter trailing history may be employed without imparting from the disclosed embodiments. For example, by modeling weather patterns, the computer system may account for weather effects beyond the seven-to-ten days trailing window.
The computer system may determine 106 whether the estimated usage fulfills the report-trigger condition at pre-defined schedules during the current billing period. Where communicating meters are deployed, the meter may be read at one-minute, 15-minute, hourly, or daily increments. The operation may be performed to correspond to a new meter reading.
Referring back to
Alternatively, the triggering condition may be based on the forecast usage 606 exceeding the triggering threshold 608 established at the end of the billing period. As shown, an unusual usage pattern by a consumer is detected within a few days of the elevated usage beginning. As such, the consumer has time to take action to curb their usage or spending.
A component of the estimated usage may include its duration, which establishes the length of the billing period. In the various embodiments, the current billing period may have a duration based on an average of three billing periods. Other forecast lengths may be employed, such as a fixed length.
In operation 110, the computer system outputs a report upon the report-trigger condition being fulfilled. The report may be formed in different ways. For example, it may include generating an electronic message, which may be an electronic mail message, a short message service (SMS) message, and/or an automated voice message. The report may be sent directly to consumers via such electronic messages. The report may also be sent to intermediaries, such as the utility companies or a service provider. The report may also be signals send to an electronic device located at a location associated with the consumer, such as a meter or a thermostat. The meter may be an advanced meter infrastructure (AMI) based meter or a meter with communication capabilities over a network.
The message may be personalized. The personalization provides greater confidence to the consumer that the information is relevant. For example, the personalization may include the alert type (unusual usage or cost), fuel type, as well as tips and education material to reduce usage. As a result, the likelihood of the consumer taking action increases.
The message may be formatted for electronic mail as shown in Table 1.
For short message service (SMS) message, the report may say “UTILCO: based on your recent Electric use, your projected bill is $102. Tip: Adjust the temp 3-5F to lower your bill.” The report may also say “UTILCO: Your recent Electric use is 14% higher than typical for you this time of year. Tip: Adjust the temp 3-5F to lower your bill.”
The report may include literature to improve usage reduction. The literature may include tips as shown in Table 2.
The consumer may also customize the settings for the report, such as the thresholds (maximum or minimum), as well as the maximum number of alerts to be received per billing period. The consumer may also indicate preferences on the method of delivery of the report.
The described method may be configured to monitor large numbers of consumers while distinguishing unusual usage from ordinary usage that is subject to ordinary fluctuations. In enabling consumers to manage their commodity use, the various embodiments provide for incremental efficiency results as well as greater consumer satisfaction. Additionally, the method may improve the user experience in ensuring that as many people as possible receive alerts and that the alert would be relevant and useful to them. This configuration may entail balancing the frequency of reporting with the frequency of false-positive condition when establishing the triggering threshold.
A computer system may retrieve usage-information dataset corresponding to the usage of the commodity by the consumer 702, the usage-information dataset including past usage of the commodity during at least one of a completed billing period and a current usage of the commodity during a completed portion of the current billing period. The computer system may retrieve a cost-rate dataset for the current billing period 704. The cost-rate dataset may include tiered rates as well as peak and off-peak pricing.
The computer system may establish a report-trigger condition for the current billing period; the report-trigger condition being based from the past usage in the usage-information dataset 706. The computer system may determine whether an estimated cost for the current billing period fulfills the report-trigger condition 708 and outputs a report to the consumer 710 upon such conditions.
The memory 802 is configured to store usage data 808 associated to a commodity. The usage data may include, in part, a usage-information dataset corresponding to usage of the commodity by a plurality of consumers. The usage-information may include, in part, past usage-information of the commodity during at least one of completed billing period and a current usage of the commodity during a completed portion of the current billing period. The past usage data may include bill data 809. The communication port 804c may be configured to transmit report data to a set of consumers 810, while the communication port 804a is configured to receive data with the utility database. The control program 806 is configured to control the memory 802 and the communication ports 804a-c. The control program 806 may include a forecast module 814, a rate module 816, a monitor module 818, and a report module 820. The control program 806 may also retrieve the usage-information dataset for a consumer, via communication port 804b that interfaces directly to meters 812. The control program 806 may establish a report-trigger condition for the current billing period for the consumer, where the report-trigger condition may be based at least in part from the past usage in the usage-information dataset. The control program 806 may determine an estimated usage for the current billing period based at least, in part, on usage for the completed portion of the current billing period and a forecast of usage for a remaining portion of the current billing period. The forecast of the usage may be generated by the forecast module 814. The control program 806 may continuously determine whether the estimated usage fulfills the report-trigger condition using the monitor module 818. If the estimated usage fulfills the report-trigger condition, the monitor module 818 may cause the report module 820 to output a report to the consumers 810 through the communication port 804c.
The communication ports 804b may be configured to interface to a meter, a thermostat, a data exchange interface of a cellular network, and other networks.
It should be appreciated by those skilled in the art that the communication ports 804a-c may be implemented individually or in combination. For example, the communication ports may be combined to a single internet port that interface to a local area network. The various communication ports may be implemented on several servers that interface to the respective networks. For example, the communication port 804b may be a server that interfaces to utility meter. One example is a gateway FTP server to interface with utilities servers to allow for the transfer of data files. The communication port 804c may be implemented as an exchange server, such as UUA for short message service (SMS) gateways, electronic mail (email) using simple mail transfer protocol (SMTP), as well as interactive voice response (IVR). Application programming interface (API) may, for example, be used to control IVR and SMS.
The computer system may retrieve a usage data for the current billing period 904 to establish the end date of the current billing period. The computer system may retrieve the last billing usage read to determine the start date of the current billing period and average the billing period to project the end date of the current billing period.
The usage data may be in the data format as shown in Table 3.
The computer system may determine the usage for the remaining days in the billing period 906 by determining the usage to date of the current billing period and forecasting the remaining days in the current billing period. The forecasting may be based on the trailing window of the usage that may be between seven to ten days.
The computer system may use tiered rates, or peak and off-peak pricing to determine a projected cost for the remaining portion of the billing period 908. The computer system may store to a database the projected billing period, the usage and cost to date, the forecasted usage and cost.
The computer system may compare the forecast to a baseline to determine whether an unusual usage exists 910. The unusual usage may be defined as a baseline value, established from old bills of similar seasons, exceeding a defined threshold. If the condition is fulfilled, the computer system may verify the eligibility criteria to ensure the customer has opted in to receive the alerts, that the customer is residential, and that the report would be sent during the middle of the billing period 912. The unusual usage may be based on cost or usage. If cost is the trigger, the report may be outputted only if both the usage and cost threshold are exceeded 914. This condition would discount the effect of price increases, rather than usage increase.
It should be noted that terms such as “processor” and “server” may be used herein to describe devices that may be used in certain embodiments of the present invention and should not be construed to limit the present invention to any particular device type or system unless the context otherwise requires. Thus, a system may include, without limitation, a client, server, computer, appliance, or other type of device. Such devices typically include one or more network interfaces for communicating over a communication network and a processor (e.g., a microprocessor with memory and other peripherals and/or application-specific hardware) configured accordingly to perform device and/or system functions. Communication networks generally may include public and/or private networks; may include local-area, wide-area, metropolitan-area, storage, and/or other types of networks; and may employ communication technologies including, but in no way limited to, analog technologies, digital technologies, optical technologies, wireless technologies, networking technologies, and internetworking technologies.
The various components of the control program may be implemented individually or in combination. For example, each component may be implemented or a dedicated server or a set of servers configured in a distributed manner.
It should also be noted that devices may use communication protocols and messages (e.g., messages created, transmitted, received, stored, and/or processed by the system), and such messages may be conveyed by a communication network or medium. Unless the context otherwise requires, the present invention should not be construed as being limited to any particular communication message type, communication message format, or communication protocol. Thus, a communication message generally may include, without limitation, a frame, packet, datagram, user datagram, cell, or other type of communication message. Unless the context requires otherwise, references to specific communication protocols are exemplary, and it should be understood that alternative embodiments may, as appropriate, employ variations of such communication protocols (e.g., modifications or extensions of the protocol that may be made from time-to-time) or other protocols either known or developed in the future.
It should also be noted that logic flows may be described herein to demonstrate various aspects of the invention, and should not be construed to limit the present invention to any particular logic flow or logic implementation. The described logic may be partitioned into different logic blocks (e.g., programs, modules, interfaces, functions, or subroutines) without changing the overall results or otherwise departing from the true scope of the invention. Often times, logic elements may be added, modified, omitted, performed in a different order, or implemented using different logic constructs (e.g., logic gates, looping primitives, conditional logic, and other logic constructs) without changing the overall results or otherwise departing from the true scope of the invention.
The present invention may be embodied in many different forms, including, but in no way limited to, computer program logic for use with a processor (e.g., a microprocessor, microcontroller, digital signal processor, or general purpose computer), programmable logic for use with a programmable logic device (e.g., a Field Programmable Gate Array (FPGA) or other programmable logic device (PLD)), discrete components, integrated circuitry (e.g., an Application Specific Integrated Circuit (ASIC)), or any other means including any combination thereof. In a typical embodiment of the present invention, predominantly all of the described logic is implemented as a set of computer program instructions that is converted into a computer executable form, stored as such in a computer readable medium, and executed by a microprocessor under the control of an operating system.
Computer program logic implementing all or part of the functionality previously described herein may be embodied in various forms, including, but in no way limited to, a source code form, a computer executable form, and various intermediate forms (e.g., forms generated by an assembler, compiler, linker, or locator). Source code may include a series of computer program instructions implemented in any of various programming languages (e.g., an object code, an assembly language, or a high-level language such as Fortran, C, C++, JAVA, or HTML) for use with various operating systems or operating environments. The source code may define and use various data structures and communication messages. The source code may be in a computer executable form (e.g., via an interpreter), or the source code may be converted (e.g., via a translator, assembler, or compiler) into a computer executable form.
The computer program may be fixed in any form (e.g., source code form, computer executable form, or an intermediate form) either permanently or transitorily in a tangible storage medium, such as a semiconductor memory device (e.g., a RAM, ROM, PROM, EEPROM, or Flash-Programmable RAM), a magnetic memory device (e.g., a diskette or fixed disk), an optical memory device (e.g., a CD-ROM), a PC card (e.g., PCMCIA card), or other memory device. The computer program may be fixed in any form in a signal that is transmittable to a computer using any of various communication technologies, including, but in no way limited to, analog technologies, digital technologies, optical technologies, wireless technologies, networking technologies, and internetworking technologies. The computer program may be distributed in any form as a removable storage medium with accompanying printed or electronic documentation (e.g., shrink wrapped software), preloaded with a computer system (e.g., on system ROM or fixed disk), or distributed from a server or electronic bulletin board over the communication system (e.g., the Internet or World Wide Web).
Hardware logic (including programmable logic for use with a programmable logic device) implementing all or part of the functionality previously described herein may be designed using traditional manual methods, or may be designed, captured, simulated, or documented electronically using various tools, such as Computer Aided Design (CAD), a hardware description language (e.g., VHDL or AHDL), or a PLD programming language (e.g., PALASM, ABEL, or CUPL).
Programmable logic may be fixed either permanently or transitorily in a tangible storage medium, such as a semiconductor memory device (e.g., a RAM, ROM, PROM, EEPROM, or Flash-Programmable RAM), a magnetic memory device (e.g., a diskette or fixed disk), an optical memory device (e.g., a CD-ROM), or other memory device. The programmable logic may be fixed in a signal that is transmittable to a computer using any of various communication technologies, including, but in no way limited to, analog technologies, digital technologies, optical technologies, wireless technologies (e.g., Bluetooth), networking technologies, and internetworking technologies. The programmable logic may be distributed as a removable storage medium with accompanying printed or electronic documentation (e.g., shrink wrapped software), preloaded with a computer system (e.g., on system ROM or fixed disk), or distributed from a server or electronic bulletin board over the communication system (e.g., the Internet or World Wide Web). Of course, some embodiments of the invention may be implemented as a combination of both software (e.g., a computer program product) and hardware. Still other embodiments of the invention are implemented as entirely hardware, or entirely software.
The embodiments of the invention described above are intended to be merely exemplary; numerous variations and modifications will be apparent to those skilled in the art. All such variations and modifications are intended to be within the scope of the present invention.
The present application claims priority from Provisional Application No. 61/665,189, filed Jun. 27, 2012 and Provisional Application No. 61/722,334, filed Nov. 5, 2012. These applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4334275 | Levine | Jun 1982 | A |
4843575 | Crane | Jun 1989 | A |
5513519 | Cauger et al. | May 1996 | A |
5566084 | Cmar | Oct 1996 | A |
5717609 | Packa et al. | Feb 1998 | A |
5855011 | Tatsuoka | Dec 1998 | A |
5873251 | Iino | Feb 1999 | A |
5930773 | Crooks et al. | Jul 1999 | A |
5948303 | Larson | Sep 1999 | A |
6035285 | Schlect et al. | Mar 2000 | A |
6088688 | Crooks et al. | Jul 2000 | A |
6295504 | Ye et al. | Sep 2001 | B1 |
6327605 | Arakawa et al. | Dec 2001 | B2 |
6701298 | Jutsen | Mar 2004 | B1 |
6732055 | Bagepalli et al. | May 2004 | B2 |
6778945 | Chassin et al. | Aug 2004 | B2 |
6785620 | Kishlock et al. | Aug 2004 | B2 |
6972660 | Montgomery, Jr. et al. | Dec 2005 | B1 |
7020508 | Stivoric et al. | Mar 2006 | B2 |
7073073 | Nonaka et al. | Jul 2006 | B1 |
7073075 | Freyman et al. | Jul 2006 | B2 |
7136710 | Hoffberg et al. | Nov 2006 | B1 |
7142949 | Brewster et al. | Nov 2006 | B2 |
7149727 | Nicholls et al. | Dec 2006 | B1 |
7200468 | Ruhnke et al. | Apr 2007 | B2 |
7243044 | McCalla | Jul 2007 | B2 |
7333880 | Brewster et al. | Feb 2008 | B2 |
7356548 | Culp et al. | Apr 2008 | B1 |
7444251 | Nikovski et al. | Oct 2008 | B2 |
7460502 | Arima et al. | Dec 2008 | B2 |
7460899 | Almen | Dec 2008 | B2 |
7552030 | Guralnik et al. | Jun 2009 | B2 |
7561977 | Horst et al. | Jul 2009 | B2 |
7991513 | Pitt | Aug 2011 | B2 |
8065098 | Gautam | Nov 2011 | B2 |
8166047 | Cohen et al. | Apr 2012 | B1 |
8180591 | Yuen et al. | May 2012 | B2 |
8239178 | Gray et al. | Aug 2012 | B2 |
8260468 | Ippolito et al. | Sep 2012 | B2 |
8275635 | Stivoric et al. | Sep 2012 | B2 |
8280536 | Fadell et al. | Oct 2012 | B1 |
8348840 | Heit et al. | Jan 2013 | B2 |
8375118 | Hao et al. | Feb 2013 | B2 |
8417061 | Kennedy et al. | Apr 2013 | B2 |
8478447 | Fadell et al. | Jul 2013 | B2 |
8489245 | Carrel et al. | Jul 2013 | B2 |
8583288 | Rossi et al. | Nov 2013 | B1 |
8630741 | Matsuoka et al. | Jan 2014 | B1 |
8660813 | Curtis et al. | Feb 2014 | B2 |
8690751 | Auphan | Apr 2014 | B2 |
8751432 | Berg-Sonne et al. | Jun 2014 | B2 |
8805000 | Derby et al. | Aug 2014 | B2 |
9031703 | Nakamura et al. | May 2015 | B2 |
20020065581 | Fasca | May 2002 | A1 |
20020178047 | Or et al. | Nov 2002 | A1 |
20020198629 | Ellis | Dec 2002 | A1 |
20030011486 | Ying | Jan 2003 | A1 |
20030018517 | Dull et al. | Jan 2003 | A1 |
20030023467 | Moldovan | Jan 2003 | A1 |
20030120452 | Doel | Jun 2003 | A1 |
20030216971 | Sick et al. | Nov 2003 | A1 |
20040024717 | Sneeringer | Feb 2004 | A1 |
20040111410 | Burgoon et al. | Jun 2004 | A1 |
20040140908 | Gladwin et al. | Jul 2004 | A1 |
20050257540 | Choi et al. | Nov 2005 | A1 |
20060089851 | Silby et al. | Apr 2006 | A1 |
20060103549 | Hunt et al. | May 2006 | A1 |
20070061735 | Hoffberg et al. | Mar 2007 | A1 |
20070203860 | Golden et al. | Aug 2007 | A1 |
20070213992 | Anderson et al. | Sep 2007 | A1 |
20070255457 | Whitcomb et al. | Nov 2007 | A1 |
20070260405 | McConnell et al. | Nov 2007 | A1 |
20080027885 | van Putten et al. | Jan 2008 | A1 |
20080167535 | Stivoric et al. | Jul 2008 | A1 |
20080195561 | Herzig | Aug 2008 | A1 |
20080281473 | Pitt | Nov 2008 | A1 |
20080281763 | Yliniemi | Nov 2008 | A1 |
20080306985 | Murray et al. | Dec 2008 | A1 |
20090106202 | Mizrahi | Apr 2009 | A1 |
20090204267 | Sustaeta et al. | Aug 2009 | A1 |
20090326726 | Ippolito et al. | Dec 2009 | A1 |
20100025483 | Hoeynck et al. | Feb 2010 | A1 |
20100076835 | Silverman | Mar 2010 | A1 |
20100082174 | Weaver | Apr 2010 | A1 |
20100099954 | Dickinson et al. | Apr 2010 | A1 |
20100138363 | Batterberry et al. | Jun 2010 | A1 |
20100156665 | Krzyzanowski et al. | Jun 2010 | A1 |
20100179704 | Ozog | Jul 2010 | A1 |
20100198713 | Forbes, Jr. et al. | Aug 2010 | A1 |
20100217452 | McCord et al. | Aug 2010 | A1 |
20100217549 | Galvin et al. | Aug 2010 | A1 |
20100217550 | Crabtree et al. | Aug 2010 | A1 |
20100217642 | Crubtree et al. | Aug 2010 | A1 |
20100217651 | Crabtree et al. | Aug 2010 | A1 |
20100232671 | Dam et al. | Sep 2010 | A1 |
20100286937 | Hedley et al. | Nov 2010 | A1 |
20100289643 | Trundle et al. | Nov 2010 | A1 |
20100324962 | Nesler et al. | Dec 2010 | A1 |
20100332373 | Crabtree et al. | Dec 2010 | A1 |
20110022429 | Yates et al. | Jan 2011 | A1 |
20110023045 | Yates et al. | Jan 2011 | A1 |
20110040666 | Crabtree et al. | Feb 2011 | A1 |
20110061014 | Frader-Thompson et al. | Mar 2011 | A1 |
20110063126 | Kennedy et al. | Mar 2011 | A1 |
20110106316 | Drew et al. | May 2011 | A1 |
20110106328 | Zhou et al. | May 2011 | A1 |
20110106471 | Curtis et al. | May 2011 | A1 |
20110153102 | Tyagi et al. | Jun 2011 | A1 |
20110153103 | Brown | Jun 2011 | A1 |
20110178842 | Rane et al. | Jul 2011 | A1 |
20110178937 | Bowman | Jul 2011 | A1 |
20110205245 | Kennedy et al. | Aug 2011 | A1 |
20110231320 | Irving | Sep 2011 | A1 |
20110251730 | Pitt | Oct 2011 | A1 |
20110251807 | Rada et al. | Oct 2011 | A1 |
20110282505 | Tomita et al. | Nov 2011 | A1 |
20110313964 | Sanchey Loureda | Dec 2011 | A1 |
20120036250 | Vaswani et al. | Feb 2012 | A1 |
20120053740 | Venkatakrishnan et al. | Mar 2012 | A1 |
20120066168 | Fadell et al. | Mar 2012 | A1 |
20120078417 | Connell, II et al. | Mar 2012 | A1 |
20120084063 | Drees et al. | Apr 2012 | A1 |
20120215369 | Desai et al. | Aug 2012 | A1 |
20120216123 | Shklovskii et al. | Aug 2012 | A1 |
20120259678 | Overturf et al. | Oct 2012 | A1 |
20120290230 | Berges Gonzalez et al. | Nov 2012 | A1 |
20120310708 | Curtis et al. | Dec 2012 | A1 |
20130060531 | Burke et al. | Mar 2013 | A1 |
20130060720 | Burke | Mar 2013 | A1 |
20130173064 | Fadell et al. | Jul 2013 | A1 |
20130253709 | Renggli et al. | Sep 2013 | A1 |
20130261799 | Kuhlmann et al. | Oct 2013 | A1 |
20130262040 | Buckley | Oct 2013 | A1 |
20140019319 | Derby et al. | Jan 2014 | A1 |
20140074300 | Shilts et al. | Mar 2014 | A1 |
20140107850 | Curtis | Apr 2014 | A1 |
20140148706 | Van Treeck et al. | May 2014 | A1 |
20140163746 | Drew et al. | Jun 2014 | A1 |
20140207292 | Ramagem et al. | Jul 2014 | A1 |
20140337107 | Foster | Nov 2014 | A1 |
20150227846 | Mercer et al. | Aug 2015 | A1 |
20150267935 | Devenish et al. | Sep 2015 | A1 |
20150269664 | Davidson | Sep 2015 | A1 |
20150310019 | Royer et al. | Oct 2015 | A1 |
20150310463 | Turfboer et al. | Oct 2015 | A1 |
20150310465 | Chan et al. | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
2010315015 | Jul 2014 | AU |
2779754 | May 2011 | CA |
2832211 | Nov 2012 | CA |
3703387 | Aug 1987 | DE |
102011077522 | Dec 2012 | DE |
0003010 | Jul 1979 | EP |
2705440 | Mar 2014 | EP |
2496991 | Sep 2014 | EP |
1525656 | Sep 1978 | GB |
2238405 | May 1991 | GB |
2000-270379 | Sep 2000 | JP |
2004-233118 | Aug 2004 | JP |
2006-119931 | May 2006 | JP |
2007-133468 | May 2007 | JP |
2011-027305 | Feb 2011 | JP |
2012-080679 | Apr 2012 | JP |
2012-080681 | Apr 2012 | JP |
2013-020307 | Jan 2013 | JP |
WO 03102865 | Dec 2003 | WO |
WO 03104941 | Dec 2003 | WO |
WO 2008101248 | Aug 2008 | WO |
WO 2009085610 | Jul 2009 | WO |
WO 2011057072 | May 2011 | WO |
WO 2012112358 | Aug 2012 | WO |
WO 2012154566 | Nov 2012 | WO |
WO 2014004148 | Jan 2014 | WO |
WO 2014182656 | Nov 2014 | WO |
Entry |
---|
The brattle group; net benefits of smart meters could range from $96 to $287 million over 20 years for utilities with a million customers according to study led by the brattle group. (Mar. 1, 2011). Technology & Business Journal Retrieved from https://dialog.proquest.com/ (Year: 2011). |
Calico energy services; calico energy solution to enable Chicago suburb to realize a city-wide, energy-efficient smart grid. (Feb. 11, 2011). Energy Weekly News Retrieved from https://dialog.proquest.com/professional/docview/848719225?accountid=131444 (Year: 2011). |
International Searching Authority, International Search Report—International Application No. PCT/US13/46126, dated Aug. 22, 2013, together with the Written Opinion of the International Searching Authority, 14 pages. |
Mint.com, “Budgets you'll actually stick to,” Budgeting—Calculate and Categorize your spending, https://www.mint.com/how-it-works/budgeting/, 2 pages, Jul. 12, 2013. |
Mint.com, “We're always on alert.” Alerts for bills, fees & going over budget, https://www.mint.com/how-it-works/alerts/ , 2 pages, Jul. 12, 2013. |
TXU Energy Retail Company LLC, “TXU Energy Budget Alerts Give Consumers Control of Electricity Costs,” TXU Energy, http://www.txu.com/es/about/press, 2 pages, May 23, 2012. |
International Search Report and Written Opinion for PCT Application No. PCT/US2015/038692, dated Sep. 24, 2015, 13 pages. |
International Preliminary Report on Patentability for PCT Application No. PCT/US2010/055621, dated May 15, 2012, 8 pages. |
International Search Report and Written Opinion for PCT Application No. PCT/US2010/055621, dated Dec. 23, 2010, 9 pages. |
International Search Report and Written Opinion for PCT Application No. PCT/US2012/036539, dated Jul. 6, 2012, 8 pages. |
International Preliminary Report on Patentability for PCT Application No. PCT/US2012/036539, dated Nov. 21, 2013, 7 pages. |
International Preliminary Report on Patentability for PCT Application No. PCT/US2013/046126, dated Jan. 8, 2015, 8 pages. |
International Search Report for PCT Application No. PCT/US2014/036901, dated Aug. 28, 2014, 3 pages. |
Patent Examination Report No. 1 for Australian Patent Application No. 2010315015, dated Dec. 17, 2013, 3 pages. |
Extended European Search Report for European Patent Application No. 12782569.3, dated Nov. 27, 2014, 7 pages. |
Author Unknown, “An Inconvenient Truth,” Jan. 9, 2008, 2 pages, available at http://web.archive.org/web/2008019005509/http://www.climatecrisis.net/takeaction/carbonca/. |
Author Unknown, “Calculate Your Impact,” Jul. 28, 2008, 4 pages, available at http://web.archive.org/web/20080728161614/http://green.yahoo.com/calculator/. |
Author Unknown, “Carbon Footprint Calculator: What's My Carbon Footprint?” The Nature Conservancy, Jul. 8, 2008, 8 pages, available at http://web.archive.org/web/20080708193253/http://www.nature.org/initiatives/climatechange/calculator/2008. |
Author Unknown, “CoolClimate Calculator,” May 19, 2008, 15 pages, available at http://web.archive.orgi/web/20080519220643/bie.berkeley.edu/coolcale/calculations.html. |
Author Unknown, “Lifecycle Climate Footprint Calculator,” Berkeley Institute of the Environment, Nov. 23, 2007, 6 pages, available at http://web.archive.org/web/20071123115832/http://bie.berkeley.edu/calculator. |
Author Unknown, “More than just a thermostat.,” http://www.ecobee.com/, 4 pages, Jul. 16, 2013. |
Author Unknown, “Popups Climate Change: Carbon Calculator—Greenhouse Gas and Carbon Dioxide Calculator Wed Pages,” The Nature Conservancy, 5 pages, Feb. 29, 2008, available at http://web.archive.org/web/20080229072420/www.nature.org/popups/misc/art20625.html. |
Bailey, Timothy, et al., “Fitting a Mixture Model by Expectation Maximization to Discover Motifs in Biopolymers,” UCSD Technical Report CS94-351, Proceedings of the Second International Conf. on Intelligent Systems for Molecular Biology, 1994, 33 pages. |
Chen, Hanfeng, et al., “Testing for a Finite Mixture Model With Two Components,” Journal of the Royal Statistical Society, Series B, vol. 66, No. 1, 26 pages, 2004. |
Deb, Partha, “Finite Mixture Models,” Hunter College and the Graduate Center, CUNY NBER, FMM Slides, 42 pages, Jul. 2008. |
D'Urso, M., et al., “A Simple Strategy for Life Signs Detection via an X-Band Experimental Set-Up,” Progress in Electromagnectics Research C, vol. 9, pp. 119-129 (2009). |
Eckmann, J.P., et al., “Ergodic theory of chaos and strange attractors,” Reviews of Modern Physics, vol. 57, No. 3, Part I, pp. 617-656, Jul. 1985. |
Espinoza, Marcelo, et al., “Short-Term Load Forecasting, Profile Identification, and Customer Segmentation: A Methodology Based on Periodic Time Series,” IEEE Transactions on Power Systems, vol. 20, No. 3, pp. 1622-1630, Aug. 2005. |
Fels, Margaret F., “PRISM: An Introduction,” Elsevier Sequoia, Energy and Buildings, vol. 9, pp. 5-18, 1986. |
Fels, Margaret F., et al., Seasonality of Non-heating Consumption and Its effect on PRISM Results, Elsevier Sequoia, Energy and Buildings, vol. 9, pp. 139-148, 1986. |
Figueiredo, Vera, et al., “An Electric Energy Consumer Characterization Framework Based on Data Mining Techniques,” IEEE Transactions on Power Systems, vol. 20, No. 2, pp. 596-602, May 2005. |
Fitbit® Official Site, “Flex, One & Zip Wireless Activity & Sleep Trackers,” http://www.fitbit.com/, 4 pages, Jul. 15, 2013. |
Friedman, Jerome, et al., “Regularization Paths for Generalized Linear Models via Coordinate Descent,” Journal of Statistical Software, vol. 33, Iss. 1, pp. 1-22, Jan. 2010. |
Goldberg, Miriam L., et al., “Refraction of PRISM Results into Components of Saved Energy,” Elsevier Sequoia, Energy and Buildings, vol. 9, pp. 169-180, 1986. |
Jansen, R.C., “Maximum Likelihood in a Generalized Linear Finite Mixture Model by Using the EM Algorithm,” Biometrics, vol. 49, pp. 227-231, Mar. 1993. |
Jawbone, “Know yourself. Live better.” https://jawbone.com/up/, 7 pages, Jul. 15, 2013. |
Leisch, Friedrich, “FlexMix: A General Framework for Finite Mixture Models and Latent Class Regression in R,” Journal of Statistical Software, http://www.jstatsoft.org/, vol. 11 (8), pp. 1-18, Oct. 2004. |
Liang, Jian, et al. “Load Signature Study—Part II: Disaggregation Framework, Simulation, and Applications,” IEEE Transactions on Power Delivery, vol. 25, No. 2, pp. 561-569, Apr. 2010. |
Liang, Jian, et al., “Load Signature Study—Part I: Basic Concept, Structure, and Methodology,” IEEE Transactions on Power Delivery, vol. 25, No. 2, pp. 551-560, Apr. 2010. |
Mori, Hiroyuki, “State-of-the-Art Overview on Data Mining in Power Systems,” IEEE, pp. 33-37, 2006. |
Muthen, Bengt, et al., Finite Mixture Modeling with Mixture Outcomes Using the EM Algorithm, Biometrics, vol. 55, pp. 463-469, Jun. 1999. |
Nest, “The Learning Thermostat,” http://www.nest.com/, 2 pages, Jul. 15, 2013. |
Nike.com, “Nike + FuelBand. Tracks your all-day activity and helps you do more . . . ,” http://www.nike.com/us/en_us/c/nikeplus-f..uelband, 7 pages, Jul. 15, 2013. |
Rose, O. “Estimation of the Hurst Parameter of Long-Range Dependent Time Series,” University of Wuirzburg, Institute of Computer Science, Research Report Series, Report No. 137, 15 pages, Feb. 1996. |
Sawka, Michael N., et al., “Human Adaptations to Heat and Cold Stress,” RTOMP-076, 16 pages, Oct. 2001. |
Stephen, Bruce, et al. “Domestic Load Characterization Through Smart Meter Advance Stratification,” IEEE Transactions on Smart Grid, Power Engineering Letter, vol. 3, No. 3, pp. 1571-1572, Sep. 2012. |
Stoop, R., et al., “Calculation of Lyapunov exponents avoiding spurious elements,” Physica D 50, pp. 89-94, May 1991. |
Wang, Xiaozhe, et al. “Rule induction for forecasting method selection: meta-learning the characteristics of univariate time series,” Faculty of information Technology, Department of Econometrics and Business Statistics, Monash University, pp. 1-34. |
Wang, Xiaozhe, et al., “Characteristic-Based Clustering for Time Series Data,” Data Mining and Knowledge Discovery, Springer Science & Business Media, LLC, vol. 13, pp. 335-364 (2006). |
Wehrens, Ron, et al. “Self- and Super-organizing Maps in R: The kohonen Package,” Journal of Statistical Software, vol. 21, Iss. 5, pp. 1-19, Oct. 2007. |
Wikipedia, “Akaike information criterion,” 6 pages, Aug. 17, 2012. |
Wikipedia, “Mixture model,” 10 pages, Oct. 7, 2012. |
Number | Date | Country | |
---|---|---|---|
20140006314 A1 | Jan 2014 | US |
Number | Date | Country | |
---|---|---|---|
61665189 | Jun 2012 | US | |
61722334 | Nov 2012 | US |